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In the last few years, researchers have extended methods such as GradCAM, GradCAM++, as well 

as the use of other statistics such as Gradients and Activations, and so on, to improve explanation 

methods. This is what we will focus on in this lecture, which is on Recent Methods for explaining 

CNNs. So, this is not just about explaining CNNs. These methods are developed more broadly for 

explaining any kind of neural network. 
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Let us see a few of them in this lecture. See, if you recall our discussion on visualizing the data 

gradients, our overall approach was you forward pass your data x any input image, to get the output 

through the neural network, let us assume that the neural network is given by a function f, you get 

a 𝑦 = 𝑓(𝑥). And y is the output of the neural network corresponding to a particular class, it was a 

particular score the way we saw it. 

Then we do a backdrop to the image to get the gradient doh y by doh x. And using those gradients, 

we visualized the image back in terms of the gradients by taking the maximum among the gradient 

across the channels. And we get such an attribution map. Recall an attribution map is a map of 

how much each input attributes to the output. That is the reason it is called an Attribution map. Let 

us now ask if this is sufficient to explain a deep neural network. Is this method sufficient? The 

answer is not always. So, let us see a counterexample where such an approach of using gradients 

can fail. 
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Let us consider a scenario where we have 2 inputs, 𝑖1, and 𝑖2, which are fed into the next layer. So, 

the bottom is the input, the top is the output, this neural network is presented this way. And these 

go into the next layer where let us say we have a ReLU activation function. And which now gives 

out an output h, which is given by max⁡(0, 1 − 𝑖1 − 𝑖2). Let us assume that those are the weights 

that the neural network has learned at that time. 

And let us also assume that the final output y is given by 1 minus h. This is one such neural network 

that may be learned when you train among when and when you train a model. So, if you visualized 

the gradients in this kind of a setting, you would notice that on the x-axis, if you had i1, plus i2, 

you would notice that h is max⁡(0, 1 − 𝑖1 − 𝑖2), which means when 𝑖1 + 𝑖2 becomes greater than 

1, h is always 0. 

Until then, it would be 1 − 𝑖1 + 𝑖2. So, you see the graph of h will be this blue line here, where it 

is 1 − 𝑖1 + 𝑖2 until 1. And when 𝑖1 + 𝑖2 exceeds 1, it becomes 0. On the other hand, the graph of 

y is given by 1-h, which means it increases as h decreases until 1. And when h becomes 0, y stays 

static at 1. This is evident from this kind of construction of a neural network. This is fair. 

Now, why are we bringing up this example? What do we want to see? We have already given a 

hint here, we are talking about something called a Saturation problem. So, what does that mean? 

We notice here that the gradient of h with respect to both 𝑖1 and 𝑖2 is 0 when 𝑖1 + 𝑖2 is greater than 

1, which means as soon as the sum of the inputs exceeds 1, the gradient is going to become 0. 
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So, if the gradient is 0, the guided backdrop or any other method that you use to get visualize your 

data gradients in the first place, will also be 0. That is 1 part of it. The second part is that the 

gradient of y with respect to h is negative you can see that as h goes down, y goes up, which means 

the gradient of y with respect to h is negative.  

Remember that in guided backprop, we said that any negative gradient would also be made 0 when 

you backpropagate, which means even from 0 to 1, when 1 + ⁡𝑖1 + 𝑖2 goes from 0 to 1, even in 

that range, the gradient of y will be negative, and we will make it 0 due to the guided backprop 

approach. This means the gradient now is always going to be 0 everywhere, which is not going to 

be useful at all. We call this the Saturation problem. So how do you solve such a problem? 

(Refer Slide Time: 05:41) 

 

So, this problem was first pointed out by a work called Deep lift in 2017. And what deep lift 

proposed to address this issue is, let us not use gradients. But let us use a variant of a gradient. 

Remember, a gradient by definition of first principles is you infinitesimally perturb an input and 

see what change it causes in the output. Now, we are seeing, let us not look at an infinitesimal 

change in the input or a perturbation in the input. 

Let us instead see, if we had some reference input. And our current input moves away from that 

reference input by a certain ∆𝑥𝑖 one of the attributes 𝑥𝑖 one of your input attributes for an image, 

you could consider it to be one of your input pixels. So, and then we see what is the difference in 
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output with respect to some reference output? So, if we moved from some reference input by a 

certain amount, how much does the output move from some reference output. 

So, it is no more an infinitesimal change, we keep a baseline for input and output and see if we 

move from the baseline by a certain amount, how much do we move from a baseline in the output, 

it is as you can see an extension of the idea of an of a gradient. And then you assign contribution 

scores, these contribution scores are given by 𝐶∆𝑥𝑖∆𝑡, such that the summation of all ∆𝑥𝑖,⁡∆𝑡 over 

all your attributes has to equal ∆𝑡, because that is the overall change in your output. 

So, that is how the contributions of each input towards the change in the output are measured. You 

can see now that with this kind of approach, the saturation problem that we saw on the earlier slide 

will go away. Because no more will you be considering the difference between successive points 

on your x-axis, but you will always be looking at it as a difference with respect to the reference, 

which you could keep a 0. 

And then why, even whether a point was at 𝑦1, 𝑖1 + 𝑖2 = 1.1, or 𝑖1 + 𝑖2 = 1.2, it will still have a 

difference with respect to reference 0, and there will be a valid gradient and your gradient will no 

more be 0. That is the way Deep lift counters this saturation problem. 
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So, deep lift introduces three a few different rules three different rules, but we will talk about one 

of them here to be able to explain it. For more details, you can look at the paper. This rule is known 

as the Rescale rule, and it broadly explains the idea behind the paper. So, you start from an output 

layer L and you proceed backward, layer by layer, redistributing the difference of prediction score 

from baseline until input layer is reached. 

Let us explain that more clearly. Let us assume now, that 𝑧𝑗𝑖 = 𝑤𝑗𝑖 1 + 𝑖𝑡ℎ layer into the activation 

of the previous layer, 𝑥𝑖
𝑙 into 𝑤𝑗𝑖

𝑙+1⁡becomes 𝑧𝑗𝑖 in the next layer. That is the notation we are using. 

Similarly, 𝑧𝑗𝑖 dash is 𝑤𝑗𝑖
𝑙+1 ∗ 𝑥̅𝑖 where 𝑥̅𝑖 is the baseline input for the reference input that we talked 

about. So how do we use this? Let us now consider that 𝑟𝑖 is the relevance of unit i and superscript 

l denotes layer l. 

So, the 𝑟𝑖 in the last layer L (is the total number of layers) would be given by 𝑦𝑖(𝑥) − 𝑦𝑖(𝑥̅), where 

𝑥̅ is the baseline reference input. And you are going to see what is the change in the output as you 

change the reference input. And that is going to be your relevance of unit i, in your last layer, if 

there is no chance at going to be 0 otherwise. 

For all previous layers, 𝑟𝑖 of 𝑙 is given by summation over j's, which is all the neurons that you 

have that particular neuron is connected to, in the next layer, 𝑧𝑗𝑖 − 𝑧𝑗𝑖̅̅ ̅⁡ by summation of all 𝑧𝑗𝑖 −

𝑧𝑗𝑖̅̅ ̅. Let us try to draw that out to make it a little clearer. So, you have a particular layer with a few 
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different neurons, you have a particular next layer with a few different neurons, we already know 

how to compute, the relevance is in the last layer. 

We are now taking i specific neuron I in the lth layer, let us call this the layer l. So, we take all the 

j's that are in the 𝑖 + 1𝑡ℎ layer. So, these are the j's that we have in the 𝑖 + 1𝑡ℎ layer. And we see 

in the 𝑖 + 1𝑡ℎ layer. So let us consider one particular j, its relevance would have already been 

computed that would be given by 𝑟𝑗𝑖 + 1. And how much did it contribute to the relevance at 𝑟𝑖 l, 

that would be given by 𝑧𝑗𝑖 − 𝑧𝑗𝑖̅̅ ̅⁡minus the summation of all the 𝑧𝑗𝑖 − 𝑧𝑗𝑖̅̅ ̅⁡-s in, in that particular 

layer? 

So that gives you an estimate of what is the relevance of node i at the lth layer, you keep back-

propagating these relevances back. And then you get an estimate of the relevance of each input at 

layer 1, which will be your input layer. Note here that the key difference in the process of 

backpropagation is very similar to what we did with gradients. But we are not computing gradients 

here, we are computing how much did the activation at any layer change by giving a baseline input 

instead of the current input. 

That difference is what we are measuring as the gradient. And the rest of the process stays very 

similar to what we did with backpropagation. So, this is the idea of using the deep lift to understand 

how each input neuron attributes to every output neuron 𝑦𝑖 in this particular case. 
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A popular method, another popular method rather, is known as Integrated Gradients, very 

popularly used today. And Integrated Gradients is motivated by an observation similar to deep lift, 

which is shown here. See if you have a given image, which is an image of a fireboat. And if you 

only used the vanilla data gradients, to see where the fireboat is, you get a set of gradients, such as 

what you see on the right side. 

This kind of structure in the gradients is predominantly because of a saturation problem that you 

will see on the next slide. So, what do we do, what integrated gradients do is to avoid this problem 

of saturated gradients by accumulating gradients are different pixel intensities of the given image. 
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Let us see this in more detail. So here are the same set of gradients. But now, each image in this 

set of tiles here is the input image, however, with a reduced intensity at each pixel by a particular 

scale. So, you notice here that there is an alpha of 0.02, alpha of 0.04, alpha of 0.06, alpha of 0.08, 

so on and so forth. All of this says that this first set of gradients were obtained by taking the given 

image and scaling down its intensity to the level of 0.02. 

So, it becomes a imagine an image that is an interpolation between a black image and the current 

given image. But you weighed the black image to a level of 98 percent and the current image to a 

level of 2 percent. That is what alpha is equal to 0.02 will give you Similarly, you can do alpha is 

equal to 0.04 alpha is equal to 0.06, so on and so forth, and you get a different set of images. And 

for each input image, you can compute your data gradient. And now you see that you start seeing 

more structure more clearer structure in the data gradients 
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Why is this clearer structure, because this is a fireboat, you would ideally want to localize the boat, 

as well as all of these water streams, because that is part of the nature of the boat itself. 

(Refer Slide Time: 15:12) 

 

And that is what you see on all of these gradients here. But as you got closer and closer to the full 

image, you see that perhaps the gradients are close to each other. And hence, the method, if you 

use any data gradient, it thinks that all of the pixels have about the same gradient. And then you 

end up getting a cluster of gradients like this, which do not isolate out the key pixels. Let us see 
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this also, mathematically to make this a bit clearer. And mathematically, this is achieved using 

what is known as a path integral. And that is the reason it is called Integrated Gradients. 

(Refer Slide Time: 15:54) 

 

Let us try to see how that is defined, ie, or the integrated gradient along ith dimension for input x, 

and baseline x prime, which we just took as a black image, when I gave the example a minute ago, 

is given by 𝐼𝐺𝑖(𝑥) = 𝑥𝑖 − 𝑥𝑖
′, when you have 𝑥𝑖

′,  to be a black image, that will always be 0. So, 

this is just 𝑥𝑖 itself. And you integrate alpha from 0 to 1. And then you do, 𝜕𝑓, where f is the neural 

network. 

(𝑥′ + 𝛼)
𝑥−𝑥′

𝜕𝑥𝑖𝜕𝛼
. What is this partial derivative, it is taking (𝑥′ + 𝛼)(𝑥 − 𝑥′). So, you have a black 

image, and you keep adding little and little of the given image to the blank image. And now you 

take the output of the neural network f, as you forward propagate that constructed image between 

a black image and a given image and differentiate and that with respect to the input. 

Now, you compute the data gradient of this interpolated image, and you find all such interpolated 

images as you move alpha from 0 to 1, and then integrate all of them to be able to get an integrated 

data gradient. They show that this kind of approach can lead to more robust attributions. But in 

practice, it is not possible to integrate all possible alpha values. So we come up with an 

approximation, where we take, take a set of alpha values, we define a set of intervals between 0 

and 1. 
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And we keep stepping on from each of those intervals. So summation goes from k is equal to 1 to 

m, and then you have a k by m. So you take it at 1 by m, 2 by m, 3 by m, 4 by m, so until m by m 

1. So you keep taking those steps of your input image added to a baseline image or a black image, 

and then you compute your data gradient and average out all your data gradients, and that becomes 

your integrated gradient. Now you have an IG attribution map, which focuses on the fireboat as 

well as those streams of water, which is far more convincing than what we saw initially. That the 

vanilla gradients. 

(Refer Slide Time: 18:21) 

 

Another approach that was proposed is known as Smooth Grad, which uses a very similar idea is 

integrated gradient, but a more heuristic and a simpler approach. It says, let us add pixel-wise 

Gaussian noise, too many copies of the image, and average the resulting gradients, why do we 

have to do the path integral to go from, say, a black image to the given image, instead let me take 

of a given image, I will just distort it in several ways using by adding Gaussian noise. 

And now I will compute a data gradient for each of those images when I forward propagate that 

image through a model. And I average all of those gradients. And I now get a new data gradient, 

which I am going to use as my final attribution map. An interesting observation that you can notice 

here is that this method talks about removing noise from the saliency map by adding noise to the 

input, which is an interesting approach and it works reasonably well. 
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There are many other methods now, which have added a smooth variant to their approach. For 

example, there is also a smooth IG approach, which takes the integrated gradient and takes a 

smooth version of it by adding Gaussian noise to different inputs and then averaging the data 

gradients. So here you see an example of a result. 

You have the original image, you can see that the vanilla gradients are spread out across the image, 

you do see an outline of the structure, but otherwise, the gradients are spread out across the image, 

but by doing smooth, Grad you get a fairly robust attribution map of the gradients which 

corresponds to the object. 

(Refer Slide Time: 20:06) 

 

A more recent variant of the integrated gradient is known as XRAI, it was published in ICCB of 

2019, where the idea is to take integrated gradients, but in the context of computer vision, to treat 

it in terms of segments rather than pixels. So far, we have talked about attribution maps of every 

pixel towards a particular output class. But doing it at the level of every pixel can become tedious 

in an image. 

Instead, can we reason at the level of segments in an image is what XRAI tries to do fairly practical 

approach, what it does is, you first get the attribution map given by IG so that is the first step that 

you need to do. I should point out here again, that all these methods that we are covering this entire 

week, including this lecture, the previous lecture, all of their case, in all of their cases, we already 

have a trained model. 
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We are now talking about after a training model, what are the different things we can do? These 

are not methods that affect the training of the neural network, that part of it we already did, we are 

now trying to see given a train network, how can you explain its behavior? Let us come back to 

XRAI. So, you get an attribution map given by IG, and then you over-segment the image, which 

means you get a lot of segments in the image. 

And now you start with an empty mask, which means there are no masks to start with. And then 

you add a region, which has the highest sum of attributions in a given segment. So you have several 

segments in an image, you pick the segment, which has the highest attribution among all its pixels 

in that segment. And that is the first segment that you are going to add as corresponding to a 

particular class. 

Remember, these attributions that you have, that you add into a segment are attributions with 

respect to a particular output or a particular class. Let us see a couple of examples here. So here 

you see an original image. So Integrated Gradients does give you a region around those hot air 

balloons, you also get a few other places, some graded, but by doing XRAI, you get a fairly neater 

presentation of which aspects or which regions of the image were responsible for these objects to 

be called Hot Air Balloons. 

(Refer Slide Time: 22:47) 

 

Let us see another example. So, here is an original image. And as you keep adding 3 percent of 

segments 10 percent of segments, you see that more and more objects keep getting added the way 
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it happens is you start with XRAI segments. So, this is the over-segmented image that we are 

talking about at the bottom. So, you now try to find out which of these segments has the highest 

attribution pixels, the highest sum of attributions of pixels corresponding to the object bird. 

And you take that region and if you take the top 3 percent of such segments, you would get this 

region. If you take the top 10 percent of such segments across all your segments, you would get 

these two regions and these will be the corresponding XRAI heat maps. So it is a way of extending 

integrated gradients to reasoning at the level of segments instead of pixels.  
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