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(Refer Slide Time: 00:16)

So far, we have seen how CNNs, Convolution Neural Networks work, how back propagation is

used to train them; how they can be used for image classification; what loss functions we use;

how do you visualize and understand CNNs. We have also seen how CNNs can be extended for

other tasks such as detection, segmentation, face recognition, as well as miscellaneous other

tasks. This week, we will move on to another pillar of the space of deep learning which is

recurrent neural networks.

Recurrent neural networks are intended to process time sequences, which means in terms of

applying it to computer vision, they become relevant when you have videos as input.
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(Refer Slide Time: 01:17)

Before we get started on the topic, we had one question that we left behind from last week, when

we completed our lectures on CNNs for human understanding. And the question, an important

one in today's times was; how do you find bias in a model?

If you had a face recognition model, how do you know if the model is biased to a certain

segment of population or the dataset? Hope you had a chance to think about it. This is an

important problem in today's times, when such technologies are being deployed at a fairly large

scale, the simple check is if you think there could be a particular feature or an attribute such as

say, the background of a particular person, then you could change that attribute in your input and

see if the prediction changes.

If this happens, the model is relying on that feature to make its prediction. And if you think that

should not exist, you should try to regularize based on that attribute, use data augmentation

methods to vary that attribute’s value and ensure the model does not change its prediction.
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(Refer Slide Time: 02:54)

We will now move on to recurrent neural networks. This lecture’s slides are based on the CS231n

course by Fei-Fei Li and the course from IIT Madras by Mitesh Khapra.

(Refer Slide Time: 03:08)
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The broader context of recurrent neural networks is sequence learning problems. So far, with

both feed forward and convolutional neural networks, the size of the input was always fixed.

Given a CNN, you always fed say a image for image classification. Each input was32 × 32

also independent of the previous or future inputs and the computations, outputs, decisions for

two successive images were completely independent of each other.

What do we mean? This also relates to the common property called IID which we associate with

datasets in machine learning. IID stands for Identically Independently Distributed, if we have a

data set of images, we assume that each image in the data set is identically independently

distributed, which means that irrespective of which order you provide these images in, your

model is likely to learn the same prediction function at the end.
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(Refer Slide Time: 04:41)

So irrespective of the input being say, this image or this image or this image, obviously the class

label changes, but nothing else changes in the model parameters or the architecture.
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However, there are another category of problems known as sequence learning problems, which

requires something more than what we have seen so far. If you take this example of text auto

completion, something that you perhaps encounter on a daily basis, see, if we said Google

autocomplete a, you have a certain set of recommendations.

If you say, Google autocomplete b, you have a certain set of recommendations and similarly for

c. In such problems, successive inputs are no longer independent. To make a prediction at a

particular state, you do need to look at the inputs at previous time steps. This is something that

we did not need so far when we talked about feed forward networks or CNNs. And in this kind

of problems, the length of the inputs and number of predictions you need to make may also not

be fixed.

So an example here is if you say Google autocomplete c, the last word could be code or could be

country, these have different lengths, and you want your model to be independent of such

constraints. Another important takeaway in such problems is, irrespective of what you may have

as the input, whether you had 2 words before the c or 3 words before the c, or 1 word before the

c, the model has to perform the same task across all of these contexts.

Given a previous fair phrase, it has to now predict the next set of characters, that task does not

change irrespective of at what time step you are trying to make the prediction. If we use a typed

one word, you still have to predict the next set of characters. If the user typed 2 words, your

1108



context increases, the temporal context increases in length, but what the task has to achieve

remains the same. These kinds of problems are known as sequence learning problems.

(Refer Slide Time: 07:24)
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The neural network architecture that is designed to handle such sequence learning problems are

known as recurrent neural networks. And we will see why they are called so soon. If you

visualized a standard feed forward vanilla neural network as this kind of visualization where you

have an input, say set of hidden layers and an output, then the variance of recurrent neural

networks can be visualized as you could have a one to many variant where your input is at one

time step but your output is actually a sequence of outputs over time steps.

What is an example? Image captioning, where your input is a single image, and your output is a

sequence of words where one word has to follow the previous word to make a complete

sentence. You call this one to many where you have one input and many outputs. Similarly, you

could have a many to one architecture, where you have inputs at multiple time steps, but you

make a prediction at one particular time step.

What is an example here? Action prediction, where you have a sequence of video frames as

input, and the model has to give one particular class after seeing the full input sequence. For

example, after seeing a complete video of say, a football game, maybe this particular outcome

should predict whether that snippet of the video was a goal scoring event or not a goal scoring

event. There is also a scenario of a many to many setting where given a set of multiple inputs

over time steps, the output also has to have multiple outputs over time steps.

This is called many to many. And an example would be video captioning, where the input is a

video, which is a set of frames over time and the output, a set of words over time again. You
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could also have a slightly varied many to many settings, where you have a set of inputs over

time, a set of outputs over time again. But the outputs and the inputs are synchronized at each

input.

An example here could be video classification at frame level. So you have a video coming in as

input to your model which means, remember video has a temporal component to it. But at the

same time, you want to make predictions at the level of every frame. That would be a many to

many setting in this particular context.

(Refer Slide Time: 10:30)

So how do we really model such tasks involve sequences, we saw high level architectures, but

how do you actually learn the models with these architectures? How do we account for

dependence between inputs which is common in time series data? How do you account for

variable number of inputs? How do you ensure that, for example, if you take image captioning, it

could be variable number of inputs or variable number of outputs, if you took image captioning,

given an image, you could have a caption which has 7 words, given another image, you could

have a caption, which is 10 words, how do you allow multiple outputs variable number of

outputs, or similarly, variable number of inputs for another application.

A third consideration is how do you also ensure that the function executed at each time step is

the same? Why do we need this? Irrespective of where a frame was in a video, you want to have

the same logic to be able to execute your prediction. This is similar to what we said in
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convolution, where we said that irrespective of whether a cat was on the top left, or the bottom

right, we want to say that the cat exists in an image.

We overcame that problem through the idea of convolution. But how do we do that now over

time series, and sequence learning problems is what we are going to talk about over the next few

slides.

(Refer Slide Time: 12:10)

So the high level abstraction of a recurrent neural network is this figure here. You have an input

x and output y. And in between, you have what is known as a recurrent neural network. As the

word says, there is a recurrence here, which is now represented by this self-loop.

The key idea of RNNs is that they have an internal state, which is updated as a sequence is

processed. One could view this internal state as some kind of a memory that retains some

information from past data of the same time series. And this idea is something that we will talk

about later this week also.
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(Refer Slide Time: 13:02)

If one unfolded the recurrence, you would get a network such as this, where you have a set of

inputs, to over time. So that is a sequence of inputs that you have. And that is why we are𝑥
1

𝑥
𝑡

looking at this as a sequence learning problem. And for each input, you can give that input to an

RNN block. So this RNN block, could be a single hidden layer, could be multiple hidden layers,

could have skipped connections, could have any other architectures inside this RNN block. But

we are going to look at that as one single obstruction.

And the output of that RNN is the output of the model at that time step. This would be the entire

unfolded RNN. And when you work with RNNs, you have to decide beforehand how much you

want to unroll an RNN. What do we mean? Given a particular problem, you have to decide what

this small t must be. Do you want to look at the past 20 frames to make a decision? Do you want

to look at the past 100 frames to make a decision or do you want to look at the past 200 frames to

make a decision.

This is something that has to be decided before you start learning an RNN. This t here would

correspond to that length of the sequence that you want to look at while making the prediction.

And once t is decided you could unroll the RNN this way where the same operations inside this

RNN block is used for the input at every time step.

As we said earlier, depending on what application you are using RNNs for, you could have an

output at each time step, or you could have an output only at the last time step or you could also
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have a sequence of outputs that follows the input at the last time step. All those possibilities are

variants of this abstraction that we see on the screen.

(Refer Slide Time: 15:19)

Let us go into some more details now. So we said it is a recurrent neural network. And we also

said that we want this RNN block here to repeat the same operation for the inputs at every time

step. So what is that recurrence operation that we want to actually use? The recurrence formula

at every time step for us would be given an input at a particular time step.𝑥
𝑡

And is the state of the RNN in the previous time step, then you are going to apply someℎ
𝑡

− 1 

function, this function are the parameters inside the RNN with some weights, U and W. And you

get an output at that time step which is passed onto the next stage of the RNN, which processℎ
𝑡

the input at the next time step.
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(Refer Slide Time: 16:19)

Here is a visualization. At time step , given an input and an initial state, the RNN𝑡
1

𝑥
1

ℎ
0
,  

processes, these 2 inputs and , using weights, say U and W which are matrices of weights,ℎ
0

𝑥
1

and outputs a if an output is required at that time step, and a state , which is passed on to the𝑦
1

ℎ
1

next time step of the RNN.

But the next time step, the RNN receives and as input, uses the same weights U and W as𝑥
2

ℎ
1

the previous time step. Remember, we said we want the RNN to treat every frame as a similar

kind of input and perform similar operations, although they are different, although they are

differently placed in time. So the RNN at the second time step outputs if an output is required𝑦
2

at that stage, depending on the problem, and which is its state hidden state, which is passedℎ
2

down to the RNN at the third time step. And this is continued all the way till the last time step.
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(Refer Slide Time: 17:40)

So the recurrence formula, just to repeat is where U and W are those weightℎ
𝑡

=  𝑓
𝑈𝑊

𝑥
𝑡
 ,  ℎ

𝑡−1( )
matrices. Given input and , the key observation here is that the same function and the same𝑥

𝑡
ℎ

𝑡−1

set of parameters are used at every time step. That does not change. And that is where the

recurrence actually lies in a recurrent neural network.

(Refer Slide Time: 18:10)

So you could now think of using activation functions depending on the task that you have. So

this recurrence relation that we just wrote here, would now be .ℎ
𝑡
 =  𝑡𝑎𝑛ℎ 𝑈𝑥

𝑡
+ 𝑊ℎ

𝑡−1( )
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could have a softmax of . So if you had an output that comes out of this RNN, then you𝑦
𝑡

𝑉ℎ
𝑡

ℎ
𝑡

have a set of weights V here which multiplies 𝑉ℎ
𝑡
.

And then if you are dealing with a classification problem, you apply a softmax on that to𝑉ℎ
𝑡

give your final output of the RNN. And the weights here going from x to RNN would be U and

the weights that look at and give a would be W. So you can see that there are 3 matrices ofℎ
𝑡−1

ℎ
𝑡

weights. Ofcourse W could change based on how many layers you have inside the RNN block.

Otherwise, you have 3 sets of weights here that operate on input, hidden state, and hidden state to

output. This is sometimes called also an Elman RNN. After Professor Jeffrey Elman, who was

responsible with initiating these ideas.

(Refer Slide Time: 19:56)

To go forward and understand how the RNN is actually trained, We will take one step back and

look at the notion of what are known as computational graphs. Computational graphs are a very

common approach to implement neural networks, both inference and how they are back

propagated today, including in frameworks such as Py Torch or tensor flow. So we will review

computational graphs in general first, and then talk about how computational graphs are defined

for RNNs. So a computational graph is a directed graph whose nodes correspond to either

operations or variables.
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The values that are fed into the nodes and come out of the nodes are tensors, tensors recall are

multi-dimensional arrays generally, anything greater than 2-dimensions, or 2 dimensional

generalization of a vector would be a matrix, a generalization of a matrix would generally be

called a tensor. A tensor generally subsumes scalars, vectors, matrices into all of them, tensors is

the more general term to represent these quantities. And as I just mentioned, the computational

graph can be instantiated, to do both a forward pass through a neural network, as well as a

backward pass through a neural network.
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(Refer Slide Time: 21:35)

Let us take a simple example before we talk about neural networks, let us talk about how we can

use computational graphs to create expressions and compute them. So if you had the expression,

, this is an arithmetic expression. There are 3 operations here, 2𝑒 = (𝑎 + 𝑏) * (𝑏 + 1)

additions, and 1 multiplication. And one could write this entire expression or operation as a

sequence of intermediate operations. What are those intermediate operations, you can first say

, , . So you are saying the first term here is c, the second term𝑐 = 𝑎 + 𝑏 𝑑 = 𝑏 + 1 𝑒 = 𝑐 * 𝑑

here is d.
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And then you finally multiply the two to get an e. This seems trivial. Why are we talking about

this? One could now write this as a computational graph. You have values a and b, given as

input, you compute c, given by a + b, then you compute d which depends only on b which

becomes b +1. And then you combine c and d to get your final output e which is c*d.

(Refer Slide Time: 23:12)

How do you evaluate these expressions? Let us say you had specific values of a and b given to

you. How do you evaluate this expression using a computational graph? You would set the input

variable to certain values that are given to you. For example, a is a particular value, and b is a

particular value. And then you would compute the nodes up the graph from those variable

instance values all the way till the root node to get your final answer.

So it would look something like this, you set a = 2, you set b = 1, you first compute c = a + b

which means you get c = 3. Similarly, d = 2. And then you combine them and get your final

answer for e which is, e = 6.
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(Refer Slide Time: 24:03)

That was nice and simple but how do you use such a computational graph for the backward pass

if you want to do back propagation or in other words, how do you use computational graph to

compute gradients or derivatives. The key here is that to understand gradients, you need to

understand the edges of a computational graph, because the edges denote how a particular

variable affects another variable. For example, if you had the same computational graph, you

have a at this leaf node here and you have c = a + b at a parent of that leaf node.

Now one could write , as you have c = a + b. Hence, will be equal to 1. Similarly,∂𝑐/∂𝑎 ∂𝑐/∂𝑎

on this edge connecting b and c, will also be 1, because c = a + b, and so on and so forth∂𝑐/∂𝑏

for every set of edges in this graph. So how are we doing this, we are applying the standard sum

rule and product rule appropriately to the gradients to compute each of those gradients at the

edges. And to get your final gradient, you could sum over all possible paths from one node to

another, multiplying the derivatives on each edge of the path together.

So for example, if we want , we look at all possible paths that take us from a to e. So in∂𝑒/∂𝑎

this particular case, that would be just this, this path, you multiply all the gradients that are on

that path, so in this case, it will be 1 x 2. And that gives you the gradient of . Similarly, if∂𝑒/∂𝑎

you had to compute , you would have to consider all possible paths that take you from b to∂𝑒/∂𝑏

e. You multiply the gradients in each of these paths, and add up both these paths contributions,

and you will get your final gradient.
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(Refer Slide Time: 26:21)

So once again, in this case would be . That is how you would use a∂𝑒/∂𝑏 1 × 2 + 1 × 3

computational graph to get your gradients in a particular expression.

(Refer Slide Time: 26:37)

So, to give you a more concrete example, in a framework that you may be using, which is Py

Torch, Py Torch changes are tracked on the go during the forward pass, allowing for the creation

of such a computational graph, which is called a dynamic graph. And when you say

loss.backward, when you compute when you actually train a neural network in Py Torch, if you

say c.backward for instance, then it could be loss for training a neural network or in if you are
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just evaluating an expression, you could just say c.backward in this particular example that we

saw.

And when you dot c.backward, the Py Torch framework triggers the computation of the

gradients. And you can then print out the gradients of every edge for every gradient in your

expression computation.

(Refer Slide Time: 27:36)

What about computational graphs for neural networks feed forward neural networks. So if you

had a couple of layers in a neural network, given an input x, let us say your hidden layer h is

, Wx + b is your linear combination of your inputs x.𝑡𝑎𝑛ℎ 𝑊𝑥 + 𝑏( )

And let us assume you have a nonlinear activation function tanh on each of those nodes and that

gives you a vector h, then you apply another set of weights v on h to give you your final output y,

where b and a are your biases. If this was your mathematical representation of a feed forward

neural network, your corresponding computation graph would look like your first inputs are W

and x based on that, you get a certain output here and then you combine that with +b and you

then get a certain output.

And then finally, you take that and apply tan h and get your tanh(u). So this first step here can be

represented as a computational graph, that is a sequence that takes W x and b as inputs and

outputs h. Similarly, now for the next operation, you can now consider h as the input, V as the
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other input a as the other input. And the computational graph at this time would be this set of

operations. Obviously, the input to one of the nodes in this computational graph is the h, which

came as an output from previous computational graph.

(Refer Slide Time: 29:22)
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Now coming back to RNNs, since RNNs are a slightly complex, let us try to view RNNs from

the point of view of computational graphs. So given input and , the input is given to𝑥
1

ℎ
0

𝑓
𝑈𝑊

which is what we talked about earlier. And outputs , then and , go to again,𝑓
𝑈𝑊

ℎ
1

ℎ
1

𝑥
2

𝑓
𝑈𝑊

which is the same function that is evaluated at each time step as we already mentioned. Then

at second time step gives you and this is again recurrently given at the next time step, and𝑓
𝑈𝑊

ℎ
2

so on and so forth, until you get the final hidden state at the last time step of the sequence.

(Refer Slide Time: 30:13)
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So from a computational graph perspective, the inputs, UW here which are the weights of the

matrix of the, the weight matrices rather, are the same for every time step. And that is what is

shown by these arrows that go into a f UW at every time step.

(Refer Slide Time: 30:36)

If you had a many to many RNN, you would only slightly change this, because now you are

going to have outputs at every time step, which you did not have in the previous RNN that we

just saw.
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(Refer Slide Time: 30:51)

You could now have an output L1 that comes out of the many to many RNN which is what is

finally given as output to the user. You could also look at combining all of these until𝐿
1
,  𝐿

2
,  𝐿

3
,  

to give your final L as the output. Why does this matter? If you look at say video captioning,𝐿
𝑡

which would have been an instance of such an many to many architecture, you could look at

so on and so forth, as variables that hold each word of the caption, and L be the𝐿
1
,  𝐿

2
,  𝐿

3
,  𝐿

𝑡

final caption that is given as output of the RNN.
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(Refer Slide Time: 31:39)

If you considered many to one architecture the computational graph would look something like

this, the initial part more or less, remains the same. But the output y now is only at the last time

step; is this complete? Not really, in terms of the computational graph, you also need the

connections where the y could be an output that also receives so far, and so on, as alsoℎ
1
,  ℎ

2
,  ℎ

3

inputs to compute the final output value.

(Refer Slide Time: 32:14)
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In case of a one to many setting, you could have this kind of a computational graph, where the

input is only x at the first time step. But you now have outputs at every time step , ,𝑦
1

𝑦
2

𝑦
3

through one question here is, what would you give as inputs at intermediate time steps? Why𝑦
𝑡

do we need to talk about this? Remember, is the same function at every time step. We𝑓
𝑈𝑊

already know that the first time step needed 2 inputs x and h naught, which means at every𝑓
𝑈𝑊

time step, it does need 2 inputs. What do we do?

One option, we can input zeros at every time step, that could be one option that we can provide.

Another option, which is also sometimes followed is the output of the previous time step could

also be given as input at the next time step. By adjusting for dimensions, you could use the

output at the previous time step also as input to the next time step. Why is this relevant? To

generate the next word in a caption, you could provide the previous word in the caption to help

the model generate the appropriate next word.
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(Refer Slide Time: 33:44)

To give a more tangible example, so let us consider a RNN model. Let us assume that the inputs

and the outputs come from a vocabulary, h, e, l, o. And your input character, let us say is h,

which is denoted as 1 0 0 0 0. Such a representation is also known as a one hot vector. A one hot

vector is a vector which has a 1 at the position of the input that is given there at the position from

the vocabulary, and 0 elsewhere, since h was the first character here, if your input characters h,

the corresponding 1 hot vector would be 1 0 0 0 0.

And given that as inputs, let us assume that you have a hidden layer, you have an output layer.

And let us assume that the output layer had these set of outputs and doing a softmax you end up

getting a certain set of probabilities where the second one has the highest probability, which

means you are going to predict the next character as e.
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(Refer Slide Time: 34:55)

Now this character is given as input to the next time step. Remember, we just said the is given𝑦
1

as input to the next time step as . So e because of position of e as the second index in your𝑥
2

vocabulary will be given by one hot vector 0 1 0 0. And this is then passed through the same

network, and you now get a softmax output as 0.25, 0.2, 0.5, 0.05. The highest one is the third

one, which is an L. And that is the output of the RNN at that time step, that L is then again given

an input to the next time step, and L is denoted as 0 0 1 0, because of the position of L, in that in

the vocabulary.
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Once again you do this process, and it once again gives L as the output, that L is given to the

next time step. And the output then is O and at some point, the entire RNN model can give an

end token as the output to know where the set of outputs end. So an end token would be a default

character in the vocabulary and that would be predicted when the RNN model decides to end the

generation of that particular word.

(Refer Slide Time: 36:24)

As homework, your readings would be chapter 10 of the Deep Learning book. Andrej Karpathy's

excellent blog posts on RNNs. And additionally, if you would like to go through the Stanford

CS231n course or the IIT Madras CS7015 course. In the next lecture, we will talk about how

these RNNs can be trained using back propagation. Before that, a couple of questions for you.

Can RNNs have more than one hidden layer?

We answered that question, but think about it to ensure it can. And the next question is, the state

of an RNN records information from all previous time steps. Each new time step, in a sense,ℎ
𝑡

the old information gets morphed slightly by the current input. So you have an that comes,ℎ
𝑡−1

you have an that comes. The previous steps state is now modified due to the input that comes𝑥
𝑡

at this time step.
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What would happen if we morph the state too much? Rather, what would happen if you pay a lot

of attention only to the current input and lesser the previous time steps state? Think about it and

we will discuss this soon.
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