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Moving on from Visual Q and A and the visual dialog will now look at how attention has been 

modeled and used in various ways. In particular, we look at 3 specific models, Neural Turing 

machines, DRAW, which stands for Deep Recurrent Attentive Writer, and Spatial Transformers. 

Each of these has had a significant impact on the field of Deep Learning and Computer Vision. 

And they either use or implement attention in very different ways. Let us see each of them in this 

lecture. 
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Let us start with Neural Turing machines. Neural Turing machines, as the name states denote a 

class of neural networks that are intended to perform tasks analogous to the Turing machine, just 

like a Turing machine, and NTM or a Neural Turing machine has memory and read-write 

operations to access to and from memory to perform subsequent tasks. However, unlike a Turing 

machine, you need to have fixed memory to be able to treat this as a neural network and learn 

operations. 

(Refer Slide Time: 01:43) 
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So here is a high-level visualization of a neural Turing machine where you have a controller, you 

have a memory, and the controller access accesses the memory using read and writes heads to read 

from and write into the memory. So the controller is a neural network, certain layers, which 

executes operations on memory, read and write.  

And the memory by itself is an RxC matrix with R rows, each of C dimensions. Now let us ask a 

question, like a Turing machine. If we do read-write operations on an NTM by specifying a row 

and a column index, let us say we want to read the 3rd row and the 10th column. Can we train such 

an NTM end to end using backpropagation? 

(Refer Slide Time: 02:48) 

 

The answer is, unfortunately, no because you cannot take the gradient of an index, since it could 

be a hard choice, similar to hard attention. Just like how instead of a matrix, you had a feature map, 

and let us assume that a C in a CNN, you wanted to focus only on one patch in a particular feature 

map and that patch could be decided differently for different inputs. And only that should be 

processed through the rest of the network that would be equivalent to hard attention, where you 

are focusing only on one part and that cannot be backpropagated through.  

Instead, what can we do very similar to what we talked about as soft attention, you could now 

assume that you have a soft weighting function over different parts of a matrix. In an image, it was 

called soft attention. Here, we are looking at the memory matrix, which is RxC, and we have soft 
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attention over all the locations in the memory, which can be used to read and write from the 

memory. 

So this makes the neural Turing machine end-to-end trainable using backpropagation and gradient 

descent. So we use a very similar idea as Soft Attention. 

(Refer Slide Time: 04:14) 

 

Now let us look at these components in more detail. So you have a memory matrix at time t given 

as 𝑀𝑡, which has R rows and C columns as we already saw, the normalized attention vector, which 

is used to read from memory is given by a set of weights 𝑊𝑡(𝑖), and the weights add up to one and 

each of those weights lies between 0 and 1. And the read head is a sum of the matrix rows weighted 

by the attention vector. 

So if each row of the memory was empty of i, i th row of the memory at time t. Then you have a 

corresponding weight for each row in the memory given by an attention mechanism. And a 

weighted sum of all your memory rows becomes what the read head gets from memory.  
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Similarly, for writing a part of memory at time 𝑡 − 1 is erased using an erase vector. So, if you 

have an erase vector et 1 minus the erase vector is what is retained. So, if you had 𝑀𝑡−1, which is 

the memory of (𝑀𝑡−1)(1 −𝑊𝑡(𝑖)), which are the weights into arrays, vector et would give you 

the memory at the new time step. And now you add a weighted combination of any external input, 

let us call that input an added vector at, you have a weighted combination of that add vector, which 

is added to the memory and that particular i th row. 

(Refer Slide Time: 06:09) 
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How do you obtain this attention vector 𝑊𝑡? So, to do that, NTM uses both what is known as 

Content-based addressing and Location-based addressing similar to how you do it on a computer. 

What does this mean, in terms of learning a Neural network? Each head be it the right head, or the 

read head has a key vector 𝑘𝑡 at time step t, which is compared with each row in the memory 

matrix 𝑀𝑡. How is it compared? So, you take the vector 𝑘𝑡, the key 𝑘𝑡, take the cosine distance 

between 𝑘𝑡 and i th row of the matrix 𝑀𝑡. So that gives you how similar that key is with respect to 

one specific location in your memory. 

So this is like content-based addressing where you are trying to compare the content that you have 

with the content in one particular row in the memory. And the final attention is obtained similar to 

a softmax over the alignment of the current key vector with every row divided with a particular 

row divided by the sum of the alignment with all rows. 

You do have a constant 𝛽𝑡 here, which is you could consider a weighting factor or also what the 

Neural Turing machines work calls key strength, which decides how concentrated the content 

vector weight vector should be, you could consider that a scaling factor at this time. This is the 

first step which is largely content-based addressing. 

(Refer Slide Time: 07:57) 

 

Now once you finish the content-based addressing, you combine this with the attention vector in 

the previous time step. So your final attention now is given by your current attention into the 

previous attention 𝑊𝑡−1 the previous time step. So you interpolate those two using some scalar 
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parameter gt. And that is what you get as the attention vector that you are going to use in this time 

step. Are we done? 

No, we still have the location-based addressing to do to address this NTMs perform a circular 

convolution of the resultant vector with a kernel. So, if you have an attention vector Wt remember, 

which is a vector over all possible memory rows. Now, you perform a convolution operation with 

a kernel St this is done in case you have to swap say locations in memory based on this content.  

So, this is a kernel that could be decided based on what the controller needs to achieve. So, if 

locations of different content have moved for some reason, those kinds of changes can be addressed 

by convolving this attention vector with the suitable kernel to get the final attention vector. 

And this attention vector or distribution is then sharpened using a scalar by raising each attention 

value to a particular 𝛾𝑡 value to get a sharpened attention vector. So sharpened here would mean 

that the value increases for a high attention scalar value for particular, for a particular position and 

decreases for another attention value for a particular row where the original value may have been 

low. 

(Refer Slide Time: 10:01) 

 

One can summarize all these steps as you have the attention vector from the previous time step, 

𝑊𝑡−1, you have the memory matrix at time 𝑡, 𝑀𝑡, and you have your controller outputs, 𝑘𝑡, that is 

your key 𝛽𝑡, that is your key strength 𝑔𝑡, that is a scalar to control the interpolation between the 
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previous step potential and the step attention. Similarly, 𝑆𝑡 and 𝛾𝑡, which is to sharpen, so, you 

have you first perform content addressing, then you perform interpolation between your current 

attention weights, and your previous time steps attention weights. 

Then you perform a convolution will shift with respect to a kernel, this address is location-based 

issues that the controller may want to achieve. And finally, a sharpening of the weights to decide 

which part of the memory to, to be attending to at a particular time step. 

(Refer Slide Time: 11:04) 

 

So, that is the working of the neural Turing machine, as you saw a different use of what we saw 

as attention. Now we will move on to the second method that we said we will talk about in this 

lecture, which is known as DRAW or Deep, Recurrent Attentive Writer. This work was published 

in 2015. And this work is based on the intuition that when humans generate images, such as say 

drawings and sketches, Humans learn to draw sequentially. 

One first draws the outlines, then keeps adding details iteratively. DRAW is used what is known 

as a variational autoencoder. It is a variant of an autoencoder that is used for generative models to 

generate images, which we will see very soon in the coming week's lectures. It uses a VAE to 

mimic this kind of approach to generate images. Why are we talking about this here, although we 

have not covered Generative models, yet, it uses a unique attention mechanism, which may be of 

interest in this lecture. 
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So here is an example of how the DRAW method works. An image is generated sequence, instead 

of being generated at once, what you see here are 10 different generations, where each row is a 

generation of an image, done iteratively. So in the initial steps, if you look at the last row here, in 

the initial step, you have a blank canvas. The model then attends to a particular region, which is 

given by this red block here, then it draws something in that block, then the canvas gets updated. 

The model focuses on another block, draw something there. Then in the next time step, the model 

focuses on the third area of an image, draws something there, and iteratively over time, the model 

ends up generating this particular image at the end. This is an MNIST image. This is a model 

trained on the MNIST image dataset. As we already mentioned, DRAW uses a variational 

autoencoder, which is a variant of an autoencoder, which we will see soon. 

This autoencoder has encoders and decoders both of which are RNNs and an Attention mechanism 

is used to focus on specific parts to generate parts of an image iteratively. Let us see each of these 

components in more detail. 
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So the encoder and decoder are RNNs, which means your overall architecture diagram is going to 

be like an autoencoder, which is one column of this diagram here. So you have an x input, you 

have a read module, which is an Attention module. Then you have an encoder RNN then you have 

an intermediate step, which you can ignore. Now we will talk about this in more detail when we 

go to Variational autoencoders. 

Then from that intermediate layer, you go to the decoder RNN and then you finally have a write 

head that writes onto a canvas to generate some content. And both the encoder and the decoders 

are RNNs, which means they share weights and you have that particular block repeated over 

multiple time steps. So the image now is drawn on a canvas matrix C, which is what you see on 

top here in t time steps. 

And DRAW has both read and write it is you could say it is inspired by NTMS, to focus on specific 

parts of the image for reading, as well as writing. 
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So the encoder RNN takes four inputs, the input image X, a residual image x hat, we will see what 

x hat is, in a moment. The encoder hidden state in the previous time step, the decoder hidden state 

at the previous time step, you can see that the decoder hidden, hidden state at the previous time 

step is passed to the encoder in the next time step. So notationally speaking, 𝑥̂ = 𝑥 − 𝜎(𝑐𝑡−1). 

𝑐𝑡−1 is the canvas that has been drawn at time step 𝑡 − 1. Sigmoid of that gives you values between 

0 and 1, x minus that gives us 𝑥̂, which is the portion of the image which the canvas so far has not 

focused on. So we are looking at the residual image, which is what we call 𝑥̂. 𝑟𝑡 is the output of 

the read module, which takes in 𝑥𝑡, 𝑥̂ and ℎ𝑡−1 from the decoder, the hidden state at time step 𝑡 −

1 from the decoder using these, it decides which part of the image to read at this time step. 

And ht of the encoder is an RNN that receives the hidden state from the previous time step ℎ𝑡−1, 

it receives the output of the read module 𝑟𝑡. And as we just mentioned, it also receives the hidden 

state in the previous time step from the decode. So here σ is a sigmoid function and when we write 

something in square brackets, we mean a concatenation of those values. 
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So, when you for the decoder, when you use the decoder, you have a sampling step here, which 

we will talk about when we come to Variational autoencoders. So you sample a certain vector, 

which is passed to the deep decoder, RNN. And the decoder RNN uses the hidden state of the 

decoder at the previous time step. And the sample that came from for now, what we call the 

bottleneck layer of this variational autoencoder. 

And the canvas finally, at time step t is updated as the canvas at the previous time step plus the 

output of the right module at that particular time step. This is the overall functioning of the DRAW 

framework. 
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Now, let us try to understand how the Read and Write modules work here, which are attended, 

which are our Attention mechanisms in this particular framework. So the goal of the Read and 

Write modules are to focus on specific parts of an image. The way draws goes about this is because 

we cannot focus just on one region, then you would end up having a problem because you cannot 

differentiate through that one region which could change for every input. 

So you have to somehow distribute the weights across the full image. So this is done in two steps 

in the drawing framework. One, it predicts certain filter parameters that we will talk about, and 

using those filter parameters, it places Gaussians over a grid of locations in the image, whose 

coordinates are also learned and that becomes your attention mechanism. 

To, to explain this image, given a particular image, the attention mechanism has to focus on a 

certain region, this region is given by a grid of locations, and the center of that grid, which is given 

by gx and gy is learned as well as δ, which is the stride between different points in that grid is also 

learned. So by designing a 3x 3 grid, and learning a gx, gy, and 𝛿, the grid is completely specified. 

We still have some more details to add, but at this time, the grid is specified. You can see here that 

if you had the grid at a particular location in the image, you see that it focuses on a certain part. 

And as the grid locations are moved, the model focuses on a different part of the image. 
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So what are these grid locations and what is done to get the attention? So at each of these grid 

locations, let us say it is 3x 3 or Nx N, in general, a Gaussian filter is placed at each of these grid 

locations. So, if you have a Gaussian filter, you have to specify a variance for that Gaussian. So in 

addition to the grid center coordinates gx gy, and the stride δ, the model also learns the variance 

of the Gaussian σ square, which is going to be placed at each of these grid locations. 

And also an intensity value γ, which we will see very soon on how it is used, how it is used. How 

do you learn all of these parameters, these are all learned as part of the read or write module. So 

in the case of the decoder or the right module, given the hidden state of the decoder at a particular 

time step, you have a set of weights, which outputs all of these values that we want gx gy, 𝜎2, δ, 

and γ. 

Why is it  𝛿, 𝑔𝑥̃, 𝑔𝑦̃? We will see that very soon. Just it is only to get a go from absolute locations 

to relative locations. We will see that now. 
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So given a gx hat, and the gy hat, which is the center of this grid, which could be a value lying 

between 0 and 1, if we want to translate this to a particular position on the image, and let us assume 

the image is an Ax B input image, then gx would be given by a plus 1 by 2 into detail the x plus 1 

and gy will be given by B plus 1 by 2 into gy tilde plus 1, we are converting the predicted values 

gx tilde and gy tilde in the specific positions on an Ax B image given by gx and gy. 

Similarly, δ tilde could be the stride in the same dimensions that you were looking at for g tilde, 

now, you are converting that to a stride on a given Ax B image by saying that 𝛿 =
max(𝐴,𝐵)−1

(𝑁−1)
𝛿. N 

is the number of grid locations that you have, as we said, a 3x 3 grid, or a 5x 3 5x 5 grid, so on and 

so forth. 

What you see in the figure here is a 3x 3 grid attention map, in that case, N would be 3. So you are 

considering the max(𝐴, 𝐵). If A and B were 100x at for instance, if that was your side size of the 

image, this would be 100-1, 99/3-1,2. So you would get you would be multiplying 𝛿 by a factor of 

49, to be able to separate the at, the grid by the stride that is required for that image and gets a δ. 

Now, to find out the grid point locations of this say 3x 3 grid, you have the final equations here, 

which are given by 𝜇𝑋
𝑖  and 𝜇𝑋

𝑗
, which gives us the location for the ij th coordinate of that 3x 3 grid. 
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So let us say the 1x 1 or the 1x 2 or the 1x 3, so on and so forth, is so the 𝜇𝑋
𝑖 = 𝑔𝑥 + (𝑖 −

𝑁

2
−

0.5)𝛿. Similarly, 𝜇𝑋
𝑗
= 𝑔𝑦 + (𝑖 −

𝑁

2
− 0.5)𝛿. 

This would give you the locations if gx gy was the location of a particular of the center of the grid. 

Let us assume that that was at 50, 40, for instance, then i minus N by 2 would give you so if you 

are looking at the first location, N by 2 would be 3 by 2, so that would be minus 0.5, minus 0.5, 

that would get a minus 1. And you would say gx minus 1 δ and if δ was 10 pixels, then you would 

go 10 times to the left 10 pixels to the left. 

Similarly for j, you would get 10 pixels to the top, and that would give you the top-left location of 

the grid point and so on. 

(Refer Slide Time: 25:10) 

 

What do you do once you have these grid locations, as we said, at each of these grid locations, you 

place a Gaussian filter given by the variance 𝜎2 Fx and Fy denote those Gaussian filters here? So, 

the Gaussian filter placed at a specific grid location, which could be at a better particular part of 

the image gives you different portions of the image. So, what you see here are the bottom-most 

and the second from the bottom are perhaps positioned at the same central grid location. 
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But they have different Gaussian variances, which you can see in the output of the attended region. 

And on top, the center grid location, and perhaps the δ is small, so, you are focusing on a narrower 

location with its variance for the Gaussian. 

(Refer Slide Time: 26:13) 

 

To complete this discussion, the read function is finally implemented as a concatenation of a 

Gaussian filtered input image and the residual image. So, you have x you have 𝑥̂, which is your 

residual image, and Fy, an Fx are your Gaussian filters. So, you concatenate them, you apply γ, 

which was an intensity factor, if you recall, so, you can now vary the intensity and then γ is also 

learned. Why do we have the intensity factor? 

You could assume that when you draw, you may initially draw a light shade and then make it 

darker, right? So, in a specific time step γ controls how much intensity that you want to put into 

generating that part of the image in this case read but γ is also used for the right even in read, you 

can read only a certain intensity of a part of the image. And the right operation follows a 

complement where the right operation is given by 
1

𝛿
𝐹𝑦
𝑇𝑤𝑡𝐹𝑥

𝑇. 

So, you can see here that for the right patch, the order of the transposition is reversed. Here you 

have 𝐹𝑦𝑥𝐹𝑥
𝑇, here you have 𝐹𝑦

𝑇𝑤𝑡𝐹𝑥
𝑇. So, the order of the transporters, transposition is reversed to 

maintain the dimensions and also to maintain complementarity. But otherwise, the attention 

mechanism is implemented in a very similar manner for the read and the write. 
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And to recall, once you have this attention mechanism, at each time step, each of these rows is 

different generations. So, at each time step, the grid location and the Gaussians tell you the grid 

locations, the stride, and the Gaussians tell you which region in the image you are focusing on. 

And in each time step, the region that you are focusing on can change. In this case, what you are 

seeing here is the output of the right head. 

And you can see that you are seeing different regions are in each region of the canvas, you are 

drawing something which is obtained as the output of the decoder. And you repeat these over time 

steps to get your final generated image. 
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The third method that we are going to talk about in this lecture is known as Spatial Transformer 

networks, which is again a very different approach to use attention and benefit from the value 

attention brings to CNNs. So, the broad idea here is that CNNs on their own can lack spatial 

invariance, so if a certain object was rotated in different ways, was located at different corners, it 

may not work in practice. 

To a certain extent, Max pooling operations help, but they only help with variations or invariance 

within a small neighborhood, especially in deeper parts of the networks. Spatial transformers are 

a set of our comprises is a fully differentiable module, and hence can be inserted in any CNN to 

bring a certain attention module to solve a particular problem. Let us see spatial Transformers in 

more detail. 
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So here is an example of how spatial transformer networks work. So in the first column, you have 

three different images. As you can see, in the first image 7 is slightly modified from how a 7 would 

look like in an MNIST data set. Similarly, a 5 is reduced in size and rotated a little bit, and a 6 is 

moved from the central patch and there are a few noise patches that are included to confuse a 

model that may want to look at this and classify it as a digit 6. 

What spatial transformer does is shown in column B, its job is to find out which part of the image 

to focus on, that is wherein a sense, the attention mechanism comes in. So you can see here that 

the top image, focuses on this part, which is the 7. Similarly in the middle image, it focuses on 5, 

but the rotated box shows the orientation in which the model needs to look at the content. And 

similarly, for the third image, which is 6. 

In column C, the spatial transformer applies this transformation and converts this original image 

to an untransformed uncorrupted version, where you can find each digit to occupy the full image 

and be centered. And with the kind of images that you get in column C. In column D, we show 

how a CNN can now give good classification performance if you attend to the specific part of the 

image. Rather than be confused with the full image, which could have other artifacts. 
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The spatial transformer network architecture consists of three modules, a Location network, a 

Localization network, a Grid generator, and a Sampler. As you can see here, the spatial transformer 

network module is something that you can insert between any two convolution layers in a CNN. 

So if this was Con 4, you could insert a spatial transformer module in between Con 4 and Con 5. 

What do you expect to happen? If this was an image, where the 6 was rotated, taken to a corner, 

there were other noisy artifacts in the image, we expect the spatial transformer to focus on only 

region 6 and pass it on to the next step V for further processing. Why is this challenging? Why is 

this required? Remember now, that in a sense, we are doing Hard Attention, we are now trying to 

focus on a specific part in the image which could vary for each input. 

How do we manage to do this in a differentiable manner is the core contribution of the Spatial 

Transformer networks. The three modules are Localization network, Grid generator, and a 

Sampler. So the idea is to take an input feature map U and transform it into an output feature map 

V, which can then be given for further processing, such as to perform classification. So let us see 

each of these modules which are differential, which is differentiable and designed in a way to be 

differentiable so that they can be included in any CNN. 
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The localization network takes an input feature map U, which let us assume is of dimension Hx 

Wx C. And it outputs a set of parameters theta, which we are going to say are the parameters of 

the transformation. What does this mean? A localization network could have multiple hidden 

layers, but the output layer of the localization network contains the number of transformation, 

transformation parameters that may be required to model the problem. 

For example, if we wanted spatial transformer networks to deal with only fine transformations, 

then you would have to output six different values that would be the Localization network. 
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The next step in the pipeline, as we saw was a Grid generator and the final step was a Sampler. So 

in the grid generator, we want to now take the transmission values and find out the actual grid. So, 

if we assume that the output V has dimensioned 𝐻′x𝑊′x C for a particular point 𝑥𝑖
𝑠 , 𝑦𝑖

𝑠 in the 

input grid and a point 𝑥𝑖
𝑡 , 𝑦𝑖

𝑡 in the output grid, the transformation would be given by 𝑥𝑖
𝑠 , 𝑦𝑖

𝑠  would 

be given by an affine transformation of the point 𝑥𝑖
𝑡 , 𝑦𝑖

𝑡. 

Remember, affine can include rotation, scaling, and translation for the moment. So, now, we have 

an equivalence between the coordinates in the output feature map V and the coordinates in the 

input feature map U. So, now the next step is to find out how do you sample the points in U in a 

differentiable manner. 
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Before we go there, let us see an example of the grid generator. So, here you see that in Figure a 

here, you have an identity transformation, where you have an original image and the 

transformation learned retains the same positions for every pixel from U to V. And here is another 

example B where U has rotated 9 and V learns a transformation that takes a particular set of pixels 

in U and maps them to all four corners of V. 

Now, we need to find out how do you sample these pixels, which would form the output pixels 

inside V. So, you can see that in this case, a distorted 9 has got transformed to a canonical 9, which 

is CNN is aware of and can classify. 
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This leads us to the final and important step sampler which draws this equivalence between V and 

U. How do we do this? Vic denotes the target feature value at i th location in channel c. 𝑈𝑛𝑚
𝑐  

denotes the input feature value at location nm in channel c. And then you have iterates that go to 

H and W which are the entire dimensions for each channel in U. And then you have a sampling 

kernel, which, which tells you at which location 𝑥𝑖
𝑠 and 𝑥𝑖 and 𝑦𝑖

𝑠 you need to sample to get a 

particular output in the output feature map V. So, what kind of a kernel do we can we use? 
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One example that you can use is a bilinear sampling kernel, which states that the kernel k can be 

given by max⁡(0,1 − |𝑥𝑖
𝑠 −𝑚|). Similarly, max⁡(0,1 − |𝑦𝑖

𝑠 − 𝑛|). What does this do? If you 

observe, let us assume that for a particular pixel location in V, the corresponding 𝑥𝑖
𝑠 and 𝑦𝑖

𝑠 given 

by the transformation was, say 45 and 34 for some reason. So, 45 minus m is an iterator that would 

go from 1 to capital W and n is an iterator that would go from 1 to H. 

So, you can see here that if 𝑥𝑖
𝑠 were 45 and m was 50, for instance, you would then have 5, 1-5 

would be minus 4, the max would be 0 and you would not sample the value at 50. So, where would 

you sample? This would get activated only when m is equal to 𝑥𝑖
𝑠. So, you would only sample the 

pixel at 𝑥𝑖
𝑠 to get the corresponding location at 𝑉𝑖

𝑐. So, this becomes a differentiable way of 

sampling and focusing on one specific region of U to get the subsequent feature map V. 

How do you backpropagate through such a kernel? We know how to backpropagate through the 

rest of the operations. But how do you backpropagate through such a sampling kernel? It is not 

hard. The max⁡(0,1 − |𝑥𝑖
𝑠 −𝑚|).  is similar to many other operations that we have seen so far for 

differentiation. So, 
𝜕𝑉

𝜕𝑈
 would simply be the both these max terms themselves. 

So, that is what you would get because you would have a U here, and 
𝜕𝑉𝑖

𝑐

𝜕𝑥𝑖
𝑠 would similarly be, 

𝑈𝑛𝑚
𝑐 ⁡max⁡(0,1 − |𝑦𝑖

𝑠 − 𝑛|). So, this first term which depends on x goes away, and you would have 
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that this term would become 0, if 𝑚− 𝑥𝑖
𝑠  are greater than equal to 1, it will be 1 if m is greater 

than 𝑥𝑖
𝑠 and minus 1 if m is less than 𝑥𝑖

𝑠. That is how you can compute the partial derivative of this 

transformation. 

And this completes each of the modules, the Localization network, the Grid generator, and the 

Sampler to be able to go to one specific part of the input image for use for further processing. 

(Refer Slide Time: 40:54) 

 

Your homework readings for this lecture are once again the nice blog of Lillian Wang on Attention. 

A nice introduction and overview of DRAW by Jonathan Hui and a nice review of Spatial 

Transformer networks by Sik Ho-Tsang. 

1305



(Refer Slide Time: 41:13) 

 

Here are references. 
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