
Deep Learning for Computer Vision 

Professor. Vineeth N Balasubramanian 

Department of Computer Science and Engineering 

Indian Institute of Technology, Hyderabad 

Lecture No. 35 

Evolution of CNN Architectures for Image Classification - Part 02 

 

(Refer Slide Time: 0:16) 

 

Along with VGG in 2014 was also another network called the GoogleNet. GoogleNet came from 

Google focused on deeper networks. But, with an objective, for efficiency to reduce the parameter 

count, to reduce memory usage, and to reduce computation. So, how did they go about achieving 

all of this? They had up to 22 layers in the network; remember VGG went up to 19, so the 

GoogleNet went to 22 layers. So, the networks were getting deeper each year, they did not have 

any FC layers. 

How did that help? Recall that FC layers had the maximum number of parameters for both AlexNet 

and VGGNet. So, by getting rid of FC layers, they reduced the number of parameters. And what 

else did they introduce? They introduced a module known as the inception module; which will 

describe in detail over the next few slides. Please do not worry if you are not able to see this figure 

carefully; will describe it in more detail over the next few slides. It had a total of 5 million 

parameters, which was 12x less than AlexNet and significantly lesser than VGG. 
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And it was the winner in the 2014 ImageNet challenge ahead of VGG. VGG was a run-up runner-

up this year that year and GoogleNet won the challenge with a 6.7 percent top-5 error. So, as you 

can see every year as the networks got deeper, the error started dropping significantly.  

(Refer Slide Time: 2:04) 

 

Let us now talk about the inception module, which was a key innovation in their approach. The 

inception module looks somewhat like this, which was one of those units that keep repeating in 

their architecture. So, the output of the previous layer was branched out into one layer which did 

a 1x1 convolution. In parallel another couple of layers, which did 1x1, 3x3, another couple of 

layers which did 1x1 and 5x5. And another one we did Max-pooling and 1x1 convolution.  

So, this was a local unit with parallel branches, and this local structure was repeated many times 

in the neural network as you can see. This inception module kept was tagged on top of each other 

to complete the architecture of the GoogleNet.  
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So, the Naive inception module was the final inception module that was in the architecture; but let 

us develop this slowly. So, the Naïve inception module takes a previous layer, instead of deciding 

a particular feature size, filter size, or VGG which always relies only on 3x3. What the GoogleNet 

designers decided to do was they decided to do multiple such filter sizes in parallel, and 

concatenate all of them. So, you have a 1x1, a 3x3, a 5x5, even a 3x3 Max-pool and they 

concatenated all of those. So, the depth that you get in this layer after the concatenation would be 

the concatenation of all of those depths; that you get as the output of each of these convolutions or 

Max-pooling. 

So, they had multiple receptive field sizes and they had a pooling operation, which they 

concatenated depth-wise. But, there is a problem here, do you see the problem? The problem is 

this is computationally very expensive. Remember we said for AlexNet that most of its 

computations are in its convolutional layer; while the parameters may not be high. Remember you 

have to take the filter and convolve on every part of the image, and that can be pretty expensive. 

And now when this inception module does this across 1x1 convolution, 3x3 convolutions, and 5x5 

convolutions simultaneously. And then concatenates things become even more computationally 

expensive. So, what do we do?  
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They introduced something called 1x1 Bottleneck layer to reduce the channel dimension before 

expensive convolution layers. Now, let us look at what this means, so if you have a 56x56x64 

volume, you can do a 1x1 convolution across the depth. So, that filter would be 1x1x64, and if you 

do that, the entire 56x56x64 will collapse to 56x56. Because for each of those special locations, a 

1x1x1x64 convolutions will give you one scalar as an output, which means you will be left with 

one pixel here, one pixel here, one pixel here so on, and so forth. In the next layer which would 

lead to a 56x56.  

So, remember the filter size for this 1x1 convolution would have been 1x1x64; that is the 1x1 

convolution of the Bottleneck, convolution of Bottleneck layer we are talking about. But they had 

32 such filters, which means 32 such 1cross 1x1x1x64 filters; which results in the output now 

becoming 56x56x56x32 because of 32 such filters. So, by doing the 1x1 convolution, a 56x56x64 

volume became a 56x56x32 volume. 

And you can imagine now that you could have instead 32 filters, you could have just chosen 3 

filters, 4 filters so on and so forth. So, the depth could have been arbitrarily reduced by using this 

trick of doing 1x1 convolution; and that is what the GoogleNet designers did in the inception 

module. What does this help with? This preserves spatial dimensions and reduces depth, and it 

projects the depth to lower dimensions.  

(Refer Slide Time: 7:02) 
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So, now the final inception module was the Naïve inception module we saw a couple of slides 

back. The final inception module does the same convolutions, but now before doing those 

convolutions applies 1x1 convolution to reduce the depth. Which, means the number of 

convolutions or operations that you have to do will reduce because of that and then does 3x3 of 

5x5 convolutions. This trick helps them become far more efficient in the number of computations. 

Also, you see here that there is a 1x1 convolution after Max-pool, instead of before Max-pool 

when compared to the other branches.  

The reason for that is Max-pool maintains depth, it maintains the depth at the same thing as what 

was given. So, when you do Max-pooling, the Max-pooling is done in a 2x2 neighborhood on each 

channel in the volume. So, for every channel the number of channels remains the same; so they 

first do the Max-pooling and then do 1x1 convolution to reduce the number of channels. This 

inception module brings down or increases the efficiency, brings down the computations; but 

increases the efficiency of the GoogleNet.  
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So, here is the complete architecture, so is the this is where the input comes in; and then you have 

a small stem network which is a Conv-Pool. And two times a Conv-pool, so you repeat that; then 

comes all these inception modules, stacked one after the other. And at the end, you have classifier 

output with no fully connected layers, and in between, you see here that there are auxiliary 

classifier outputs. This is because it is possible that a gradient in the last layer may not reach earlier 

layers when you have many stacked layers across the neural network.  

So, they also had intermediate classification outputs, where they took the output of a particular 

layer had a bunch of classification layers that had a loss. And that loss is gradient was also 

backpropagated at these locations to improve the strength of the gradient to earlier layers for 

weight update. As you can see the classification layer both here and here; had a structure of average 

pool 1x1 convolution FC-FC Softmax. There were 22 layers in total, the parallel layers count as 

one layer, so these different layers that you see inside the inception module.  

The branches we just counted as one layer, given that it has a total of 22 layers; and the auxiliary 

output layers are not counted. Just from this end to the other end, together it is 22 layers in 

GoogleNet.  
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So, as you can see each year since 2012, the networks got deeper and deeper and deeper. So, the 

obvious question the researchers in the next year had was how far can we take it? And they took 

it to about 150 layers which we will see in a moment.  

(Refer Slide Time: 10:28) 

 

So, while asking this question, they try to understand that how deep can you go with CNN. And 

when they studied stacking deeper and deeper layers on a plain CNN, they found that 20 layer 

CNN had a lower training error over the iterations of training than a 56 layer CNN. This was a 
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little non-intuitive and the same observation was also made on the test error in the same setting. 

So, the 20 layer CNN had a lower test error over iterations when compared to a 56 layer CNN. 

Why would this be happening? A deeper model performs worse than a shallow model. This was a 

little counterintuitive to how the research was progressing with CNNs at that time. One possible 

explanation you could give for why this could be happening is the initial guess could be that the 

deep model is perhaps overfitting, and that is why a test error increases for 56 layers neural 

network. You have more parameters and it perhaps is becoming complex and hence is overfitting. 

But, if that was true the training error would have been stronger for a 56 layer network over a 20 

layer network. 

Unfortunately, even there the 20 layer network had a lower error, which means the 56 layer 

network was also underfitting. What would have been the reason for this to happen as the depth of 

the neural network increases?  

(Refer Slide Time: 12:18) 

 

The answer for this lies in what is known as the vanishing gradient problem. The problem 

complementary to vanishing gradient is known as exploding gradient, but let us talk about each of 

them in one after the other. So, if you took a simple feed-forward neural network, let us assume 

with sigmoid activations in each layer. So, here is a very simplistic visual for that. You have 𝑥0, 

there is a weight one that comes in the first layer, there is a sigmoid; then x1, w2 is a weight in the 

second layer, a sigmoid, and so on until the last layer.  
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If you now took a loss L and wanted to find 
𝜕𝐿

𝜕𝑥0
; this is one of the initial layer's inputs. You have 

𝜕𝐿

𝜕𝑥0
=  𝜎′(𝑤3

𝑇𝑥2)𝑤3𝜎′(𝑤2
𝑇𝑥1)𝑤2𝜎′(𝑤1

𝑇𝑥0)𝑤1. 𝜎′ is the gradient of the sigmoid function. This 

comes from applying the chain rule. You work out the gradient in each step, considering a sigmoid 

activation function in each layer; you would get this.  

But, the key point I would like to draw you towards here is that the gradient of the sigmoid is less 

than 1 by 4. Why is that the case? Because this is how the gradient of the sigmoid function looks. 

It starts at a 0 close to 0, it peaks at 0.25 and then falls again. This comes from the shape of the 

sigmoid function, so the gradient is deep in this region. It increases and starts falling and flattens 

out again, so the gradient of such a sigmoid function turns out to be something like this; and the 

range is between 0 and 1, which means the gradient turns out as capping at 0.25. This means 
𝜕𝐿

𝜕𝑥0
 

has a bunch of values, which are all less than one-fourth.  

What you expect will happen to 
𝜕𝐿

𝜕𝑥0
; the product of very small values will quickly go to 0.  

(Refer Slide Time: 14:52) 

 

And you have the problem of what is known as vanishing gradients. As you go deeper and deeper 

into a neural network, the gradient especially if you have such squashing activation functions, the 

gradients are less than one and as they get multiplied over the several layers during 

backpropagation; the gradient becomes feeble and feeble as it proceeds towards the initial layers. 
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In other words, as the gradients never reach the initial layers or the initial layers, may get stuck 

with the random initialization that we came up with, and may never go further.  

So, you could argue that instead of randomly initializing the neural network with some random 

weights. And then not updating them at all convincingly, why have those layers in the first place? 

Let me not take such a deep network; that could be one way of arguing against solving the 

vanishing gradient problem. But, will talk about a different approach in a slide from now. The 

complementary problem known as the exploding gradients can happen, when maybe there is 

another activation function, such as ReLu; where the gradient could be 1 or greater than 1 or 

depends on what the activations are.  

Or, as I said any other function where these terms end up becoming greater than 1, the product of 

those values as you go deeper through many layers can explode to a high value and that also can 

cause problems. However, exploding gradients are often easily handled by a trick known as 

gradient clipping; this is very popularly used in practice. People just say that when the gradient 

goes beyond 10 for instance, you assume the gradient to be 10.  

So, anything greater than 10 will just be 10 you just clip it, and at that value and that will ensure 

that the gradient does not explode.  

(Refer Slide Time: 17:02) 
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Coming back to the vanishing gradients problem, this problem was addressed in CNN architecture 

in 2015 called ResNet or residual nets. They wanted to ensure that a deep model should at least 

perform as well as a shallow model. How is this possible? The idea they came up with was to 

introduce what are known as residual blocks, which are connected through identity connections or 

identity matrices. What does that mean? In the original CNN, you have an x; it goes through a few 

layers such as Conv layer, then a ReLu, then a Conv layer. And it gets transformed over those 

layers, and becomes a certain H(x); this could be one portion of a neural network for instance.  

But, in a residual block what these designers came up with was to say that x goes through a Conv 

layer. A ReLU, a Conv just as Vanilla CNN; but they also have a side channel to take the input x 

as it is. And added up here two layers later, which means what was originally the function H(x); 

now becomes F(x) which is a new transformation that happens through these layers. Plus an x that 

comes directly here and gets added at this layer after the Conv. Each such block where the identity 

connections come back and add the original input is known as a residual block. Why is it a residual 

block?  

Because originally these layers captured a function H(x); but now these layers capture the residual 

H(x) - x. Remember, now we are saying here that this together here must be equal to H(x); or 

rather F(x) will be H(x) - x, which is now residual rather than H(x) itself.  

(Refer Slide Time: 19:26) 
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So, the way the residual network was designed is to have a stack of many residual blocks. Each 

residual block had two 3 by 3 Conv layers as you can see, 3 by 3 Conv layers; and then the x that 

came out of this. Or, whatever representation came out from this particular joint here, was directly 

passed on again at the to the output of those two Conv layers. And this was repeated again and 

again over the blocks in the neural network. 

Periodically, the number of filters was doubled, so you can see here that 64 which was the number 

of filters as in the initial residual blocks became 128 after the set of residual blocks. Which after a 

few more residual blocks became 512 and so on and it was also down-sampled spatially using 

stride 2 that is divided by 2 in each dimension to bring the size of the feature maps lower as you 

went deeper. Remember that helps you control the number of neurons in later layers by 

downsampling, the feature maps. They also used a technique called global average pooling. 

Global average pooling is like Max-pooling average pooling, but global average pooling is the 

entire average of a feature map. So, if you have a feature map, you take the average of all the pixels 

in that feature map and it gives you one scalar. So, if you had k channels in a particular layer, by 

doing like global average pooling; you will get k scalars, 1 scalar per channel which will be the 

global average of that channel. You can imagine that as giving a feature map taking the average 

intensity of that feature map; that is global average pooling. And then for each channel, you would 

get one global average pool value. 

So, if you add k feature maps, you would get a k dimensional vector as the output of global average 

pooling. And they had a single linear layer at the end you can see, that there are no fully connected 

layers here; but for the FC 1000. FC 1000 is done because ImageNet has 1000 classes, so the FC 

1000 is required to give 1000 outputs in that last layer, and finally a Softmax to convert those logits 

into probabilities. They had total depths of 34, 50, 101, and 152 layers for ImageNet. So, it is called 

ResNet 34, ResNet 50, ResNet 101, ResNet 152 so on and so forth. 
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For very deep networks, which went beyond 50 layers in a ResNet; they also used a Bottleneck 

layer. You can see the 1x1 convolutions to improve the efficiency similar to GoogleNet. 

Remember the 1x1 convolutions help you reduce the depth from a certain depth to a smaller depth 

and then you perform your operations at that smaller depth. And you can again now do 1x1 

convolution to go back to an initial depth if you like which is something that they did do to keep 

the depth in the same range. But, reduce the computations by a couple of 1x1 or bottleneck layers, 

a couple of 1x1 convolutions, or Bottleneck layers periodically. 

So, this is the example they start with they had a 28x28x256 input; the bottleneck did it to 

28x28x64 by doing 1x1 convolution. Then do the 3x3 convolutions only on those 64 feature maps 

and then once again did 1x1 convolution, and took it back to 28x28x256. This keeps the dimension 

the same as the input, but these 1x1 convolutions make the number of computations far lesser, and 

hence the training more efficient.  
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With this ResNet, they were able to train very deep networks. As we mentioned they went up to 

152 layers to train on ImageNet, and they now found that deeper networks perform better than 

shallow networks. Why so? Why does this identity map or this residual block help train deeper 

networks? When we backpropagate the gradient that comes to a particular point in the residual 

network; while, there is a path of the gradient through these layers, which may result in an 

attenuation of the gradient. There is another side path for the gradient to go as it is to a previous 

layer, without any diminishing in its value.  

And these identity connections that connect residual blocks are like serve like highways, for the 

gradient to just flow through; they are like short circuits. The gradient just flows through them, 

while there is a part of the gradient that still keeps coming through the layers. And that allows even 

the earlier layers to get a strong gradient signal, and now deeper networks perform better than 

shallow networks. And it won first place in all ImageNet competitions and also a competition 

called COCO that was introduced in 2015. 

So, they won the char first place in all the major challenges in 2015. We mentioned classification 

ImageNet detection, where they were 16 percent better than the second-best ImageNet localization; 

where they were 27 percent better than the second-best COCO detection, where they were 11 

percent better than the second-best. COCO’s segmentation where they were 12 percent better than 

the second-best. We will discuss detection, localization, segmentation, and the COCO dataset a bit 
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later. But, just to let you know that this model swept through all challenges in 2015. And has since 

then been an important architecture that people use for various applications in computer vision.  

(Refer Slide Time: 25:56) 

 

So, the homework for this lecture is to go through this illustration of 10 CNN architectures, which 

is very well done which would perhaps help you understand these architectures better. If you are 

further interested, you can go through these respective papers, which are for ImageNet, ResNets, 

VGGs so on which could probably help you understand some of the decisions; which were made 

in the design of these architectures.  

The exercise for this lecture is going to show that minimizing negative log-likelihood in a neural 

network with a Softmax activation function in the last layer, is equivalent to minimizing a cross-

entropy loss function. We are not going to work this out in the next lecture, please read this chapter 

3 of Nielsen’s online book, if you would like to understand this further.  
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With that here are your references. 
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