
Deep Learning for Computer Vision
Professor. Vineeth N Balasubramanian

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Lecture No. 49
CNNs for Human Understanding: Faces – Part 02

(Refer Slide Time: 00:10)

Now, we will move on to some of the recent efforts that have used CNNs to perform face

identification and verification. One of the first efforts in recent years since the success of

AlexNet was DeepFace, which was published in CVPR of 2014, which first performed a

pre-processing step, which included Face Localization, Fiducial Point Detection and

alignment to get a frontal crop of the face. This image on the left shows the steps that were

involved to obtain the frontal crop.

Given the input image, the first step is to detect the face and crop out the face from the image.

Then, about 67 fiducial points are detected on the 2D crop and they are triangulated. These 67

fiducial points are different markers on the face, such as tip of the nose, corners of the eyes,

corners of the lips, so on and so forth. There are existing methods that can do that. Once this

is done, these are then cast on to a 3D model, onto which this particular face image is

projected. And that 3D model is then normalized into a 2D face image with its corresponding

fiducial points, which is converted to a frontal crop of the image.

And finally, since we now have the 3D model of the some, same person's face, you could also

generate other poses of the same person. So, the frontal crop that we talk about here in Step 1,

is this image g, which you can see is fairly well normalized when you compare to the image

1050

b. This frontal crop is passed on to the deep CNN model, deep CNN architecture with a

K-way softmax for differentiating between K different classes using the standard soft, trained

using the standard softmax and cross-entropy loss.

(Refer Slide Time: 02:32)

For the verification part, DeepFace used a Siamese Network kind of an approach, where the

representation learned from the identification task is frozen for verification. So, these

architecture parameters are frozen. Given a face image I and its corresponding image in the

record, which the person claims to be, you get 2 representations and , which is𝑓
1

𝑓
2

𝐺 𝐼
1()

and . The network is then trained, the rest of the network is then trained by taking an𝐺 𝐼
2()

absolute difference between and followed by a fully connected layer and then your final𝑓
1

𝑓
2

binary decision as Sigmoid Activation Function.

So, the distance induced in this particular scenario is , where alpha is a𝑓
1

𝑖[] − 𝑓
2

𝑖[]| |α𝑖

weight learned in this particular layer. And the final output is then a match or not match or a

same or a not same. This approach that was proposed in DeepFace, which was taken from the

Siamese Network idea of the 90s has since been expanded in several ways.

1051

(Refer Slide Time: 03:52)

And one of the primary ideas, which has been used is the notion of what is known as

Contrastive Loss. Contrastive loss is a loss that is used for training the neural network based

on the paradigm of metric learning in machine learning. Metric learning methods in machine

learning attempt to learn a distance metric, rather than use a Euclidean distance metric, or a

cosine distance metric. So, the same idea is now used to learn distinctive discriminative

feature representations for the task that you want to use these representations for.

So, in the face verification scenario, our objective is to map the input into an embedding

space where the distance between points (are) correspond to semantic similarity. Euclidean

distance could do it, but if we could learn a distance that does this more effectively, that

would be more useful, and that is what most of these methods try to do. There have been

various formulations, such as Pairwise Contrastive Loss, Ranking Loss, Triplet Loss, so on

and so forth. We will see some of these over the rest of this lecture.

1052

(Refer Slide Time: 05:15)

Pairwise contrastive loss came from a work in 2006, introduced by Hadsell, where an

approach to learn a mapping invariant to complex transforms (for int) was introduced. And as

we just said, the idea was to make similar points close to each other on the embedding

manifold. So, this representation that you get as output of your CNN is also called an

embedding. And if we now assume that those low dimensional embeddings, generally these

embeddings have a lower dimensionality than the image itself, the image could be a

image, whereas the embedding could just be a 1000-dimensional vector or a200 × 200

4000-dimensional vector.

We ideally want these embeddings that lie on, say, 1000-dimensional manifold or a

4000-dimensional manifold to be similar to each other for similar entities, and far away from

each other for dissimilar entities. So, our goal here is to learn W, the weights of the neural

network in a way in which the distance or , given X1 and X2 are inputs𝐺
𝑤

𝑋
1() − 𝐺

𝑤
𝑋

2()| || |
2

to approximate the Semantic Similarity of the inputs. Let us see how this is done.

1053

(Refer Slide Time: 06:42)

So, the overall algorithm’s ideology can be given by this algorithm environment here. Given

a training data set, you first identify the set of samples that are similar to each other and put

them in a set, say, , given an input , we identify the samples that are similar to . In𝑆
𝑋

𝑖

𝑋
𝑖

𝑋
𝑗

𝑋
𝑖

the face verification context, it could be other pictures of the same person. We also say that

, which is given and would be 0 if these points are similar. Similarly, you identify𝑌
𝑖𝑗

𝑋
𝑖

𝑋
𝑗

dissimilar points, which could be images of 2 different people, where you give a label

. Now, what do we want to do when we train?𝑌
𝑖𝑗

= 1

For each pair in the training set, if = 0, that means they are similar images, we𝑋
𝑖
 , 𝑋

𝑗
 () 𝑌

𝑖𝑗

then update W to decrease the distance . And if , that is𝐺
𝑤

𝑋
𝑖() − 𝐺

𝑤
𝑋

𝑗()| || |
2

𝑌
𝑖𝑗

= 1

dissimilar images, then we would like to increase this distance . Let us see now how this is𝐷
𝑤

done using a single loss function. So, given and be a pair of high dimensional input𝑋
1

𝑋
2

vectors, let y be a binary label given to be 0 if and are similar, and 1 otherwise.𝑋
1

𝑋
2

Then the pairwise contrastive loss, is given by .𝐿
𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒

1−𝑦
2 𝐷

𝑤
2 + 𝑦

2 𝑚𝑎𝑥 0, 𝑚 − 𝐷
𝑤
2()

The first term, as you can see, gets activated only when . And the second term gets𝑦 = 0

activated only when . When , the images are similar. So, you are minimizing𝑦 = 1 𝑦 = 0 𝐷
𝑤
2

1054

, which is what we would like to do. And when , you have dissimilar images as input,𝑦 = 1

then you are minimizing the .𝑚𝑎𝑥 0, 𝑚 − 𝐷
𝑤
2()

Let us analyse this. m is a user defined margin, that you want the dissimilar images to at least

be separated by a certain number, 10 units or 20 units in your manifold, so on and so forth.

And this states that if , then the second quantity will become negative, the max𝐷
𝑤
2 > 𝑚

would become 0, and you are saying that there is nothing to do. or the distance between𝐷
𝑤
2

the dissimilar images is already greater than my user defined margin m. So, this term would

disappear. However, if , in that scenario, you would be minimizing , which𝐷
𝑤
2 < 𝑚 𝑚 − 𝐷

𝑤
2

is equivalent to maximizing or the distance between these dissimilar images.𝐷
𝑤
2

(Refer Slide Time: 10:14)

This idea is used in the subsequent network DeepID2, which was proposed in NIPS of 2014.

So this, similar to DeepFace, trains a deep CNN to jointly perform identification and

verification, where it can be argued that the identification task increases inter-personal

variations, you are trying to separate different identities apart, images of different identities or

embeddings of different identities. And the verification task reduces intra-personal variations

by bringing together features or embeddings of the same identity. How is this implemented?

1055

(Refer Slide Time: 10:59)

In DeepID2, cross-entropy loss is used for the identification parameters and pairwise

contrastive loss is used for learning the verification parameters. So, you have , whichθ
𝑖𝑑

correspond to the weights of the identification module and , which correspond to theθ
𝑣𝑒

verification module. The identification loss is given by cross-entropy as you can see here,

where or the Softmax layer parameters, the last layer parameters for identification, andθ
𝑖𝑑

similarly, the pairwise contrastive loss, where the verification loss parameters are given by

.θ
𝑣𝑒

(Refer Slide Time: 11:43)

1056

But DeepID2 uses a different way of learning the entire pipeline, which is slightly different.

And let us see this algorithm here. So, given that you sample 2 training samples and𝑥
𝑖
 , 𝑙

𝑖()
from your training data set. So, you now have , which is the output of the𝑥

𝑗
 , 𝑙

𝑗() 𝑓
𝑖

convolution layer for and , which is the output of the basic backbone CNN for . These,𝑥
𝑖

𝑓
𝑗

𝑥
𝑗

this backbone CNN is parametrized by weights . Now, the gradient of is given byθ
𝑐

θ
𝑖𝑑

. So, in this case, you are using the cross-entropy loss for
∂𝐼𝑑𝑒𝑛𝑡 𝑓

𝑖
 , 𝑙

𝑖
, θ

𝑖𝑑()
∂θ

𝑖𝑑
+

∂𝐼𝑑𝑒𝑛𝑡 𝑓
𝑗
 , 𝑙

𝑗
 , θ

𝑖𝑑()
∂θ

𝑖𝑑

both and .𝑓
𝑖

𝑓
𝑗

Similarly, the gradient for the verification parameters is given by , whereλ.
∂𝑉𝑒𝑟𝑖𝑓 𝑓

𝑖
 , 𝑓

𝑗
 , 𝑦

𝑖𝑗
, θ

𝑣𝑒()
∂θ

𝑣𝑒

the verification loss is given by the pairwise contrastive loss, where we know that in this

particular case was set to 1 if the identities were the same and was set to minus 1 if the𝑦
𝑖𝑗

𝑦
𝑖𝑗

identities were dissimilar. Then similarly, and was given by, remember and are▽𝑓
𝑖
▽𝑓

𝑗
𝑓

𝑖
𝑓

𝑗

the (param) the gradient with respect to the embeddings and , which are outputs of the𝑓
𝑖

𝑓
𝑗

CNN, which is given by for and , similarly for .∂𝐼𝑑𝑒𝑛𝑡 + ∂𝑉𝑒𝑟𝑖𝑓 𝑓
𝑖

▽𝑓
𝑗

𝑓
𝑗

And the final gradient for the entire CNNs parameters is given by

. Rather, you are ensuring that the weight updates for the▽𝑓
𝑖

∂𝐶𝑜𝑛𝑣 𝑥
𝑖
 , θ

𝑐()
∂θ

𝑐
+ ▽𝑓

𝑗

∂𝐶𝑜𝑛𝑣 𝑥
𝑗
 , θ

𝑐()
∂θ

𝑐

CNN are shared between the gradient, are firstly updated using the gradients using both the 𝑥
𝑖

outputs and the outputs, and the same weights are then shared for both the CNN𝑥
𝑗

architectures that are applied on both and .𝑥
𝑖

𝑥
𝑗

So, to summarize, and are separately updated via respective objectives. But , whichθ
𝑖𝑑

θ
𝑣𝑒

θ
𝑐

are the weights of the backbone CNN before you branch out into verification and

identification are trained via a weighted contribution from both identification and verification

objectives. This enables the backbone network to both learn good inter-personal features and

intra-personal features.

1057

(Refer Slide Time: 15:09)

Subsequently, came FaceNet, which was developed in CVPR of 2015, which premised that

existing architectures for face recognition, including DeepFace and DeepID2 typically

learned an entire neural network, and then used one of the penultimate layers, which is called

a bottleneck layer for, and those embeddings for any final decision making in matching. Is

there a problem with this approach? FaceNet claimed, yes, it has an indirectness, because we

do not know what those embeddings from an intermediate layer or a penultimate layer or

what is called as a bottleneck layer could be used for in later tasks.

And because it was not explicitly trained for a later face or later task that those embeddings

are used for, it may be ineffective. So, FaceNet rather tries to ensure that its goal is to output a

good representation. There are no further goals of classification, which are considered

separately based on the learned representation. In fact, FaceNet learns a 128-dimensional

embedding using a new loss function known as a Triplet Loss Function, which is commonly

used across several settings in deep learning today.

1058

(Refer Slide Time: 16:37)

So, here is the idea of triplet loss. It is an extension of contrastive loss. While contrastive loss

used similar and dissimilar examples, triplet loss uses a triplet. What is the triplet made of?

An anchor point, a positive point and a negative point. So, given any input, which is an

anchor point for us now, we now then have a positive point, which has the same identity as

the anchor, and the negative point, which has a different identity as the anchor. We now try to

use all these 3 in, while learning through a loss function. And our goal here, obviously, is to

ensure that the distance between the anchor and the negative sample is at least a certain

margin more than the distance between the anchor and the positive sample.

How do we implement this using a loss function? We have a triplet constraint that states

. We are saying that the distance of the anchor𝑓 𝑥
𝑎() − 𝑓 𝑥

𝑝()| || |
2

2 + α < 𝑓 𝑥
𝑎() − 𝑓 𝑥

𝑛()| || |
2

2

to the negative sample must be at least a certain margin m, which is m is a positive, alpha

here, alpha is a positive quantity more than the distance of the anchor to xp, which is the

positive sample.

1059

(Refer Slide Time: 18:13)

So, you could visualize this as, you have an anchor image that is given as input to your CNN

model. You have a positive example for that anchor image and you also have a negative

example for that anchor image in your data set. You first ensure that after you get the

representations as output of your CNN architecture, the same CNN architecture is used for all

these 3 inputs, very similar to before. You ensure that these representations are normalized, so

that you get for each of these representations. So, you normalize those vector𝑓 𝑥()| || |
2

= 1

representations that you get.

Now, this would be equivalent to each of these points lying on a unit hypersphere or a unit

ball in whichever dimensional space, 128-dimensional space that you are considering here.

And your goal now is to train or the weights of the neural network, given all these triplets toθ

ensure that , where alpha is margin. This is𝑓 𝑥
𝑎() − 𝑓 𝑥

𝑝()| || |
2

2 + α < 𝑓 𝑥
𝑎() − 𝑓 𝑥

𝑛()| || |
2

2

achieved by using the triplet loss, which is given by

𝑓 𝑥
𝑎() − 𝑓 𝑥

𝑝()| || |
2

2 − 𝑓 𝑥
𝑎() − 𝑓 𝑥

𝑛()| || |
2

2 + α

It is simple to see that this will now try to ensure that this loss at least has a certain margin of

alpha between the distance to the negative sample to the anchor and the positive sample to the

anchor.

1060

(Refer Slide Time: 19:55)

One question here is, “How do you select these triplets, given an anchor image?” You could

have what are known as Easy Triplets, where its very clear as to what the positive sample is

and what the negative sample is. However, easy triplets may not really facilitate learning,

they may not be able to allow the network to learn distinctive features. So, it may be

important to select triplets that initially violate the triplet constraint, so that the network

learns. And eventually, perhaps over time change the nature of triplets.

(Refer Slide Time: 20:39)

So, you could first choose what are known as Hard Triplets. Given a mini-batch of triplet

samples that you are going to use (the) to train this neural network, you could choose only the

1061

hard positives and the hard negatives. What are hard positives? Where is𝑓 𝑥
𝑎() − 𝑓 𝑥

𝑝()
maximized. Those samples, where the distance to positive samples is the highest, would be a

hard positive. And where the distance of the anchor to a negative is minimum, would be a

hard negative. So, we choose those kinds of samples in a given mini-batch as hard triplets

that we can train the network on.

So, FaceNet actually uses online triplet sampling, where hard positives and negatives are

sampled from every mini-batch. There is one problem here though, if you choose very hard

negatives early on, there could be bad local minima, and the training could collapse. So, the

idea would be to choose semi-hard negatives in a initial stage, and then move on to more

harder negatives in later stage of training. How do you choose semi-hard negatives? We

ideally want to choose negatives that lie inside the margin between, alpha was the margin, so

we want to choose those kinds of samples to start with. It may not necessarily be the

minimum distance, but we want to choose a negative sample that is inside the margin.

How do you do? How do you choose such a semi-hard example? You can pick

. You ignore the that we had, and this way, you𝑓 𝑥
𝑎() − 𝑓 𝑥

𝑝()| || |
2

2 < 𝑓 𝑥
𝑎() − 𝑓 𝑥

𝑛()| || |
2

2 α

may end up choosing samples that are lying inside the margin while you train initially.

(Refer Slide Time: 22:39)

Going further over triplet loss, in 2017, there was an approach known as Angular Softmax

Loss that intended to improve identification and verification performance with faces. It can

also be used for other domains. And these set of diagrams from the paper illustrate the overall

1062

idea. So, if you had an original softmax loss, and you considered the embeddings of the

neural network before applying the softmax loss, whatever embedding you had from the

penultimate layer, before applying the Softmax Activation function and the cross-entropy loss

after that, you may have an embedding something like this, where all these points, yellow in

colour belong to one class, all these points that are pink in colour or purple in colour belong

to the other class.

So, one can see that if you now embedded, if you normalize these vectors and get a unit

norm, it may be a little difficult to use the cosine distance between these two to separate the

identities. You can see here that there are certain points, where the yellow and the purple

almost overlap. This could be improved by using a Modified Softmax Loss, where you

normalize your weight vectors before obtaining these embeddings. We will see the formal

definition soon.

And this particular work proposes an Angular Softmax, where you enhance the distinction

between the positive class embeddings and the negative class embeddings, so that then you

could use a cosine distance metric to effectively separate the identities or get similarity

between the identities. Why is this important in this context? Remember that for most of

these identification or verification methods, the last step is a step of matching using a distance

metric. And one distance metric that could be used for matching is the cosine similarity or the

angle between these representations. So, we now look at different definitions of these

modified Softmax losses.

(Refer Slide Time: 24:59)

1063

So, the original Softmax loss can be written as e power, ideally, this would have been Zi,

which would have been the logits of the neural network. But those logics can be written as

, where s are the activations of the layer before applying the Softmax. So, that is𝑊𝑥
𝑖

+ 𝑏 𝑥
𝑖

what you have as the definition of Softmax. Now, one could write out this dot product Wx

that you have here, as , that is the definition of the dot product, plus𝑊| || | 𝑥
𝑖| || |𝑐𝑜𝑠 θ

𝑦
𝑖

() + 𝑏
𝑦

𝑖

the bias. Remember, we are looking at the th label, and that is why this subscript . So,𝑦
𝑖

𝑏
𝑦

𝑖

this is your standard Softmax loss.

The modified Softmax loss is given by, after your penultimate layer of the neural network,

before you apply the Softmax, you normalize the weights that you obtain, and then apply the

Softmax. So, in this case, the norms of the weights and for any other neuron,𝑊
1

𝑊
2

remember that you are going to have different weights for every neuron connecting to that

last layer, so each of those weights are normalized to 1. Now, your Softmax loss becomes this

first term here, becomes 1.𝑊| || |

And it also ensures that the bias becomes 0. That is also done as part of the operation. So,

your new modified loss looks something like this, where the becomes 1 and the bias𝑊| || |

becomes 0. These are operations that are performed before applying the Softmax. The

angular Softmax loss extend this, extends this to make the angle corresponding to the positive

class be scaled by m, while the angles corresponding to all other classes not scaled by the

same m value. m is a positive constant. This ensures that the angle is further separated

between the positive class and the rest of the classes.

Remember, that the final match to check whether a feature belongs to one class and the other

class would be given by where , you would then say that this point belongs to𝑐𝑜𝑠 θ
𝑖

> 𝑐𝑜𝑠 θ
𝑗

the ith label and not the jth label. And by doing Angular Softmax, we are ensuring that we

would now have , which is likely to be greater than , we are trying to ensure𝑐𝑜𝑠 (𝑚θ
𝑖
) 𝑐𝑜𝑠 θ

𝑗

that for the positive class, the cost value can be further separated from the cost value for the

angle with respect to the other classes. That is the main idea for the Angular Softmax.

1064

(Refer Slide Time: 28:03)

So, here is another visualization from the same paper. The Softmax decision boundary can be

given by . Taking the activations from 2 different classes,(𝑊
1

− 𝑊
2
)𝑥 + 𝑏1 − 𝑏2

remember, you are going to have multiple classes in that last layer. We are considering 2

classes, , and the weights corresponding to them are and . And this is your Softmax𝑊
1

𝑊
1

𝑊
2

decision boundary. You see here, that when you have your Softmax decision boundary, you

are separating those 2 classes, this particular way.

In your modified Softmax boundary, you are normalizing your weights, and hence, all your

points lie on a unit ball. And you are now trying to ensure that you get a separation such as

this. Your points belong to positive classes lie on one side of the ball and your points

belonging to the negative class lie on the other side of the ball. This is a little bit better,

because in the previous Softmax approach, you do not know where these 2 balls may overlap

with each other. You are now trying to ensure that these go on different sides of the same ball.

But this still have a problem with modified soft max, at these points, which are close to each

other at where the ball, where the classes meet in the ball. And angular Softmax tries to

ensure that that separation is further maximized by having W1s in a further arc on one side of

the ball and W2s on the other side of the arc in the other side of the ball. The further

separation helps better classification in the final step.

1065

(Refer Slide Time: 29:57)

Over the last few years, there have been other ideas to improve these loss functions. A lot of

these have been used in the face analysis context. CenterLoss is another approach that was

proposed in 2016, which was a loss added to the cross-entropy loss, where in addition to the

standard cross-entropy loss, we also obtain a centroid for each class label. And for a point

belonging to a particular class, we also minimize the distance of this representation to the

centroid of that particular class, which this data point belongs to. So, these centroids are also

updated online during learning as you keep training over different iterations.

You get, you get these centroids based on the representations in each particular iteration over

training. And in that iteration, we try to ensure that the representations are close to the

centroid of that particular class. And the diagram on the left, on the right shows that as you

vary the coefficient , which weights, how, which tells you how much you are going to weighλ

that distance to the centroid. You can see that initially when has a very small value, you getλ

a certain separation with respect to the centroid.

And as you wait, more and more, you see that all the embeddings of a particular class endλ

up going close to the centroid, which are given by these white dots in each of these classes.

This allows good separation between the classes, when you want to make your final decision

on whether there is a match with a certain identity or a match versus a no match.

1066

(Refer Slide Time: 31:54)

L2-Softmax is another improvement, which tries to ensure that the L2-norm of the features

before the Softmax lie on a certain hypersphere of a fixed radius . Instead of normalizing theλ

features to ensure they have a unit norm, this approach tries to ensure that they have a

particular norm . And this, the intuition behind this approach comes from their observationλ

that features with high L2-norm are easy to classify and features with low L2-norm because

they could be close to the origin could be more difficult to classify.

When it is more close to the origin, the points could look more close to each other. When the

points have a high L2-norm, they are further away from the origin and hence could be

separated a bit more easily. So, in this case, the optimization turns out to be, you minimize

cross-entropy loss such that the representations that you get before you apply a Softmax

ensures that .𝑓 𝑥
𝑖()| || |

2
= α

1067

(Refer Slide Time: 33:14)

This was further improved in RingLoss in 2018, which is this very similar idea as

L2-Softmax. However, even in this case, you minimize the cross-entropy loss such that

. But the difference from L2-Softmax is that in this particular case, you also𝑓 𝑥
𝑖()| || |

2
= 𝑅

learn the R as part of your training process. So, the neural network decides what should be

the value of the L2-norm value also in addition to learning the weights of the neural network.

This is known as RingLoss, because you are trying to project the feature representations

before the Softmax layer onto a ring, whose radius is also decided by the neural network.

(Refer Slide Time: 34:06)

1068

Based on these approaches, there have been a slew of efforts. CosFace proposed in 2018

proposes a large margin-based cosine loss for face recognition. UniformFace proposed in

2019, proposes a uniform loss to learn equidistributed representations, so that you exploit the

full feature space rather than focus on one ball around the origin. RegularFace proposed in

2019, again proposes an exclusive regularization to explicitly enlarge angular distance

between different entities. GroupFace, which was very recently proposed in 2020 uses

multiple group-aware representations to improve the quality of the embedding.

CurricularFace, which was again a recent work in 2020, proposes adaptive curriculum

learning to adjust the relative importance of easy and hard samples in different training

stages. Curriculum learning is a facet of training deep neural networks, where initially you

expose the model to say, simple training examples, and then gradually increase the difficulty

of the training examples to help the neural network learn better. So, we saw this with triplet

mining, where we said, “let us start with semi-hard negatives, before we go to hard

negatives.” And this approach called CurricularFace took this further to propose an adaptive

curriculum learning loss.

(Refer Slide Time: 35:49)

To conclude this lecture, face recognition also has what is known as a Closed-Set and an

Open-Set setting. In a Closed-Set setting, you have a set of pre-given identities that you have

to match an input image to. And one could use a Softmax plus CrossEntropy loss or a Center

Loss, L2 loss, RingLoss, Angular Softmax Loss, so on and so forth to implement Closed-Set

face recognition.

1069

On the other hand, in Open-Set face recognition, one could have people, images of people

that are not in your database, and the neural network has to at least say that this person does

not belong to the database and is unknown to the current system. How do you, what kind of

loss functions do you use to train such a network? There is what is known as Double Margin

Contrastive Loss, that could be repurposed to achieve this. Even triplet loss could be used to

achieve Open-Set face recognition. For more details, you can look at this work called Deep

Face Recognition: A Survey by Masi and others.

(Refer Slide Time: 37:03)

So, your homework readings for this lecture is going to be a very nice blog on understanding

Ranking Loss, Contrastive Loss, Margin Loss, Triplet Loss, so on and so forth, in case they

are all confusing to you. A very detailed tutorial on deep face recognition by Masi and others.

And if you are interested, look at a Python code base for face recognition with OpenCV and

also the entire paper on Deep Face Recognition: A Survey. So, the question that we left

behind was, “What is Double Margin Contrastive Loss? And how can it be used for Open-Set

face recognition?” The hint for you is read this tutorial by Masi et al to get your answer.

1070

