
Deep Learning for Computer Vision
Professor. Vineeth N Balasubramanian

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Lecture No. 48
CNN for Human Understanding Faces: Part 01

We will now move to another important task, where CNNs have been extremely useful over

the last few years. In computer vision tasks, CNNs are used in understanding humans from

various different perspectives. In this first lecture, we look at understanding faces and

processing faces for tasks such as recognition and verification.

(Refer Slide Time: 00:46)

Face Recognition has remained an extremely important computer vision task for several

decades now as part of biometrics. It has applications in security, finance, healthcare, and

various other aspects of society in finance. Unconstrained face recognition, which is about

recognizing faces in the wild, is a very challenging problem, because of the variations that

you could have in lighting, in occlusions, in pose or alignment, in expressions, so on and so

forth.

1039



(Refer Slide Time: 01:29)

Face recognition is not a new topic, it's been around for several decades now, because of its

importance. Algorithmically speaking, the first face recognition efforts started in the 60s with

this work (on) from Woodrow Bledsoe. Then came in the 1970s from Takeo Kanade. Then

one of the most popular algorithms in early face recognition in the 90s known as Eigenfaces,

which repurposes principal component analysis in a slightly different way to perform face

recognition. Then came various approaches using Local Feature Analysis for face

recognition. Then came Elastic Bunch Graph Matching. Of course, we had the Face Detector

from Viola Jones, that was an important component of face recognition systems.

Locally binary patterns, local binary patterns, which we talked about. And we talked about

handcrafted features were extensively used for face analysis tasks. Then, towards the end of

the first decade of the Twenty First Century, came Sparse Feature Representations for face

analysis tasks. And of course, since 2014, Deep Neural Network-based Approaches for face

recognition, which we will focus on in this lecture. From a hardware perspective, cameras

began way back in 1915 with a digital camera coming in the 90s. Then face recognition

shifted to Surveillance Cameras, Camera Smartphones, Kinect-based devices, Microsoft

Kinect-based devices that you see on your Xbox, Google Glass kind of devices towards the

end of the first decade of Twenty First Century.

And in 2011, Samsung Galaxy had their face unlock feature implemented as part of the

smartphone. And then came the RGB-D Camera. And more recently, Body Cameras that can

do face recognition. All of this has been very well chronicled in a recent article known as “50

1040



Years of Biometric Research: Accomplishments, Challenges and Opportunities.” Do look at it

if you have time.

(Refer Slide Time: 03:51)

A standard face recognition pipeline as used in, as deep learning is employed for, is given by

this diagram here. So, you start with an Input Image. You first perform Face Detection,

because you have to isolate the faces from the image. Once face detection is done, there are a

few pre-processing tasks that need to be done before you give the cropped face for a

recognition task. So, the first task is to align the face to a set of predefined geometry. The

second task, which is optional depends on the application, is to check whether this image is a

spoof or life, “Did I hold up an image to the camera? Or is it really my face?” Once that

check is done, if it is spoof, you conclude this pipeline right there.

But if it is not a spoof, we go on to the next stage. The next stage could be looked at as Face

Processing. There are two kinds, “one-to-many” and “many-to-one”, once again, depending

on what application you want to use these for. We will see both of these in more detail in a

couple of slides from now. Of course, the pre-processing task is an optional task, depending

on whether you need it for a given application. And once you have your training data, after

all of these processing steps, you provide this to a Convolution Neural Network for Feature

Extraction.

And at the end, you use different kinds of Loss Functions, such as Euclidean Distance or

Angular Distance, so on and so forth to train the CNN. At test time, you have a test image,

which goes through a similar round of processing. And once you have a Test Data after

1041



processing, you extract the features, and you finally match the final embedding of that face

using various approaches such as matching against the threshold, or doing Nearest Neighbour

Matching, or as we will see doing Metric Learning, or Sparse Representations.

We will see some of these over the next few slides. Broadly speaking, one could say that to

deploy face recognition systems in the wild, it is a combination of detection, alignment, and

matching. As we will see, matching can be of several kinds too when we talk about faces.

(Refer Slide Time: 06:41)

So, the key components are face processing, where you could have a one-to-many

augmentation or a many-to-one normalization. We will describe both of these very soon.

Then you have a Deep Feature Extraction through a Network Architecture and a

corresponding loss function. And finally, you match these embeddings or features or

representations using various different approaches.

1042



(Refer Slide Time: 07:14)

What is this pre-processing step that we just spoke about? One can perform one-to-many

augmentation, which is the standard data augmentation that we spoke about, where we could

generate many patches or many images by varying the face image in different ways. An

example could be by rotating the face image in different ways, you could be simulating

different poses of the person to an extent. And this kind of an augmentation can help the face

recognition system be more robust. On another hand, one may also want to get a single

canonical view of a person by normalizing several face images onto a standard model.

For example, you could have all these different images of a single person. As you can see,

these have variations from an illumination standpoint, these have variations from a pose

standpoint. How do you get these? These could be obtained at different points in time or

these could be obtained as frames in a single video sequence, say as a person was speaking,

and maybe his head was moving, and you capture all of those frames, and then you normalize

all of those frames into a single frame, which gives a frontal view which can be used for

further processing.

A lot of work in this space, which we may not be able to focus on in this course, also

corresponds to the idea of using 3D models for face recognition. Such a normalization

approach can help in preserving identity, despite variations in pose, lighting, expression and

background. Because once you normalize for these factors, you are likely to have a canonical

image that a CNN may do better on while performing a recognition task.

1043



(Refer Slide Time: 09:24)

So, what network architectures have been used for face recognition over the years, so we will

focus on the deep learning era for face recognition in this particular lecture. At each stage

over the last few years, the architecture used for face recognition mirrors the CNN

development at that stage. So, if you see this timeline below here, 2012 was AlexNet. So

Deep Face, which was one of the first comprehensive efforts of using the new generation

CNNs for face recognition, used AlexNet as its main backbone architecture.

Subsequently came Facenet in 2015, that used GoogleNet. VGGface in 2015 that used

VGGNet and a network known as SphereFace in 2017, that used ResNet. A network known

as VGGFace2 in 2017, that used Squeeze and Excitation net. A more comprehensive listing

can be seen here, a table that was obtained from this paper known as Deep Face Recognition:

A Survey. And you can see here that the backbone architecture of all of these different

methods have predominantly been the popular architectures that have been successful over

the last few years. While there have been a few deviations, where researchers have varied the

architecture slightly, for a large part, the backbones of face recognition architectures in recent

years have been AlexNet, VGG, ResNet, and so on and so forth.

1044



(Refer Slide Time: 11:14)

The entire space of face recognition can broadly be divided into two kinds of tasks that are

required from an application standpoint, verification and identification. In both these cases,

generally, it is the last stage of the architecture that changes, you have an image, you perform

detection and alignment, you get a cropped image that is well aligned, then you take a deep

CNN, a feature extraction network, get a feature representation, which is then passed on to a

verification system or an identification system.

(Refer Slide Time: 11:57)

What is face identification? Face identification is the task of assigning a given input image to

a person name, or identity from a database. It would be a one-to-many matching. So, you

have a given image, and you have to match this image with many identities in your database

1045



to find the closest match. So, this task is very similar to the classification task that we have

been speaking about so far, such as an ImageNet, where given an image, you match with

1000 different classes, and find which is the class that should be assigned to this image.

This is generally formulated as a K + 1 multi-class classification problem, where you do have

one additional class, in case the face comes from outside the database. So, your input is the

face image and the output is the identity class or the face ID.

(Refer Slide Time: 13:04)

What is the loss function used in this scenario? Standard Softmax and CrossEntropy loss that

we have been visiting all the while. So, you have a last linear layer, which parameterizes the

subjects, the representations of the subjects. And the cross entropy can be given by this form,

where the x here is the penultimate layers’ representation, on top of which you have some

weights, which gives you the final outputs in that last layer, on which you apply the Softmax

Activation function, and then the CrossEntropy loss. To remind you here, these values are

also known as Logits, the set of outputs of a neural network before you apply the Softmax

Activation function are also referred to as the logits of a neural network.

And generally, when you use the Softmax and CrossEntropy loss, these embeddings that you

get before you apply the Softmax, geometry look like Ellipsoids, where you have a large

intra-class variance because that is not the focus of the cross entropy loss, but you have a

good inter-class variance, where you separate these classes using this loss.

1046



(Refer Slide Time: 14:29)

Now for the verification task, the verification task is about verifying whether two images

belong to the same identity. This is a one-to-one matching task. Given an input image and an

identity that the person claims to have, this task has to ascertain whether the input image

belongs to that identity. You could imagine this setting to be in a, in an immigration setting,

where a passport is presented to an immigration officer, and the officer looks at your face to

check if the face matches the image and the identity on the passport. It is a one-to-one

matching. The immigration officer is not comparing your image with a database of identities,

but is only verifying whether you are the person you claim to be.

So, in this case, your input is a face image and the face ID unlike the identification setting,

and the output is a binary classification problem, which states whether it is a match or not a

match. So illustratively speaking, you have an image, you have a convolutional neural

network, you get a feature representation, you have your face database from which one

identity is picked out based on what the person claims himself or herself to be. And there is a

similarity measure that is used to check the similarity between these 2 images, and a binary

decision of Match or Not Match is taken.

1047



(Refer Slide Time: 16:18)

One can also perform identification as a verification task. How is this done? You can now

take a test image, take the feature representation through a convolutional neural network, and

for each of your identities in your database, you can check whether there is a match or not a

match. This would make an identification task as a verification task. Why is this even talked

about? Why is this useful? This removes the need to retrain the model on addition of new

face classes to the database. So, if you have 1000 people in your database, and you trained a

CNN already, if a new person is added, you again have to retrain your CNN, because the

number of neurons in your last layer will now get added by 1.

However, if we treat this as a verification problem, we only need the representation of the

neural network, and the matching with respect to every new identity can be done using other

similarity metrics. This makes this approach scalable. Identification, however, could have

multiple verification steps, which means error could get amplified. If there was error

anywhere in the pipeline, that could now get amplified, because you are now comparing with

multiple verification, that you are going through now, multiple verification steps. In this case,

the goal would be to develop an, a very accurate and efficient verification system, so that it

can then also be used effectively for identification.

1048



(Refer Slide Time: 18:06)

One of the earliest efforts for verification was the Siamese Networks way back in 1994. This

was first proposed for the task of signature verification. So, a certain bank has a person’s

signature on their records. And if a person visits the bank on a particular date, and signs

again, the bank has to check if the signature matches the signature on the records. This task is

signature verification. So, the architecture proposed in a Siamese network, as the name says it

comes from the Siamese Twins, is to have the same CNN architecture replicated twice, where

the signature currently given passes through the same CNN, the signature on the records

passes through the same CNN, and you get 2 different representations f1 and f2.

And there has to be a distance measure that checks how close these 2 representations are,

which is then passed on to a binary classifier to give the decision of a match or not a match.

So, an important takeaway from this approach is that the representations have to be learned in

such a way to respect the distance measure that is used to compare these 2 features. So, we

will see now that this setting has been improved in many ways over the last.

1049


