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We will continue now with dense sampling methods for object detection.

(Refer Slide Time: 0:23)

Before we go there, the exercise that we left behind from the last lecture. Why is smooth L1 loss

less sensitive to outliers than L2 loss? When the deviation of the predicted output from the

ground truth is high, which happens when you have outliers, the squared loss or the L2 loss

exaggerates the deviation which also results in the gradient exaggerating it which could cause an

exploding gradient problem. This issue gets mitigated within L1 loss because L1 loss is not

differentiable at 0 we use a smooth version of it known as a smooth L1 loss which mitigates the

problems caused due to outliers.

986



(Refer Slide Time: 1:10)

So, we said that contemporary methods can broadly be divided into Region Proposal methods

and Dense Sampling Methods. So, we will now go into Dense Sampling Methods which are

single stage detection frameworks.

(Refer Slide Time: 1:27)

The most popular that is still used today is known as YOLO or You Only Look Once. The first

version of YOLO was developed in CVPR of 2016. It is a single stage detector, you could say

that all these single stage detectors are loosely based on OverFeat, they all use only
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convolutional layers, no fully connected layers and speed along with good performance is the

main aim. So, the high level pipeline is you resize an image, you run a convolutional network,

you get a set of outputs then you do non-max suppression to identify your final bounding boxes.

Let us see it in more detail.

(Refer Slide Time: 2:16)

So, here is an overall flow, given an input image you first divide the image into an S by S grid

and each grid cell is responsible for the object with its coinciding center. So for example, if you

took this particular grid cell here that would be responsible for this object dog here and has to

predict those bounding box offsets. So, each grid cell predicts B bounding boxes, B is another

hyper parameter and confidence scores for each of these boxes.

So, you can see here that each grid cell can predict multiple bounding boxes and a confidence for

each of those bounding boxes and each grid cell predicts just one probability per class. So, total

of C classes would mean C total probabilities. You could consider that this is computing a

quantity which is given by probability of class I given an object. So that is a conditional

probability. The final predictions can be encoded as you have an S cross S grid then in each grid

location you predict B bounding boxes. For each of those B bounding boxes you have 5 values.

What are those 5 values?
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4 coordinates that could be the center of the object and the width and the height and a confidence

for each bounding box so that amounts to 5 and then you have C class probabilities per grid cell

and that is how you get that is the total number of outputs that you𝑆 × 𝑆 × 𝐵 × 5 + 𝐶( )

would have in your output layer before applying non-max suppression.

(Refer Slide Time: 4:14)

So, each bounding box gives 4 coordinates x, y, w, h; x, y are the coordinates representing the

center of the object related to the grid cell and w, h are the width and height of the object relative

to the whole image and the confidence score given for each bounding box reflects how confident

the model is that that bounding box contains an object and also how accurate the boxes. So, you

could view the confidence to be the probability of an object, any object at this point you do not

know which class it belongs to, so it is just the . So, 𝑃 𝑜𝑏𝑗𝑒𝑐𝑡 ( ) × 𝐼𝑜𝑈 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ, 𝑝𝑟𝑒𝑑( )

confidence takes into account both of these quantities.
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(Refer Slide Time: 5:10)

And you have the conditional class probabilities for each class in each grid cell regardless of the

number of boxes B predicted by each grid cell. YOLO predicts only C class probabilities for one

grid cell. So, you could assume that those C class probabilities are these conditionals here given

by probability of class i given an object. So, if you multiply these confidence scores, these class

conditionals with your confidences, you would get probability of class i given an object which is

the conditional class probability and the confidence which is given by product of probability of

object and the IOU between ground truth and predicted values which amounts to the

𝑃 𝑐𝑙𝑎𝑠𝑠 𝑖( ) × 𝐼𝑜𝑈 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ & 𝑝𝑟𝑒𝑑( )

So, for each cell we are saying what is the probability that this class occurs in this grid cell and

for the predicted box, how much IOU does it have with the ground truth.
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(Refer Slide Time: 6:19)

What loss function do you use to train YOLO? The loss function effectively combines the

several components that you need to ensure that each of these quantities that is being predicted is

close to the ground truth. So you see here there are multiple terms, so the first term, so let me

first explain these indicators here. One i j object indicates if the jth bounding box predictor in cell

i is responsible for that prediction. Remember, every cell predicts b bounding boxes, so i j here

corresponds to the jth bounding box predicted by ith cell and one i denotes if object appears in

cell i.

Now let us look at what each of these quantities are doing. So, if you are looking at a particular

bounding box predicted by a particular cell, you are first trying to ensure that the predicted𝑥
𝑖
 𝑦

𝑖

by the network is close to the expected , then you are ensuring that the width and the height𝑥
𝑖

^
 𝑦

𝑖

^

predicted by the network is close to the original width and the height, these are taken a square

root because you have a width and a height in two dimensions so you take a square root here and

the and are the confidence values.𝐶 𝐶
𝑖

^

So, you also try to ensure that if the confidence is low with respect to what the confidence should

have been which would have been 1 if an object was there, you also try to ensure that that is

minimized and all these summations as you can see is done for across all of your grid cells and

across all of the bounding boxes predicted by each of these grid cells and you do the same even
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when an object is not present you would want the confidence to match the expected confidence

which in this case would be 0. So, that is what these two terms in sense are complementary for

positive and negative classes.

And finally, the last term here denotes the conditional class Probabilities matching the expected

conditional class probabilities. So, these are the different terms in the loss function used to train

the network.

(Refer Slide Time: 8:44)

What about, what are the limitations of such an approach? YOLO v1 had a few limitations.

Firstly it detects only a small number of objects. It misses objects that are small or close to each

other because of the methodology itself because of the spatial constraints of the methodology and

how many objects you can present that could be overlapping. It ended up having a high

localization error and a relatively low recall.

992



(Refer Slide Time: 9:21)

To overcome these issues YOLO v2 which was proposed as an extension of YOLO v1

introduced the idea of anchor boxes into the YOLO framework, these anchor boxes are similar to

what you saw with faster R- CNN. So, let us see how these anchor boxes work. So there are 5

coordinates predicted per anchor box . Let us see each of them. So, if the cell𝑡
𝑥
,  𝑡

𝑦
,  𝑡

ℎ
,  𝑡

𝑤
 𝑎𝑛𝑑 𝑡

𝑜

is offset from the top left corner by cx cy, top left corner of the image and the bounding𝑐
𝑥
, 𝑐

𝑦
 

box has width and height , then the predictions corresponding to the anchor box are𝑝
𝑤

 𝑎𝑛𝑑 𝑝
ℎ

given by .𝑏
𝑥

= σ 𝑡
𝑥( ) + 𝑐

𝑥

So, you can see here that is right here similarly so that is the otherσ 𝑡
𝑥( ) 𝑏

𝑦 
= σ 𝑡

𝑦( ) + 𝑐
𝑦
 

coordinate of the same location added to and are written in terms of scaling𝑐
𝑦

𝑏
𝑤

 𝑎𝑛𝑑 𝑏
ℎ

multiples over . So, and . So, is a predicted quantity𝑝
𝑤

 𝑎𝑛𝑑 𝑝
ℎ

𝑏
𝑤

=  𝑝
𝑤

× 𝑒
𝑡

𝑤 𝑏
ℎ 

=  𝑝
ℎ

× 𝑒
𝑡

ℎ 𝑡
𝑤

so is given by what scaling factor should you change the width or the height? It is similar to𝑏
𝑤

predicting an offset but the offset is a multiplicative factor for width and height and finally, the

which is the quantity that we just saw for YOLO v1 is that is the𝑝 𝑜𝑏𝑗𝑒𝑐𝑡( ) × 𝐼𝑜𝑈 σ 𝑡
𝑜( )

conditional class probability.
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So, those are the different quantities that are predicted by the network and which relate to the

actual bounding box that that grid location is trying to point to. Remember that each anchor box

predicts only these 5 values, this is, the are the actual bounding box corresponding𝑏
𝑥
,  𝑏

𝑦
,  𝑏

𝑤
,  𝑏

ℎ

to these values given by the anchor box.

(Refer Slide Time: 11:42)

Moving on, there was another single stage detection method known as the single shot multibox

detector known as SSD. SSD again uses an OverFeat like methodology. You can see here that

given an input image the initial part of the network is a VGG like network then on there are

convolution layers that keep reducing the size and you can see there are some skip connections

that take you from a convolutional layer directly to the classifier. Let us see them in a bit more

detail.

(Refer Slide Time: 12:18)
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So you have multi-scale feature maps for detection because you are sending these convolutional

layers directly to the output, these convolutional feature maps directly to the output, these ones

directly to the output. So, the output layer receives the feature maps from convolutional layers of

different scales that is why multi-scale feature maps.

(Refer Slide Time: 12:42)

Then we also see that for each of these convolutional layers there are a different set of

convolutional filters that connect it to the output layer. So, this initial layer here goes through a

, that is the number of outputs that it has, that is the number of,3 × 3 × 4 × 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 +  4( )
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that is the size of the convolutional filters that you have rather which gives the corresponding

output in the output layer and so on and so forth for each of these intermediate convolutional

layers.

So, if you took anyone of these feature maps, let us take a feature map layer, a layer with a

feature map of size with channels, then that would give locations. So, each of𝑚 × 𝑛 𝑐 𝑚 × 𝑛

those pixel locations in one of those feature maps could be a center of an object for instance, So,

each of them is like a grid cell if you could compare this to YOLO and the bounding box offset

values are relative to that grid cell location. So, you have, remember you see here that each of

these convolutional maps predict , that is the number of values that they would𝑐𝑙𝑎𝑠𝑠𝑒𝑠 +  4

predict. So a class probability for each class plus 4 values for the bounding box offset

corresponding to each pixel location in these convolutional feature maps.

(Refer Slide Time: 14:12)

So, as feature maps get smaller and smaller when you go through later parts of the network so

you can see here if this was your ground truth boxes in your original image and you can see here

an feature map followed by a feature map. So in an feature map, if you8 × 8 4 × 4 8 × 8

looked at the anchor boxes for each of these grid cell locations, each of these anchor boxes

would predict a set of values the way we talked about it the previous slide. So, if you had k

anchor boxes with different aspect ratios as you can see here, SSD would predict c class specific

scores plus 4 anchor box of offsets. That is what we saw on the earlier slide as is the𝑐 + 4
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number of channels that you had for each of your convolutional layers when you connected them

to the output layer.

So, for an feature map, you would totally have𝑚 × 𝑛 𝑐 + 4( )𝑘 𝑎𝑛𝑐ℎ𝑜𝑟 𝑏𝑜𝑥𝑒𝑠 × 𝑚𝑛 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

because you are assuming now that each pixel can be the center of an object and you have k

anchor boxes around each of those pixels and each anchor box predicts c class probabilities and 4

bounding box offsets. So, that is why for each feature map, you would have these many𝑚 × 𝑛

outputs in the SSD framework.
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(Refer Slide Time: 15:45)

What is the loss function you use here? Very similar to the loss functions we have seen so far,

SSD implements a localization loss function and a confidence loss function. So, the confidence

loss function compares the confidences of x and c, c are the predicted class probabilities and x

are the ground truth and the way the ground truth is written is you have is given by 1 or 0𝑥
𝑖𝑗
𝑝

depending on whether there is an object or not an object, if the default box or the anchor box,𝑖
𝑡ℎ

default box and anchor box are the same synonymous here, the ith default box matches the jth

ground truth box of category p. That is the notation for these x i's and l and g are the predicted

and ground truth box parameters. Let us see each of these loss functions in a bit more detail.
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(Refer Slide Time: 16:45)

The localization loss for SSD is given by, once again a smooth L1 loss. It also has a factor in𝑥
𝑖𝑗
𝑘

the beginning to say whether that is a class or not because you only want to evaluate this quantity

when a class is involved that is when this would turn out to be 1 and this 1s are the predicted

offsets and are the ground truth offsets and these ground truth offsets are given by𝑔
𝑗

^

which is the center of the current anchor box. You are just ensuring that𝑔
^

𝑗

𝑐𝑥
= 𝑔

𝑗
𝑐𝑥 − 𝑑

𝑖
𝑐𝑥( )/𝑑

𝑖
𝑤

your represents the correct offset with respect to the anchor box under question and you are𝑔
𝑗

normalizing it with respect to the width and the height for the x and y dimensions.

And this quantity here is the exponential factor that we were using to scale the width and the

height. Instead of an additive factor we said that YOLO uses a multiplicative factor for the width

and the height and because that had an exponential term there, you are using a log here to reverse

the operation, so that is going to be your ground truth scaling factor that you would want your

network to predict and when you take an exponent of that , you would get rid of the log here𝑙
𝑖

and you would get your correct expected width and height. The confidence loss which is the

other loss with SSD is a soft max loss of class confidence probabilities.

So, it is given by the first term for all your positive bounding boxes which is your standard cross

entropy loss and the second term for your negative bounding boxes where there is a class label
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corresponding to a background class which you would want to maximize. So, here corresponds𝑐
𝑖
0

to a class label known as background which is considered as one of the classes you would like to

predict and is your standard Softmax activation function.𝑐
^

𝑖

(Refer Slide Time: 19:07)

In its practical implementation, both YOLO and SSD have this problem is that, most anchor

boxes are likely to be negative when you compare with something like a faster R-CNN. So, to

counter this, you select negative examples that have the highest confidence loss such that you

maintain a ratio of negative to positive to be about 3:1 because otherwise remember that even if

you had 100 objects in a single image, the number of anchor boxes and the grid cells that you

have if you take SSD, it is in fact going to be per pixel, you will have k different anchor boxes

and that can be a huge number in terms of the number of boxes that are negative and have no

object in them.

And then learning can get affected and which is the reason you do this hard negative mining

which when you train, you only select some of those boxes that have a very high confidence loss

and only use them in the loss function that we talked about. Remember the loss function

considered those negative boxes also. SSD also used a data augmentation strategy where given

an original image the original image was also used. It also randomly sampled patches from

images trying to ensure that the minimum IOU with the actual object is in a predefined set of
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ranges to ensure that the network gets exposed to different kinds of patches from images and

different kinds of objects and their overlaps.

(Refer Slide Time: 20:52)

With this approach, SSD could outperform YOLO and faster R-CNN. All detection methods are

measured using an evaluation metric known as MAP or Mean Average Precision. Precision

refers to the standard precision metric used in machine learning methods, average precision talks

about the average precision obtained across all of your classes and the mean is across all of your

bounding boxes. So, one typically measures mAP at a particular IOU. So, how do you confirm

whether you have predicted a bounding box or not?

So, you pre-specify a particular IOU such as 0.5 and say that as long as my predicted box has at

least an IOU of 0.5 with my ground truth box, I am going to consider my prediction correct. So,

that is how correctness is defined to get your precision and then you take the average across the

classes and the boxes that you have predicted. So, you can see here that SSD matched faster

R-CNN in its mAP but at a significantly higher FPS, at a significantly higher frames per second

rate which was the main objective to make the single stage methods much faster in practice.

You can see that (this was also) the number of output boxes are significantly higher obviously

with SSD because you do it for every pixel and they also showed that this works reasonably well

with different input resolutions.
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(Refer Slide Time: 22:37)

A third single stage detector approach is known as the Feature Pyramid Network or FPN. FPN

uses the idea that feature layers from feature maps from initial layers may not really be suitable

for detection, they are high resolution. When you go through a convolutional network, the initial

layers are high resolution and then as you go deeper, the resolution gets lower and lower and

lower but the initial layers although they are high resolution, we have seen from our

visualizations of CNNS that they may not really be capturing semantics of objects in those initial

feature maps but they are the higher resolution ones.

So, we are caught with this dilemma where the lower resolution feature maps have more richer

features for detection whereas the higher resolution is in this initial feature maps. How do we

bridge this gap is what feature pyramid network tries to do.
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(Refer Slide Time: 23:41)

So, here, here is a visualization of how a Feature Pyramid Network attempts to bridge this gap.

So, if you were to use an image pyramid to be able to do detection, so you, one thing you could

do is you could subsample your images and for each resolution of the image, construct a feature

map and predict for each of those feature maps or you could take your input image, construct

feature maps at lower and lower resolutions and finally predict at the least resolution or given an

input image construct feature maps at different resolutions that as you build many convolutional

layers and predict at each of these resolutions.

And what feature map, feature pyramid network suggests is you do construct feature maps at

different resolutions as you go through a convolutional network but now you upsample and get

back feature maps at higher resolutions and now make predictions. So, this way you try to get

your semantics at your, at your least resolution but upsample back to transfer the semantics to a

higher resolution.

1003



(Refer Slide Time: 24:59)

Let us see how this is done in the architecture. So this is the overall architecture. So you have an

image, you have a conv layer stride 2, then 0.5 x denotes a sub sampling max pool layer, 2 × 2

max pool, then you have a conv 2 with a stride 4, a max pool, a conv 3 with a stride 8, a max

pool, a conv 4 with a stride 16, a max pool and a conv 5 with a stride 32. So, you can consider,

that is like a ResNet that is used. In the FPN, all convolutional feature maps C1 to C5 are treated

with a convolution which you see on these arrows here with 256 channels and M5 is up1 × 1

sampled by a factor of 2 to to get the next M4.

But before you get M4, you get the signals from C4 after applying your convolution and1 × 1

combine these outputs of C4 with convolution and M5 to get M4 and you similarly1 × 1

continue to do this to get M3 and M2. Once you do this a convolution is applied on M4,3 × 3

M3 and M2 and this is done to reduce the aliasing effect of M's. Remember, that we are up

sampling when we go from M5 to M4, M4 to M3 and M3 to M2 and up sampling, recall, we said

could result in aliasing.

So, to smoothen out those aliasing factors we use a convolution which takes us from M43 × 3

to P4, P3, P2 so on and so forth. So finally, you are left with all of these P's here which are

provided to individual object detectors to get your final predictions.
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(Refer Slide Time: 27:03)

A more recent approach to object detection focused on the loss function that is used to train these

object detectors. So, this was known as RetinaNet and the loss function that was proposed is

known as the focal loss which was proposed in ICCV of 2017 and this relies on the intuition that

two stage detectors were known to be more accurate than one stage detectors. One stage

detectors were obviously faster and it surmised that two stage detectors are more accurate

because this lesser class imbalance between background or negative classes and object

containing or positive proposals.

Remember, when you do selective search we restricted ourselves to only 2000 region proposals

whereas in one stage detectors you could be dealing with 100,000 regions because you could be

getting multiple anchor boxes around each grid cell, in SSD it is on each pixel of the feature map

but even with YOLO you may be predicting b bounding boxes for each of those grid cells𝑠 × 𝑠

which could be a very high quantity. So, how do we address this imbalance between negative or

background classes and the actual positive classes?
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(Refer Slide Time: 28:33)

Whenever you have such an issue of where there are many negative examples which really do

not help the the model and there are only a few positive examples, certain things that could

happen are training could become inefficient because the easy negatives are not really giving any

useful signal there could be so many kinds of easy negatives that it is not really going to help the

model learn how to distinguish the positives from those negatives because that class of negatives

or the background will be extremely vast in detection, so the background could be the sky, could

be grass, could be buildings, it could be any of those and all of them are still a background .

Secondly, the loss could get overwhelmed because of the negatives instead of the positives and

this could degenerate the training process lead to degenerate models. To some extent the hard

negative mining that we spoke about in SSD where we try to ensure that the final loss only uses

where there is a significant confidence loss and ensures that the ratio of 3:1 between negative and

positive. That does alleviate these issues but the issue still remains.
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(Refer Slide Time: 29:53)

So, what this particular paper proposes is that cross entropy loss for using for the classification

branch of detection could be inherently bad. Let us try to see why. Remember that the cross

entropy loss is defined by . In the multi-class setting, it just turns out to be ,− 𝑙𝑜𝑔 𝑝( ) − 𝑙𝑜𝑔 𝑝
𝑡( )

log loss as we mentioned and over their empirical studies they observed this graph here where if

you notice even when you have, if you observe the gamma is equal to 0 remember when gamma

is equal to 0, this loss introduced by them known as the focal loss would turn out to be this

coefficient will turn out to be 1 when gamma is 0.

And the loss would just become your standard log loss or cross entropy loss so when gamma is

equal to 0, blue is your standard cross entropy loss and you can see here that even when the

network predicts a high probability for the ground truth class the loss value is fairly non-trivial,

you get a fairly high loss even when the model is predicting a high probability for the correct

class and this can defeat the purpose of learning.
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(Refer Slide Time: 31:17)

So, what RetinaNet with focal loss proposes is, one, you could do a balanced cross entropy

where the , the log loss is weighted by some quantity and can be given as some− 𝑙𝑜𝑔 𝑝
𝑡( ) α α

inverse class frequency. That is one way to do this, but this RetinaNet Method also proposes a

focal loss which considers the predicted probability itself to fine tune the loss. So you weight

your log loss with where is a tunable focusing parameter so is a hyper parameter1 − 𝑝
𝑡( )γ γ γ

that you have to provide while training the network and the final focal loss gives this quantity.

If you observe here, let us assume is a certain values such as 5, so when is high, this quantityγ 𝑝
𝑡

is going to become low and you are bringing down the overall loss because when is high you𝑝
𝑡

want the loss to be low and when is low let us say it is 0.1 because is 5 you would still have𝑝
𝑡

γ

this quantity to be a reasonable quantity and the log loss would be maintained at a high level

when your probability, predicted probability for the ground truth class is low. That is the main𝑝
𝑡

idea of the Focal loss.
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(Refer Slide Time: 32:48)

The RetinaNet architecture otherwise uses of FPN the feature pyramid network that we spoke

about along with the focal loss where you can see here the first part of it is the feature pyramid

network itself then for each of these scales you have a classification subnetwork and a bounding

box regression subnetwork and the classification sub network uses the focal loss to learn.

(Refer Slide Time: 33:17)

There are all implementations of all of these contemporary detection methods both Dense

Sampling Methods and the Region Based Proposal methods in a popular library known as
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Detectron. Detectron was provided by Facebook AI Research especially to promote usage of

object detection algorithms. So, if you are interested in implementing any of these object

detection algorithms for any of your projects, you can look at Detectron or Detectron2 for further

details.

(Refer Slide Time: 33:50)

So, your readings are a continuation of Object Detection for Dummies, this time Part 4 for the

dense sampling methods. Here is a tutorial of the entire YOLO family of methods and tutorials

on understanding SSD, FPN and RetinaNet.

(Refer Slide Time: 34:11)
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A few exercises to leave behind, we only covered YOLOv1 and YOLOv2 in this lecture. YOLO

also had a YOLO9000 which talked about scaling YOLO to 9000 categories and a YOLOv3

which was very close to YOLO9000 in its ideas. How were these different from YOLO v2 is

going to be a homework for you. Please do read the link that was given in the reading section in

the previous slide for understanding YOLO and a couple of more simple problems, given two

bounding boxes in an image an upper left box which is and a lower right box which is2 × 2

and an overlapping region of . What is the IOU between the two boxes?2 × 3 1 × 1

To understand YOLO better, consider using YOLO on a grid on a detection problem19 × 19

with 20 classes and 5 anchor boxes. During training you have to construct an output volume as

the target value for the neural network. What would be the dimension of this output volume?

Remember, that in YOLO we said . Try to use that formula here to find out𝑆 × 𝑆 × 5𝐵 + 𝐶( )

what should be the output volume for this particular YOLO object detector. Please do these

exercises and we will continue the discussion in the next lecture.

(Refer Slide Time: 35:52)
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