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Having seen how object detection was performed in the pre deep learning era as well as how

basic CNNs can be adapted to object detection, let us now move to how object detection is

done today in terms of contemporary methods. Existing methods that obviously are based on

top of CNNs can be broadly divided into what are known as the Region Proposal based

methods and Dense Sampling based methods. So we will cover region proposal based

methods in the rest of the structure and take up dense sampling methods in the next lecture.

In region proposal based methods, the framework is composed of two stages, in the first stage

there is a network or a module that proposes a different regions that could contain objects and

in the second stage a classifier, in our case a CNN takes those regions and classifies them as

belonging to an object or could even belong to the background, this is more robust in

performance but is slow because of the two-stage approach.

On the other hand, dense sampling approaches are a single-stage approach where the proposal

of regions and the classification or detection of those regions into objects is all done in one

shot through a dense sampling procedure. This is simpler and faster but sometimes can fall

short of the accuracy when compared to region proposal methods.
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(Refer Slide Time: 2:05)

Let us now discuss region proposal methods. So, the earliest one was known as the R-CNN or

the region based CNN which was proposed in CVPR of 2014 by Ross Girshick,. This

approach has a first stage where it uses a method known as selective search which is an

image processing method, it does not use a neural network for that but using a selective

search approach it proposes several regions that could have objects. Each of these regions is

then evaluated by a CNN to perform classification as well as do bounding box regression to

get the correct localisation inside those region proposals.

Remember when we talked about OverFeat, we said that we could divide these into two

heads, we will continue to use that for all detection methods that we will see.
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(Refer Slide Time: 3:02)

How do you do that first stage selective search? So, the selective search module uses a graph

based image segmentation or a mean shift based image segmentation to get an initial set of

region hypotheses. So, these hypotheses are then hierarchically grouped based on region

similarity measures like colour, texture, size, region-fillings so on and so forth. So, if you

had, if you used colour for grouping up regions, you may end up getting an object such as

this, if you used texture for grouping up regions, you may get a region such as this or if you

used region-filling, you may end up getting a region such as this.

(Refer Slide Time: 3:50)
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In practice, you have an image, you use an existing segmentation method, we covered this in

the initial weeks, you will get various different segments that you see here, then you combine

these segments using agglomerative clustering, if you recall, using either colour cues, texture

cues or region filling cues or any similar cues and this gives us regions of a larger scale.

(Refer Slide Time: 4:24)

Now how do we use these regions? Once you get these region proposals, this particular

method selects 2000 such region proposals by combining and qualising different subregions.

You get somewhere around 2,000 region proposals. Each of these region proposals are

warped to the same size. Why do we need that? Because we are going to give that as input to

the CNN and remember, the CNN can only take a fixed input size as its input dimension, you

cannot give a 20 cross 20 image and a 100 cross 100 image.

A CNN can only accept one size that is the nature of the architecture that we use. So,

whatever be the size of the region proposals, they are all warped to make it the same size so

there could be some artefacts of stretching because of this. And these proposals are then

given to a CNN so in this particular work, the CNN was like an Alexnet or a VGG, then you

get feature maps out of the CNN that goes through a fully connected network.

And then there are 3 components, you have a softmax component that does classification of

each of these regions into one of the known classes that you are looking for while performing

detection. It also has an SVM which is actually used for classification, we will explain that in

a moment and finally it also takes the feature maps through a different fully connected layer
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to perform bounding box regression. I will repeat that this bounding box regression step that

you see here does not you already have a region given to you, remember that this region is a

part of the original image, so what the bounding box regression module does here is to give

you the offset from this region in the original image to the correct bounding box.

So, if this region was in a specific location of the original image, the bounding box regression

module may give value such as +1, -2 and maybe -3 -4, which means that the top left corner

should be moved by one pixel further on the x-axis, moved by two pixels to the left on the

y-axis and the height and width must be adjusted by +3 and -4 so on and so forth. So, this

bounding box module regression module predicts the offsets from the current location of the

box that you have.

(Refer Slide Time: 7:19)

Now let us see the entire training procedure. So in the first step, you consider all of these

modules, the CNN, the feature maps, the fully connected network and you fine tune this fully

connected network to the warped images using a softmax and a cross entropy loss. We

generally refer to cross entropy loss also as log loss because when you have multiple classes

your cross entropy loss turns out to be simply the log of the probability of the ground truth

class, why so? Because you would have your cross entropy loss to be given by y i summation

over i y i log p i this is your cross entropy loss.

−  Σ 𝑦
𝑖 
 𝑙𝑜𝑔 𝑝

𝑖 ( ) →  − 𝑙𝑜𝑔 𝑝
𝑖 ( ) 
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Remember that your ground truth is going to be one only for the correct class and is going to

be 0 for all other classes, so you will be left with just no summation and that is− 𝑙𝑜𝑔 𝑝
𝑖( )

why we sometimes call cross entropy loss as just log loss because when you use it for a multi

class classification setting that is what it turns out to be. So, that is the first step to tune the

CNNs, you already initialised the CNN with weights of an Alexnet model or a VGG model.

Now we will further refine those weights by using a log loss and the softmax in the last layer

through the fully connected network and the feature maps.

(Refer Slide Time: 8:50)

In the second step, you now take the outputs of the fully connected neural network and use

them as representations of each of these regions and then train a class specific SVM

depending on the number of classes in your detection problem you could be detecting say up

to 20 different kinds of objects or even further, you will then learn 20 different SVMs based

on the feature that you got as output of the fully connected network and then the SVM is then

used to make the final decision of the class in that region.

And the stage 3 is training the fully connected layer for performing bounding box regression

where one would use L2 loss or the mean square error loss, remember they both are

synonymous.
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(Refer Slide Time: 9:41)

What are the limitations of R-CNN? Firstly, it is a multi-stage pipeline of training as we just

saw, you have to first train one head then you have to take representations and train 20

different SVMs or as many different SVMs as classes and then you also have to train a

bounding box regression head, can we make this simpler? We will see this in a minute but

before that the extraction of region proposal initially could require a lot of time and space.

Remember, we have to do segmentation, qualis them and then finally pass each region

proposal through the CNN and get your classification bounding box offset so on.

A dataset such as Pascal VOC which has 5000 images approximately required about two and

half GPU days and several hundred GBs of storage which can turn out to become impractical.

And using R-CNN at test time the object detection took about 47 seconds which is not really

real time.
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(Refer Slide Time: 10:57)

This led to the development of the fast R-CNN approach by the same authors in fact, and it

was published in ICCV of 2015. In this case there were a couple of different innovations that

were introduced. One idea was, while we still do selective search to get the region proposals,

we would map these region proposal locations directly to the feature maps after sending the

full image through the CNN. If you go back and see how it was done earlier, earlier each

region proposal was fed individually to the CNN.

(Refer Slide Time: 11:44)

But now we are saying that we will feed only the entire image through the CNN. This helps

us because otherwise we have to do 2000 forward propagations where 2000 are the number
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of region proposals through the CNN. Now we just need to do one forward prop through the

CNN which is the entire image. Through selective search, we would get a lot of region

proposals. We now map because the region proposals have certain coordinates in the original

image. You can map those coordinates to the feature maps that you get as the output of the

CNN.

And once you get this feature maps you have two heads, one for classification where log loss

is used, one for bounding box regression where L2 loss is used, no more need for SVMs

which seems obvious but that is how this method was improved.

(Refer Slide Time: 12:40)

So now, how is the region of interest projected? So, we said that you take these region

proposals that are outputs of the selective search approach and map them onto the feature

maps, how would you do that? If this was one of your region proposals, let us assume that the

patch was a region proposal in your original image, then remember that your CNN6 × 8

follows a set of steps where the image gets in most likelihood downsized as you go through

each iteration because if you perform convolution the image size reduces, if you perform

pooling it further reduces and so on.

So, you take the same region proposal’s dimensions, keep forward propagating it through a

similar set of operations and you will notice that this patch matches to this6 × 8 2 × 3

patch on the feature maps.
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(Refer Slide Time: 13:45)

As a next step, after projecting the region proposals on the feature maps, we need to bring all

of these region proposals to the same size for the same reason that we said that the next layers

can only take input of the same size. To do this, fast R-CNN proposes a module known as

RoI pooling. RoI stands for region of interest again, the RoIs can be of different scales, so to

get a scale invariant way of pooling, what RoI pooling does is, given any region which is say

of size , it converts it into region of grid of subwindows with each subwindowℎ × 𝑤 𝐻 × 𝑊

of size and .ℎ × 𝐻 𝑤 × 𝑊

So for example, if you had an region and your target size was , you would8 × 8 2 × 2

accordingly divide this into a grid and do pooling inside each of these8 × 8 2 × 2 2 × 2

regions and get your output in the target location. So, your pooling here would happen in this

location you would do say a max pooling and only the max value would go here so on and so

forth. So, if you had a region of interest, then you would still have to do a , you4 × 6 2 × 2

still want a output.2 × 2

So, you divide it this way now and you pool across all of these 6 pixels and that value goes

here. So, that is how RoI pooling works.
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(Refer Slide Time: 15:19)

And once RoI pooling is done, you then send it through further layers, fully connected layers

and at the end of which you have two heads with two different loss functions. So you have a

multi task loss, one task for classification and one task for regression. Say, if we assume that

u is the true class and v are the ground truth bounding box regression targets, if p is the

predicted class probability and tu are the bounding box regression offsets for the true class,

then the loss for each region of interest would be the classification loss plus your localisation

loss. By localisation loss, we mean the bounding box regression loss.

The classification loss as we just said is given by . The cross entropy loss−  𝑙𝑜𝑔 𝑝
𝑢( )

simplifies into a log loss and the localisation loss is prefixed by an indicator function which

states that we are going to compute this only for the true class, for the other classes we do not

need to compute this kind of a localisation, that is what the indicator function dictates. What

is the localisation loss in fast R-CNN?

976



(Refer Slide Time: 16:49)

Earlier, we said we typically use the L2 loss but in fast R-CNN the method recommends the

use of a new loss known as a smooth L1 loss. Note that L1 loss is the sum of the pairwise

differences between dimensions and their corresponding absolute values and this is used

instead of the L2 loss and a smooth version of the L1 loss, remember that L1 loss, any

absolute value function looks somewhat like this, that is the f of x is equal to absolute value

function.

𝑓 𝑥( ) =  𝑥| |

But this function can become non-differentiable at 0, so to avoid that you have a smooth

variant of the L1 loss known as smooth L1 loss which is given by if is less than 1,0. 5 𝑥2 𝑥| |

otherwise otherwise. So, this would give you slightly smooth, when it comes close𝑥| | −  0. 5

to the 0 it becomes quadratic, see you would have a slightly smooth function but otherwise its

absolute value or L1 everywhere else. Why smooth L1 loss? It turns out that smooth L1 loss

is less sensitive to outliers then L2 loss, why is this so? Is homework for you and we will

discuss that in the next lecture.
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(Refer Slide Time: 18:13)

So, the summary of fast R-CNN is given an image, you still have selective search, you also

forward propagate the full image through the CNN, say in Alexnet or VGG whose output

gives you a depth of feature maps like the output of any convolutional layer. Now you project

all the region proposals that you got through selective search onto this feature maps, this

avoided as we said multiple forward propagation through the convolution layer, then you

perform RoI pooling to get all those region proposals to the same size, you then send this

through a fully connected network which has a softmax head or a classification head and a

bounding box regression head.

(Refer Slide Time: 19:06)
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With these improvements, fast R-CNN significantly outperformed R-CNN in training time

and test time. Fast R-CNN took about 8.75 hours for training while R-CNN took 84 hours for

training, that is the 10x reduction. Importantly at test time, while R-CNN took 47 or 49

seconds for doing detection on each image this came down to 2.3 seconds for fast R-CNN

and just 0.3 seconds if you have to avoid the region proposal finding step.

So, that gives us a clue on what needs to be done next, which is we have to find a way of

avoiding the process of getting region proposals using selective search because among the 2.3

seconds it looks like 2 seconds is required just for that step.

(Refer Slide Time: 20:06)

This leads us to faster R-CNN, faster R-CNN replaces selective search with a region proposal

network. So, instead of getting region proposals through segmentation methods that are

offline, we are going to try to see if this can also be done as part of the neural network itself,

this was proposed in NeurIPS of 2015. And let us see how this is done, so given an image

you forward propagate the image through a CNN like Alexnet or VGG, you get a set of

feature maps.

Now these feature maps are provided to the region proposal network whose job is to tell us

which regions are likely to have an object, it does not worry about classifying the object it

only worries about objectness of a region and these regions are then provided through an RoI

pooling layer, that part of it is very similar to fast R-CNN. And finally you have classification

and bounding box regression just like how we had it with fast R-CNN. How does the region
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proposal network work? It uses what are known as anchor boxes of different scales and

aspect ratios to identify multiple objects in a given window.

(Refer Slide Time: 21:33)

Let us see how that works. So, given a particular window, let us say any particular window in

an image. So, it takes a different predefined anchor boxes, so you can define an anchor box

which is defined given a particular location you can define an anchor box that is given by this

rectangle here, you can define an anchor box that is given by this rectangle here and you can

define anchor box that is given by different this rectangle here.

So, these are a set of predefined rectangles which, given the centre, can define several kinds

of regions around that centre. What does the region proposal network learn? It has its own

loss function to learn that part of the network, recall InceptionNet, recall that in InceptionNet

we had certain loss functions at different stages of the network, you could consider this to be

similar to that.

So here, the output expected of the region proposal network is, is any of these anchor boxes

an object, so you are only looking for object not an object, so there are no further classes, it is

a binary classification problem and if you had k anchor boxes which as I just mentioned are

predefined, you have to define them when you start. And if you had your depth to be, if you

had to be your image features, then you are going to have as512 × 20 × 15 𝑘 × 20 × 15

the output.
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And you would have as the bounding box offsets for each of these anchor4𝑘 × 20 × 15

regions. So, this part of the network does do a bounding box offset recognition or fine tuning

but it also checks whether a region is an object or not an object, let us see then what happens?

(Refer Slide Time: 23:38)

So, you are going to have a fully convolutional layer which does objectness classification and

bounding box regression, so in this case we are talking about say 9 anchor boxes which is

what was k on the previous slide but this could be different based on what one chooses to do

in a given setting.

(Refer Slide Time: 23:56)
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So in the first, you take the input image, you take a CNN pre trained on Alexnet, use the

feature maps, send it through a region proposal networks which is a further set of

convolutional layers and check for objectness and bounding box coordinates and train this

region proposal part of the network, you can fine tune the previous weights too. This is step

1.

(Refer Slide Time: 24:24)

In the second step you take these region proposals obtained from the region proposal

network, feed that onto the feature maps. Those are going to be your regions, now the rest of

it stays very similar to fast R-CNN and you train all these weights using your classification

loss and bounding box regression loss where now the classification loss tries to categorise

region into any of say, 20 objects or how many ever objects you have in a given problem

setting. So, this is the second step which is very similar to what is done in fast R-CNN.
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(Refer Slide Time: 25:08)

In step 3, the CNN is made common for your entire network as well as the region proposal

network, so you share those parameters and you train your RPN while freezing your CNN

parameters to help improve the RPNs performance.

(Refer Slide Time: 25:30)

And finally in step 4, you freeze everything else in the network and only fine tune your FC

networks to get your final classification output and bounding box offset regression outputs,

this is the four step training procedure proposed by faster R-CNN.
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(Refer Slide Time: 25:50)

And using this approach the test time speed reduces from 2.3 seconds to 0.2 seconds which

becomes closer to real time for every image.

(Refer Slide Time: 26:04)

The homework for this lecture would be to go through the Viola Jones object detection

framework and a very nice write up called object detection for dummies linked here and if

you like to understand OverFeat here is a link. There is also a nice video series on evolution

of object detection models if you like and here is the exercise that we left for you, smooth L1

loss is less sensitive to outliers then L2 loss as was proposed in fast R-CNN, can you try to
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find out why? The next lecture, we will talk about dense sampling methods for object

detection.

(Refer Slide Time: 26:47)
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