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Last lecture we spoke about representing an image and we also saw a few operations that you 

performed on images. Let us quickly review them and then move ahead. 

(Refer Slide Time: 00:28) 

 

We talked about 3 types of operations: point, local and global, and we did leave one question 

for you to find out about. Hope you put in some effort to answer that question. The question 

was how do you perform histogram equalization? So, we did talk about an example of linear 

contrast stretching and histogram equalization is a more complex variation of contrast 

stretching operation.  

 

So, let us now see how histogram equalization which is a very popular operation for 

improving the quality of images, let us see how that is done. Say, if you had I to be an image, 

with M x N pixels and let us assume that I_max is the maximum image intensity value and let 

us also create a histogram of the image which we denote as h(I). Remember that a histogram 

is nothing, but obtaining your entire range of image values. And counting how many pixels 

lie in each range it is simply a frequency count in bins.  
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So, now you can integrate h(I) to obtain a cumulative distribution c(I) for your image. You 

will see an example of this in a moment and the cumulative distribution c_k it is simply be 

given by if you go from 1 to k where k be a particular intensity value. You count the number 

of pixels until that particular intensity value, histogram would be about binning it 

individually. Cumulative takes it as an accumulation and then you normalize by the number 

of pixels.  

 

So, here is an example of a cumulative distribution, this red curve here is a cumulative 

distribution which simply adds up the histogram as you go through from the lowest intensity 

to the highest intensity. So, the final transformed image after doing histogram equalization is 

simply I_max, the maximum intensity into c_{p_{ij}} which is what is the cumulative 

distribution at a particular point.  

 

So in this particular figure, if you saw we are saying here that if you had a gray level intensity 

90 in an image, in the histogram equalized image, you see what is the cumulative proportion 

of 90 in that image. So, in this case it happens to be 0.29 and you simply multiply that by 

I_max the maximum intensity. Rather an intuitive way of understanding histogram 

equalization is you try to look at the distribution of intensities in a particular image, and let us 

say a lot of your intensity was lying between 200 and 250 which means an a pixel with 

intensity 90, there would not be much cumulative distribution in that space and hence in 

histogram equalized image it would get a lower value than another pixel with a higher 

intensity, that is the idea of histogram equalization. You can again read up the references for 

this course, either Simon Price book or Szeliskís book to understand more.   
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(Refer Slide Time: 04:26) 

 

Let us move on now to understanding what filters of an image are? So, we did talk about 

operations. Let us now formalize it into a concept called filter. So, an image filter is a local,  

typically a local operation can be global, but typically a local operation, where you modify 

image pixels based on some function of a local neighbourhood of that pixel exactly what we 

defined a local operation to be in the previous lecture.  

Let us take this example. You have a 3 x 3 image here which has pixel values indicated in 

this particular image. Let us assume that you are going to use some filter and get the output at 

the central pixel to be 4. Can you guess what the function is? Each pixel with this particular 

case it simply turns out to be an average of all the pixels in the neighbourhood. You could 

also make this more complex and introduce a filter which has specific values in different 

locations, and you simply do a dot product of every value in the location in the image with 

the corresponding value in the location in the filter. So, this filter is also sometimes called 

mask or kernel. These terms are overloaded in other fields. They mean different things in 

other fields, but but when we talk about image processing or low level computer vision of 

today in a computer vision we call them filters or masks or kernels.  

So, here is another example of a linear filter where you take this particular kernel that you see 

here and simply do a linear combination of the original image with this kernel and you get the 

output to be 6.5. Why is it called a linear filter? Because the output is a linear combination of 

the local neighbourhood as defined by the combination in the kernel.  
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(Refer Slide Time: 06:48) 

 

Let us formerly defined this now. So, this operation that we saw on the earlier slide can be 

formerly now written as: if you had a kernel of size (2k + 1) x (2k + 1). So in our case, if we 

took a 3 cross 3 filter, then k would be 1 and then we defined this operation to be correlation 

because it is simply a dot product between two quantities. So, your input I and then your 

output G at a particular location (i, j) is given by the first term here. 

It is simply an average in term and we are simply taking the sum of an index going from -k to 

k, v going from -k to k and you will simply add up all the pixels in that window. This is 

simply correlation. In Cross-correlation the key difference here is that you now have non 

uniform weights where you specify what should be the linear combination. 

 

So, if you are going to add up all the pixels in the neighbourhood should you simply add up 

an average or should you multiply each of those elements in that neighborhood by some 

value, if so what value and that value is given by H(u,v). This is called a cross correlation 

between H and I. This is one of the simplest operations so we will only formalized the 

operation that we did on the earlier slide.  

 

So, cross correlation is formally denoted by G(H,I). As I already mentioned it can be viewed 

as a dot product between the local neighborhood and the kernel or the filter or the mask for 

82



that particular pixel. The entries of the kernels or the mask or the filter are called the filter 

coefficient. So, on the previous slide the values in this kernel are called the filter coefficients.  

(Refer Slide Time: 09:25) 

 

Let us see the example of the moving average operation that we saw on the last lecture as a 

linear filter. So, we said that given an image the moving average filter gives you an estimate 

by removing certain kinds of noise where at each location you simply do an average of the 

local neighborhood in the input image. So, if we saw this as a cross correlation operation or 

as a linear filter what would the filter be? 

 

Remember, it has to take an average of the values in a neighborhood. The answer is, it would 

simply be 1/9 in all of those elements. 1/9 is simply to normalize the entire set of values. So 

obviously, if you were taking a 5 x 5 window this would end up being 1 / 25 times in a 5 x 5 

filter. So, this becomes your linear filter for your moving average operation that we saw in 

the last lecture can help to remove certain kinds of noise.  
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(Refer Slide Time: 10:50) 

 

Here is a more real world example of a moving average filter. So you can see here the input 

image that is your input image and on the right you see the output image where you can see 

that the output is an averaged version or the smoothed version or you can also call it a blurry 

version, because you are smudging the image at different pixels. So, this is also sometimes 

known as a box filter because the filter coefficients are all exactly the same, so it is a box in 

that sense: 1 / 9 in all those locations as we saw on the earlier slide.  

(Refer Slide Time: 11:38) 

 

Now let us try to complicate this a bit. I will say we do not want a box filter we want to take 

an average, but we want to take an average in such a way that the middle most element 
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should have the highest influence on the output. 1 neighbors away should have the next level 

of influence, 2 neighbors away should have a lower level of influence and so on and so forth 

depending on the size of your filter.  

 

Remember you could do an average not just with a 3 x 3 neighborhood, you could do it with 

a 5 x 5 neighborhood, 7 x 7 neighborhood and that is something that you have to define when 

you perform the operation. So, a Gaussian average filter which looks somewhat like this, 

where you can see that the middle most element has the highest influence. One neighbor has 

the next level of influence and so on and so forth. And 1 / 16 is simply a normalizing factor, 

because you do not want the pixel intensity in the output image to blow up. We wanted to do 

with a predefined range and that is the reason you need to normal this. So, this filter is a 

discrete version of a 2D Gaussian function as it is defined like this and it gives you an 

averaging filter again because it again smoothens out or blurs your pixels at different 

locations, but it now does not do it in a box filter way but gives more importance to a central 

pixel.  

(Refer Slide Time: 13:21) 

 

So, if you took the same example that we saw a couple of slides back and see the box filter 

and the Gaussian filter, you see that there are slight differences in how these two filters work. 

If you observe very carefully you will see that the box filter has some blockiness artifacts 

whereas the Gaussian filter does not have these artifacts. Why? Because with box filter does 
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not smoothen out at the edges that keeps the same value across the entire neighborhood and 

that can introduce certain kinds of blockiness artifacts.  

(Refer Slide Time: 14:05) 

 

What are other kinds of linear filters that you can do? You will see more and more of them as 

we go in this course, but another typical example could be what is known as an edge filter. So 

given an image, you may want to extract the edges in the image so let us take this example on 

the slide. So, you have this input image. Let us assume that you want to extract say some 

vertical edges, some horizontal edges; then the question here is what would be your filter, 

kernel of mask.  

 

So, the last set of images here are simply the absolute value of the output image. You will see 

more on edge filters a bit later, but the question for you now is what would be H(u,v) if you 

simply wanted to extract edge information from your input image. For purposes of 

convenience let us take let us stay with the 3 x 3 filter let us not increase the size we can do in 

practice, but we are not going to increase it now.  

86



(Refer Slide Time: 15:17) 

 

If you have not guessed the filter already, the filter would look something like this. A vertical 

filter would look something like this where you have -1, -1, -1 on one side and 1, 1, 1 on the 

other side. So effectively, the filter would look for places in the image where the significant 

difference between the left of the pixel and the right of the pixel vertically speaking and if 

you try to exaggerate those pixels in the output image.  

horizontal horizontal edge filter will do the same thing, but along the horizontal directions. 

This 1 x 9 here is again a normalizing factor, but you typically do not need that in an edge 

edge filter because we are not interested in the absolute edge value, but we are interested in 

high intensity where there is an edge. We will talk about this a bit more when we go into edge 

detection a few lectures down the line.  
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(Refer Slide Time: 16:26) 

 

So, let us ask an important question now. So, let us take an impulse signal for those of you 

with a signal processing background we will be able to appreciate this. So, let us take an 

impulse signal, which for us let us say, we define it as a single white pixel in the middle of an 

entire black image. We are going to call that an impulse signal and if you take a particular 

filter let us say the filter is given by a set of values a, b, c, d, e, f, g, h, i; so it is neither a box 

filter nor a Gaussian filter. It is just a set of values that you have organized as a filter.  

 

What would the output be if you use cross correlation? You can work this out a bit carefully 

by yourself, but you will find that the answer would be something like this. You would have 

an output image where the output is completely fliped. So, you would have the bottom right 

value going to the top left and the top left value going to the bottom right rather your output 

will be a double flipped version of your input. You can try out working out cross correlation 

pixel by pixel and you will realize this yourself. For example, the output at this pixel here it is 

simply going to be taking this input pixel and placing this kernel exactly as it is there and it 

happens that this white value is the only value that will get multiplied by this 1 all other 

kernel values will get multiplied by the corresponding black which is 0. And will not have 

any bearing on the output, which means the output at this particular location is going to be 

white and we will keep doing this over and over again at every pixel and you will see that let 

us take one more example. So, if you took this pixel on the output which would be this pixel 

on the input so you will take the same kernel place it here as a 3 x 3 neighborhood. And you 
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would see that the only pixel, the only value that would that would get highlighted is the one 

which is here which would get multiplied by 1 everything else would get multiplied by a 0, 

because of the black and the output would be black itself because that is the value here. You 

can do this for every pixel and realize that the output here is going to be double flipped. This 

is something that we do not expect we thought a typical identity operation for example an 

impulse signal.  

 

We would expect that if perform the operation with a kernel you get the kernel itself, but 

sadly here we notice that the output to be double fliped. What do we do if we want an 

operation like an identity operation where if you take an impulse signal and you do that 

operation with a kernel you should get the kernel itself which as you can see does not happen 

when you do cross correlation.  

(Refer Slide Time: 20:09) 

 

That introduces us to the operation of convolution. So, convolution is very similar to cross 

correlation. The main difference here is given a kernel of size 2k+ 1 cross 2k + 1. Given an 

input image I and a filter H your output is H(u, v) x I(i - u, j - v). What are you doing here? 

When you are doing the operation itself you are double flipping the filter so that your output 

turns out to become a same as the filter itself.  
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So, probably this slide has a minor issue this should be a normalizing factor here, but it really 

does not matter in practice as long as you normalize the values in the filter itself. So, if your 

filter values are not normalized you have to explicitly normalize in the end, but if you assume 

that the filter values are all normalized this normalization not be required. So, as I just 

mentioned, convolution it is equivalent to flipping the filter in both directions, but in the top 

and right and left and then applying cross correlation.  

 

So, convolution is typically denoted in this manner where H is the filter and I is the image. 

So, here is an example of how it works the same example now you have the impulse signal, 

you have your filter H(u,v) you are going to double flip it now which means your double 

flipping is going to result in this filter on the right. Now you perform a cross correlation with 

this double flipped filter. And you will end up getting this as the output because you are 

doing a cross correlation with this filter now, but the output now is the same as the filter that 

we gave as input to the operation. Why do we really need to do this? We will answer in a 

moment. One reason as we said is we wanted some kind of an identity function, but we will 

just come back in a moment.  

(Refer Slide Time: 22:41) 

 

Before we answer that question if you recall this slide that we had when we talked about the 

history of computer vision we talked about these early experiments in the late 1950s that 

establish that there are simply and complex cells in the mammalian visual cortex. 
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(Refer Slide Time: 23:01) 

 

There has been followed work along these lines that have shown that simple cells in the 

visual cortex perform simple linear spatial summation over their receptive fields. Receptive 

field is simply what part of the input image are you focusing on while performing an 

operation. For example when you take a 3 x 3 convolution filter or a correlation filter, your 

receptive field is of the size 3 x 3 because that is the part of the input image that you will 

focus on while performing one such operation.  

 

Obviously, you keep repeating this at every pixel in your image and you get the output, but 

when you do one particular operation your receptive field is 3 x 3. So coming back to this 

point, so this work here in the late 1970s showed that simple cells actually perform linear 

spatial summation. So, it seems to hint that correlation and convolution could be operations 

that we could use to perform operations on images similar to the mammalian visual cortex. 
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(Refer Slide Time: 24:16) 

 

It happens that correlation and convolution are both what are known as linear shift invariant 

operators. Those of who with the linear system of signal processing background may already 

know this. Linearity means that if you had an image I and if you had two filters h0 and h1 

then I operation h0, the operation could be convolution or correlation and then I operation h1 

whether you add up the filters first or add up the images the output images after performing 

the operation of the individual filters they both will be the same.  

 

This is linearity or what is also known as a superposition principle. The other property here is 

shift invariance. This is an important property something that can account for why 

convolution is used to this day in deep learning and so on and so forth this is an important 

property. It simply states that shifting or translating a signal commutes applying an operator.  

 

Let me try to explain this slightly differently, this is the general definition here, but if you had 

h to be a certain image I and g to be a certain image I_hat so your I_hat is simply a translated 

version of your I. Why is it a translated version? Because for every pixel at I_hat which is 

defined as i, j. The value is given by what was the value in I at i plus k and j plus l. So it is 

like moving the entire image in I a little bit left or depending on what K is? K could also be 

negative so it could be moving left or or right. So this is simply a translated version of your 

image I. So, now if you have a filter f whether you convolve it with i_hat or you convolve it 
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with I at the other locations, at the translated locations you will get the same output rather this 

seems trivial to you at the first go, but this is an important property; but what it tells is if you 

have a filter f and you apply it at say a particular location of the of the input say 1, 1 of the 

image matrix it will have the same output as applying the same filter at 3, 3 provided these 

two regions have exactly the same intensity values. Why is it important? If you have a cat at 

left top of the image or a cat at the right bottom of the image if you use a particular filter it 

will give you the same output whether the cat is located at the left top of the image or bottom 

right of the image and that is what this shifting variance.  

 

And that helps convolution induced translation invariance into any approach that uses 

convolution. So another way of saying that is the effect of the operator is the same 

everywhere in the image as long as the image has the same characteristics. If two images 

have the same characteristics, but the object of that corresponding to the characteristics is at 

different locations in that image. The corresponding output at those locations will be the same 

for a given filter. Why do we need this in computer vision I just explain that.  

(Refer Slide Time: 28:20) 

 

So, this is an important slide. We said that cross correlation unfortunately did not help us 

maintain an identity with the impulse function whereas convolution did and convolution has 

many more mathematical properties that may give an elegant operation. The first one is it is 

commutative so a * b is the same as b * a. So, this is an interesting and important property 

because this simply that if a was your image I and b was your filter h, whether you call a or 
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image b of filter or the other way round does not matter because the operation is 

commutative.  

 

The second property is associativity which says a * (b * c) is the same as (a * b) * c. Why is 

this important? If you took an image defined given by a and you have two different filters b 

and c. Now you can either apply the filter h1 on I first get an output and then apply filter h2 

or you can pre compute the convolution of h1 and h2 and simply apply the output of that in 

the image.  

 

We will see some tangible useful applications of this property a bit later. Other properties are 

it is distributive over addition so a * (b + c) = (a * b) + (a * c) I think we saw it with linearity 

too. In factors out scalars, ka * b = a * kb which is nothing, but k(a * b). And as we already 

saw that if you had an unit impulse which is defined by say a vector like this so it has a 1 in 

the center 0 everywhere else. Remember this is the one dimensional impulse in a two 

dimensional impulse we saw we already saw an example where you have a white value in the 

middle of the image black everywhere then a convolution this unit impulse will be a, itself 

which for us did not fold with cross correlation. So, convolution has a few elegant properties 

which you will see helps us in many applications.  

(Refer Slide Time: 31:03) 
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Another important property of convolution is the notion of separability. So, typical 

convolution operator requires k^2 operations per pixel assuming k x k to be your kernel so 

there are 3 x 3 kernel. If you look at a particular output pixel you need 9 operations 3x3 

operations to be able to compute the value at that output pixel. This can be costly because it is 

an image is of a very large size, remember we have to repeat the same operations for every 

pixel in the image so it could be 9 into N^2 where N^2 is the size of the image assuming you 

have an N x N image. Can we do something to reduce the cost? It happens at a certain cases 

you can. For certain kinds of filters you can speed up the convolution operation by first 

performing a 1D horizontal convolution followed by a 1D vertical convolution.  

 

So, you first convolve along each row remember that the entire operation of convolution why 

we defined it in an image processing context which is the reason why we took  2 dimensional 

filters like 3 x 3 so on and so forth. Convolution is a more general signal processing concept 

that can also be defined for one dimensional signals, can be defined for 3 dimensional signals 

or any other dimension for that matter.  

 

Just that the kernel or the filter that you have would have to be defined in that dimension. So, 

if you are performing a 1D convolution along every row of the image, you would define a 

one dimensional filter or one dimensional filter would be something like [1 / 3, 1 / 3, 1 / 3]. 

Because there are 3 values and you are normalizing, so should be 1 / 3, this is the one 

dimensional filter.  

 

What we saw at the block filter or the box filter was 1 by 9 in a 3 x 3 location. Similarly, a 

vertical filter would be 1 / 3, 1 / 3, 1 / 3 and we can perform exactly the convolution operation 

that we discussed we still have double flip and then do it only along every row of an image or 

only along every column of an image. If you do that you only require 2k operations because 

every row would require, every 1D kernel would require k operations. Every 1D vertical 

convolution would require k operation. We only need a total of k + k operations this becomes 

cheaper than k^2. Remember that for a 5x5 filter a k square would mean 25 operations while 

a 2k would mean 10 operations and this obviously this difference becomes more prominent 
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when k becomes larger and larger and larger. One point to add here is you did see these 

kernels here to be 1 / 3, 1 / 3, 1 / 3 or in a box filter 1 by 3 everywhere. 

 

Remember when you have filters such as this your double flipping really does not matter 

because the matrix is or matrix or the filter in this particular case is exactly the same 

everywhere. In such a case convolution and correlation will give you exactly the same output. 

So, to make this a bit clearer so we defined a kernel k to be separable if you can write it as an 

outer product of two 1D vectors, v and h. 

 

If you can do that then such a kernel is said to be separable because you can separate it with 

two 1D kernels, it is said to be separable and then you can use this trick to reduce the number 

of operations from k square 2k by first performing a 1D convolution with v and then 

performing a 1D convolution with h. Here is an example so if you have a 2D kernel which is 

given by this. We recall this kernel this was called the Gaussian kernel. We saw it a few 

slides back you can write this as an outer product of v and h where both are equal and can be 

given by 1 / 4 (1, 2, 1). So, then what you do is you simply take this kernel, do a convolution 

in one dimension, take the transpose of it do a one dimensional convolution in the other 

dimensions rows and columns. Should v and h be the same always? Not necessarily. 

 

Here is another example where you have a filter such as this if you recall this filter in case 

you do not recall this was your edge filter. So, in this case as you can see this can be written 

as an outer product of v = to 1/4 times this vector and h is equal to 1/2 times this vector. You 

can test it out to see if this actually is the outer product, but it happens to be this way. So, now 

you can replace a 2D convolution by two 1D convolutions which can help reduce the cost. 
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(Refer Slide Time: 37:09) 

 

But this raises one question how can you look at a kernel and tell if it is separable. So, I said 

that if a kernel can be written as an outer product of two vectors, then you can say that the 

kernel is separable, but why how can you say this? One option is to visually look at it and try 

to work out various combinations and find out which gives you the outer product and you can 

probably work that out with the example of a previous slide and see. 

 

But there is a slightly more principle way to do this. The principle way to do this is you can 

take this singular value decomposition of your kernel. Remember the singular value 

decomposition of any matrix is given by U sigma V transpose and that can be written this 

way where U is a matrix whose column vectors are ui, v is a matrix whose column vectors 

are vi and sigma i are the elements in your diagonal matrix sigma as your diagonal matrix 

that is given by sigma_1 till sigma_k assuming K is a k cross k matrix, then this is your 

standard singular value decomposition. So, if you write out the singular value decomposition 

of K, then it happens that root(sigma_1)u1 and root(sigma_1)v1 will be the vertical and 

horizontal kernels.  

 

Try working this out or checking all this to see if this actually works with the two examples 

that we saw on the couple of slides back, the Gaussian kernel and the edge kernel.  
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So, let us talk about the few practical issues when you actually start using convolution or 

even correlation as an operation. What do you think should be the ideal size for a filter? We 

talked about a filter being 3 x 3 we said it can be 5 x 5, 7 x 7 so on and so forth, but what is 

the ideal size. Obviously, it depends on a given application, but the bigger the mask or the 

filter more neighbors are going to contribute.  

 

There is going to be a smaller noise variance of the output so for example if you had say 

some kind of a noise that got introduced in certain parts of your input image. If your 

convolution is with a very small local neighborhood that noise will have an impact on the 

output, but if you took a larger mask then that noise will get subdued among the other pixels 

that you consider for that linear filter or for that local operation.  

 

It can also result on the other hand in a bigger noise spread because if you had noise in your 

input if you took a bigger filter, the impact of that noise is now going to be on a larger region. 

Remember we talked about the receptive field. So, a larger number of pixels in your output 

image will be impacted by that noise that is the other side of a same point that we saw in the 

previous on the previous bullet.  

 

98



The larger the size of the filter if you do an averaging filter it leads to more blurring. It is also 

more expensive to compute, smaller filter means the number of operations is going to be 

lesser so 3 x 3 filter has 9 operations in a non separable case, but a 5 x 5 filter has 25 

operations.  

 

What about the boundaries? This is perhaps a question that would have been in your mind all 

through. So when you do convolution, we said that if you have an input image, if you have a 

kernel you convolve and you get an output image, but we said that for a particular location at 

the output image you have to place this 3 x 3 kernel at that particular location in the input 

image. And if you now place this 3 x 3 kernel on one of those edge pixels, there is no value 

outside the image to be able to perform that linear combination which means you will only be 

able to place these output pixels one pixel into the input image if you had 3 x 3 filter. 

Obviously, that was a 5 x 5 filter. You have this impact for two sets of border pixels all 

around the image. 

 

What do we do? Do we have to lose information? Will the output image be smaller than the 

input image? So, if you have a 100 cross 100 image and 3 cross 3 filter because placing it at 

that every edge means two pixels will be outside which you do not have values for, will your 

output becomes lesser? The answer turns out to be yes, the output will become the size 98 

cross 98 in this particular case. 

 

What do we do if we want the output image to be the same size at the input image? We can 

do what is known as padding. Without padding, yes we lose out information at the boundaries 

and the output image will be smaller than the input image depending on the size of the filter, 

but there are many strategies for padding your input image with certain values so that we do 

not lose that information.  
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(Refer Slide Time: 43:18) 

 

Let me show a few examples so you can do what is known as zero padding then you simply 

pad beyond your image with black pixels. So, now you can place your filter at that corner 

location you you simply will have black values for the (fi) for the filter coefficient that go 

outside the image. You can wrap your image so whatever is here so if this was 2 pixels you 

simply just wrap those two pixels towards the other end. 

 

You can clamp the values which means whatever values you have at the output at the last 

value there, you just continue with the same values outside the image. You can mirror those 

values at the edges so on and so forth. So, in each of these cases if you did say an average 

filter these are the kinds of outputs that you would get. As you can see there is not too much 

variation, but for the variation at the edges and the larger the image become the output of 

these padding strategies do not change too much from a visual impact. 
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So, let us end this lecture with a couple of questions for you. So, we went from defining cross 

correlation and said that it has a problem when you deal with an impulse signal and then 

define convolution and then we talked about a few elegant properties that convolution has 

which correlation does not have and then give a few examples. Now, one question that 

lingers is do we need cross correlation at all? 

 

Can it be completely replaced by convolution in all kinds of applications think about it? We 

will answer this in the next lecture, but please do spend some time thinking about it and the 

other question here is why should we take a linear combination? Why cannot we take a non-

linear combination of local neighborhood of an input image? Obviously, in our case we 

defined a linear filter that way, but let us try to see if this can be made non-linear, think about 

it and we will answer these questions in the next lecture.  

(Refer Slide Time: 45:42) 
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So, for this lecture these are your readings with a specific section number listed here. Please 

do read them as a follow up. 
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