
Deep Learning for Computer Vision
Professor Vineeth N Balasubramanian

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Generative Adversarial Networks
Part 01

(Refer Slide Time: 00:14)

We now talk about the first kind of Deep Generative Models, which are perhaps arguably the

most popular Deep Generative Model too, Generative Adversarial Networks, or GANs.

(Refer Slide Time: 00:31)

1345



We left behind the question from the last lecture: Why does using KL divergence in finding the

generator model simplify to maximum likelihood estimation? If you recall the problem, the

problem was is argmin over all ’s from a family of distributions M, some distance function ofθ* θ

from . This distance is KL divergence; remember that the definition of KL-divergence is if𝑝
θ

𝑝
𝐷

you had two probability distributions, p and q, for simplicity. This is given by . That𝑝𝑙𝑜𝑔(𝑝 | 𝑞)

is the formal definition of KL divergence.

So, in this case, you would have the KL divergence of and . So, the first term does not𝑝
𝐷

𝑝
θ

𝑝
𝐷

depend on , so it does not matter for our optimization. So, you are left with , whichθ 𝑙𝑜𝑔(𝑝
𝐷

 | 𝑝
θ
)

can be written out as minus . Once again, here, is the distribution of data𝑙𝑜𝑔 𝑝
𝐷

𝑙𝑜𝑔 𝑝
θ

𝑙𝑜𝑔 𝑝
𝐷

and does not depend on .θ

So, you are left with argmin over expectation over all the data samples from your distributionθ

, . This is maximum likelihood estimation or minimizing negative log-likelihood.𝑝
𝐷

− 𝑙𝑜𝑔 𝑝
θ
(𝑥)

So, fairly trivial thing to show as we mentioned the last time.

(Refer Slide Time: 02:20)

Let us recap some of the concepts that we spoke about in the last lecture. We said that generative

models, try to learn a probability density function over a given set of images, training data,𝑝(𝑥)

1346



x. If you knew the distribution, if that was parametrized as a Gaussian, assigns a positive𝑝(𝑥)

number to each possible image, depending on its probability of being generated by that

distribution, it tells us how likely that image x is under that distribution .𝑝(𝑥)

And we said that applications of generative models include sampling and generating new data,

likelihood estimation, which could help you in outlier detection, because you have a certain

distribution, and you have a certain likelihood of a data point belonging to a distribution. If that

likelihood is very low, it is likely that the point was an outlier. Similarly, you can also do feature

learning, which we will talk about more in this lecture.

(Refer Slide Time: 03:36)

We also talked about the last lecture on density estimation of the probability distribution from an

implicit perspective and an explicit perspective. These also define the different approaches for

Deep generative models. In explicit density estimation methods, you try to write an explicit

function for the probability distribution. For example, you may say is equal to ,𝑝(𝑥) 𝑓(𝑥, θ)

where could be a Gaussian function in the case in which we, you assumed a Gaussian𝑓

distribution for the density.

In this case, the input would be image x, the output would be the likelihood value for image𝑝(𝑥)

x, and the parameters would be the weights , which defines that function that you assign for theθ

density. So, in this case, an explicit likelihood is assigned for each image. With explicit density

1347



estimation approaches, you will realise as you see different methods, they are very good at

outlier detection for the same reason that we just said.

So, if a point’s likelihood of belonging to distribution is very low, it is perhaps an outlier. But

explicit density estimation approaches do struggle to generate very high-quality images,

sometimes can also be slow in generating images. On the other hand, implicit density estimation

approaches do not assign a functional form to . Instead, they only aim to ensure that given a𝑝(𝑥)

model, you can sample images from that model without worrying about an explicit likelihood

assignment for each such sample. So, that is not part of the model. It happens that such methods

end up providing avenues for better sample generation and faster sampling speed.

(Refer Slide Time: 05:58)

With that, recall, let us move on to the focus of this lecture, which is Generative Adversarial

Networks. These networks were developed in 2014 by Goodfellow et al. The goal of GANs is to

build a good sampler that allows drawing high-quality samples from the . The𝑝
𝑚𝑜𝑑𝑒𝑙

(𝑥)

defines samples drawn from a model learned through this algorithm.𝑝
𝑚𝑜𝑑𝑒𝑙

(𝑥)

As we just mentioned, there is no explicit computation of a certain functional form for . The𝑝(𝑥)

only objective we have is to ensure that whatever images we sample from the model, the

distribution of those samples, which we call , remember, we will not assign any𝑝
𝑚𝑜𝑑𝑒𝑙

(𝑥)

1348



likelihood value for . We want to ensure that if you collected a set of samples from that𝑝
𝑚𝑜𝑑𝑒𝑙

(𝑥)

model, that distribution of samples should look similar to your original data distribution.

There is no likelihood assignment for each sample. So, we ideally want the output samples to be

similar but not the same as your training data. Why do we say that? Because if we have the same

samples as training data, the neural network is perhaps memorizing and not learning much. Then

you do not need such a model. You only need a model, which can then generate diverse samples

beyond what you already have.

So, How do you achieve this goal? The key idea in Generative Adversarial Networks or GANs is

to introduce a latent variable . So, this is the latent variable with a simple prior, for example, a𝑧

Gaussian prior. Once you sample from that Gaussian, you pass it through a module called a

Generator. In our case, a Generator could be a neural network, and you give input to that

generative neural network, and the network outputs an image.

So, this module is known to us from whatever we have seen so far. We have seen semantic

segmentation methods, where the output layer is the size of an image itself. Similarly, here also,

the output of the generator would be an image itself. And that is what we define as the

distribution coming out of the generator. Let us call that , the samples from , where𝑥
^

𝑝
𝐺

𝑝
𝐺

denotes the distribution of images generated by the generator G.

Now, what do we want? We want to ensure that if we had a distribution of training data given by

, we want to ensure that the distribution must be close to . Observe that we are not𝑝
𝑑𝑎𝑡𝑎

𝑝
𝐺

𝑝
𝑑𝑎𝑡𝑎

trying to assign a likelihood to every data point or even x, for that matter. We want that𝑥
^

distribution to be close to the distribution . The challenge in implementing this is not𝑝
𝐺

𝑝
𝑑𝑎𝑡𝑎

imposing any particular parameterization on or .𝑝
𝐺

𝑝
𝑑𝑎𝑡𝑎

So, we have to find the equivalence or ensure that becomes close to without knowing𝑝
𝐺

𝑝
𝑑𝑎𝑡𝑎

its distribution. Remember here; the Gaussian is only an input vector. We are not assuming any

Gaussian or any parameterization on your or distributions.𝑝
𝐺

𝑝
𝑑𝑎𝑡𝑎

1349



(Refer Slide Time: 10:23)

So, how do we ensure that is more or less close to ? To do this, the originators of this𝑝
𝐺

𝑝
𝑑𝑎𝑡𝑎

particular method, Goodfellow et al., had an interesting idea. They introduced a classifier called

a discriminator, which we will denote as D in this lecture, to differentiate between real samples

and generated samples. So, if data came from , it would be given class 1.𝑝
𝑑𝑎𝑡𝑎

And if data came from the generated distribution that is coming from , then it would give a𝑥
^

𝑝
𝐺

class 0 for that image. How does this benefit? Our goal is to train the generator to ensure that the

discriminator misclassifies the generated sample into class 1. It can no more differentiate𝑥
^

between the original distribution and the new distribution, . So, the way we will equate𝑝
𝑑𝑎𝑡𝑎

𝑝
𝐺

and is through this discriminator, which the generator will seek to confuse. The𝑝
𝐺

𝑝
𝑑𝑎𝑡𝑎

discriminator’s job is to separate the fake samples from the real samples. By fake samples, we

mean the generated samples.

The job of the generator is to fool the discriminator. So, you can also consider this, like a cop and

thief game, where discriminator is like a cop that can separate real and fake and the job of the

generator is to fool the discriminator. That is the overall idea.

1350



(Refer Slide Time: 12:24)

How do you train such a generator or a discriminator? So, the training objective for GANs is

given by a min-max optimization problem, you minimize over G, which are the parameters of

your generator network, you maximize over D, which are the parameters of your discriminator,

or the classifier network, the expectation of data coming from the real distribution, ,𝑙𝑜𝑔 𝐷(𝑥)

why is this correct?

We are saying that we would like the discriminator to maximize the log-likelihood of those data

points that come from your original training distribution. The second part states that if you now

take a sample from the Gaussian and give that Gaussian to your generator, G and the generator’s

output is given to the discriminator. We want to ensure that the output is 0. At least the

discriminator must aim to make this value 0.

And that would happen when this entire quantity is maximized. On the other hand, the

generator’s job is to ensure that this last quantity goes to 1, minimzing this entire quantity. That

is why you minimize over G and maximize over D. This also is intuitive because generator and

discriminator are playing a cop and thief game. Each would like to output the other.

So, while the discriminator wants to maximize terms in the objective, the generator wants to

minimize corresponding terms in the objective. So, such a min-max problem is also known as a

zero-sum game. This has origins in game theory, which will not get into now. We assume that the

1351



discriminator has a sigmoid activation at its output layer. Remember, the discriminator in this

particular example is a binary classifier.

It only has to say real or fake. So, the best activation function that you can have in the output

layer of a binary classifier is the sigmoid activation. We now assume that a discriminator has a

sigmoid activation function in its output layer.

(Refer Slide Time: 15:18)

So, let us try to parse this objective function a bit differently. If you look at the first term, if you

look at this part of the term, let us write that and call it objective 1. So, objective 1 states that we

would like to train the discriminator such that if the sample belongs to , which is the true𝑝
𝑑𝑎𝑡𝑎

training data distribution. We maximize the log probability of it being a real sample. The second

part is objective 2, which talks about minimizing the generator with respect to the second term.

Remember that the first term does not have anything to do with G, and hence, in the

minimization of G, the first term does not matter and can be excluded. So, while minimizing G,

what are we looking for? We are looking to train the generator G, such that if the sample belongs

to , that is, its output of the generator G, we would like to maximize the log probability of it𝑝
𝐺

being a real sample. That is what the generator would like to do.

1352



Although, the discriminator would also like to maximize this quantity. What do we mean by

expectation in these two terms? In practical implementation, the expectation simply means that

the losses are averaged over a batch of samples. What does a batch of samples mean here? We

will see that in a moment when we see the algorithm.

(Refer Slide Time: 16:57)

Now, coming to the training strategy. So, the first thing that you can think of is you have two

networks to train D and G. So, far, we have seen several other approaches where we had two

networks to train, we had detection with two heads, we talked about a Siamese network with two

branches. We talked about a two-stream CNN with two branches. But in all of those examples,

both branches were trained with the same loss or the same objective.

We had examples like triplet loss were things slightly changed. But otherwise, it was the same

loss. You minimize the same quantity across the complete network to a large extent. So, what can

we do here? One option is we can train D completely first. So, we have a good discriminator.

1353



(Refer Slide Time: 17:56)

And that can be done by optimizing only the first part of the objective O1.

(Refer Slide Time: 18:01)

And once we have that, we can train G to optimize O2. Does that work? Does that have any

problems? Let us try to think this through. If D is initially very confident, which means you have

trained an excellent discriminator or a classifier, then it would be able to say that any sample that

comes from G is a fake. So, which means, if you get an x that is obtained from G, or

corresponding to the distribution, , then , or , which is sigmoid activation function in𝑝
𝐺

𝐷(𝑥) σ(𝑥)

1354



D would be equal to 0. which means , in this case, would be𝑙𝑜𝑔 (1 − 𝐷(𝑥)) 𝑙𝑜𝑔 (1 − σ(𝑥))

would be equal to 0.

(Refer Slide Time: 19:01)

And if you see the graph of and the gradient of , when𝑙𝑜𝑔 (1 − σ(𝑥)) 𝑙𝑜𝑔 (1 − σ(𝑥))

is 0, obviously the gradient is also 0. So, you will get a zero gradient, which𝑙𝑜𝑔 (1 − σ(𝑥))

means G will not get any gradients to train and will never learn. So, training discriminator

completely well in the beginning will not help us get a good generator, which is the main

objective of a GAN. So, what do we do? We want to alternate between training the discriminator

and training the generator using O1 and O2, respectively.

1355



(Refer Slide Time: 19:54)

Let us try to see how this is done in the algorithm for GANs. So, the original paper by

Goodfellow recommends that we first sample. So, for the K steps, you first sample a mini-batch

of M noise samples from the noise prior . So, remember, we had a Gaussian, from which𝑝
𝑔
(𝑧)

we get a few vectors, which we call noise samples. Similarly, we also sample a mini-batch of M

examples from the original data distribution , which is your training data.𝑝
𝑑𝑎𝑡𝑎

Now, remember, your overall objective is . And remember, the𝑙𝑜𝑔(𝐷(𝑥)) + 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))

discriminator wants to maximize both of these. That is what we have said so far. And a

maximization problem is solved by gradient ascent, just like how a minimization problem is

solved by gradient descent. A maximization problem is solved by a gradient ascent, where in

each iteration, you go in the direction of the positive gradient, not the negative gradient the way

you did with gradient descent.

So, we update the discriminator by ascending its stochastic gradient, which is obtained by taking

this loss function and differentiating with respect to each weight in the discriminator network.

And you do this for K steps. So, for the K steps, you update the discriminator. It is not yet

completely trained. Once you have done it for the K steps, now switch over and train the

generator. So, you sample a mini-batch of M noise samples from the noise prior.

1356



Update the generator now by descending its stochastic gradient. Because for the generator, we

wanted to minimize the second term in the objective, the first term in the objective, anyway, did

not depend on G, only the second term dependent. So, we would now like to minimize

with respect to the parameters in the generator network G. Now, this is𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))

repeated over training iterations.

And this is used to come up with a model for the generator finally. At test time, what do you do?

Once you have trained the entire model, you can discard the discriminator. You take a sample

from your Gaussian, send it through the generator network, and the image you get is what you

would assume belongs to your original data distribution. One point here is what does it mean for

such a network to converge?

So far, we spoke about whenever we had a loss function, we always wanted to minimize the loss

function and wanted to ensure that the loss goes to 0. To avoid overfitting, we perhaps may not

let it go to 0. But we at least wanted to see the loss reducing over iterations. However, here, we

have two components, where one is perhaps trying to increase the objective function value, the

other is trying to reduce the objective function value. So, what does convergence mean for such a

network? Let us see that in more detail.

1357


