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Continuing our discussion, we will now move on from simple feed forward neural networks into               

the building blocks of deep learning for computer vision, which are Convolution Neural             

Networks. 

(Refer Slide Time: 00:35) 

 

Before we start that discussion, we will review the homework or the exercise that we left behind                 

in the last lecture of the previous week. One of the questions there was, how do you backprop                  

across the batch normalization layer. So, what you see here is the algorithm of batch               

normalization that we saw last time. Let us quickly review that in terms of how it looks on this                   

graph, what is known as the computational graph. So, you have forward propagation which is               

given by, you are given x1 and x2. 

And given a mini batch of data, you find the mean and variance of x the inputs out of a particular                     

layer, out of a particular layer the activations out of a particular layer. And then you normalize                 

that data using the mean and variance. Once you normalize, you renormalize them by scaling and                

shifting, rather you adopt a variance , and a mean , which is suitable to solve that problem.γ β  
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This is the main idea of batch normalization and that is represented by this graph here. The                 

forward prop as we can see, is quite straightforward and we just follow this algorithm. The                

question here is, how do we do the backprop. Let us try to work through the different terms here                   

and understand this. 

(Refer Slide Time: 02:04)  
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The first term that we have to find out is That is one of the simplest terms to evaluate so we          β            

will start with that. To recall, let us go back and see what was. Note here, that in the last line             β          

of the algorithm, + . Keeping that in mind, so this is the main equation that you may   yi = β  γ xî               

want to keep in mind for the next few slides. So, you can assume that is almost an input into y               β        

with, so you have this here, . So, So, . as you can see      x .1y1 = γ î + β    ∂L
∂β = ∂L

∂y1 ∂β
∂y1 + ∂L

∂y2 ∂β
∂y2  ∂β

∂y1      

here is going to be 1, so this is going to simplify to , which is the final .∂L
∂y1

+ ∂L
∂y2

∂L
∂β  
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Let us move on to the next one. Similarly, , remember is the constant that multiplies .         ∂γ
∂L   γ        xî  

So, and so on and so forth for all the y terms. And as you can see is ∂γ
∂L = ∂L

∂y1 ∂γ
∂y1 + ∂L

∂y2 ∂γ
∂y2              ∂γ

∂y1       

going to be by the very definition of these terms. So, that term gets replaced by . So, you   x1̂               x1̂    

have  and that gets summarized as a summation in this way.x x∂L
∂y1 1̂ + ∂L

∂y2 2̂  

Let us move on to the next term. The next term is , x1 is not a parameter, but we need to be            ∂L
∂x1̂

           

able to compute this so as to propagate the gradient to previous parameters in the network.                

, as we just saw, that is what we put in here. And similarly, you would∂L
∂x1̂

= ∂L
∂y1 ∂x1̂

∂y1  ∂x1̂

∂y1 = γ                 

be able to calculate .∂x2̂

∂y1  

(Refer Slide Time: 04:45)  
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Let us move on to the next term, which is going to be . We again need this because the             ∂L
∂σ2        

gradient needs to pass through this to be able to go to which is going to be an earlier term            ∂x
∂L          

and all the other gradients in the previous layers. is given by , which we already         ∂L
∂σ2     ∂L

∂x1̂
    

computed on the previous slide into , which is the new term that we need to compute.
∂x1̂
∂σ2   

Similarly, we need to do this for all the x terms. So, you have and it is written as a              ∂L
∂x2̂

∂x2̂
∂σ2       

summation. The main term that we need to evaluate here is . So, which is formed by the           
∂xî
∂σ2        

gradient of the, form of x y hat itself. Let us go back a couple of slides and see what that is. So,                       

is given by this term here. So, the gradient of just follows the gradient of this particularxî            
∂xî
∂σ2         

term which can be written by .) (σ )(xi − μ 2
−1 2 + ε −3/2   
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Similarly, we have So, the first two terms get absorbed into a   ∂μ
∂L = ∂L

∂x1̂ ∂μ
∂x1̂ + ∂L

∂x2̂ ∂μ
∂x2̂ + ∂L

∂σ2 ∂μ
∂σ2

          

common summation and the last term stays as it is. is given by this gradient here; this once          ∂μ
∂xî          

again follows directly from the definition of to be . And the term here        xî    )/(xi − μ √σ2 + ε      ∂μ
∂σ 2

 

 

gets written in terms of x's and ’s.μ  

Because , once again by the same expression can be rewritten in terms of all the x's and the σ2                   

corresponding , which is to repeat that. Remember that if we go back to the algorithm from the μ                  
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same boxed equation here, you could take sigma b squared + epsilon the other side and get xi hat                   

as the denominator and you would do this for ,  and all of that.x1̂ x2̂  

So, doh sigma doh by sigma square becomes a summation of all of these gradients and that is    μ                

what we get here. Each of this is one gradient with respect to one of those inputs x1. Similarly,                   

this would be the gradient with respect to x2, and so on and so forth. And that is how you get                     

your doh L by doh .μ  

(Refer Slide Time: 07:47)  
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Finally , that is the final gradient that you need to be able to compute to back propagate L/∂x∂ 1                  

to earlier layers, that is going to be . + . + . . So,        L/∂x∂ 1̂ x /∂x∂ 1̂ 1   L/∂σ∂ 2 σ /∂x∂ 2
1  L/∂μ∂ μ/∂x∂ 1   

this one follows as it is by once again the definition of , you will get it to be this term.x /∂x∂ 1̂ 1 x1̂  

, once again, by the expansion of sigma with respect to x1. Now, you do not need toσ /∂x∂ 2
1                   

worry about the term. So, you will have only one gradient term here, you get this. And   x1                

finally, would simply be 1/2 here, by definition of x1 by definition was and how it is μ/∂x∂ 1              μ      

connected to x1.  

Similarly, you would get this for , and so on and so forth for all the doh L by doh xi's.      L/∂x∂ 1                

That is how the backprop is done for batch normalization. A takeaway for you at this stage is, for                   

any of these new parameters that you introduce in a neural network, a careful working out of                 

chain rule for every term involved would take care of, would take care of how you should be                  

able to compute the gradients and back propagate in that scenario. All that you need to ensure                 

that you have only differentiable components in all your new additions to a neural network. 

(Refer Slide Time: 09:26) 

 

With that, let us move on to convolutional neural networks. And this lecture is largely based on                 

the excellent lectures of Mitesh Khapra, from IIT Madras. 
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Let us start with reviewing convolution. So, we did do it in the first week of this course. We                   

know now that convolution is a mathematical way of combining two signals to form a third                

signal. We also know that it is an extremely important technique in signal processing in general,                

images are 2D signals. But convolution is also used for other kinds of signals such as speech or                  

accelerometer data, time series data, so on and so forth. 

In case of 2D data, let us assume the simple case of grayscale images, convolution operation                

between a filter W, whose dimension is k x k, and an image X​, whose dimension is n1 x n2 is                     

expressed as y of yj index u going from -k to k, index v going from -k to k, W u, v, which is the                         

filter an X i-u, j-k, which is the input image. We have already seen this as the definition of                   

convolution. 
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More generally, we can also write convolution in the form that you see here. Where we are                 

writing the indices going from the floor of -k1 by 2 to k1 by 2 and -k2 by 2 to k2 by 2. There is a                          

particular reason we are talking about it. Because if we write the equation of convolution this                

way, that is the only difference, otherwise the rest of it is more or less the same. Obviously, the                   

indices of W change because of how we wrote the summation here, the indices in the summation                 

here. 

All that we are saying in this definition is that, we are going to center the filter on the pixel                    

around which we are computing the convolution. We already did that earlier, too. But we are just                 

writing that formally here. So, for different parts in the course, based on what we want to                 

establish, we may write the definition of convolution slightly differently. But you can see that,               

that the heart of it, it is the same equation, you do have W indices, and X indices defined this                    

way, and you get the output at a particular pixel. 
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We know from what we have seen so far, that for the 1D case, when you do convolution, you                   

slide a 1 dimensional filter over a 1 dimensional input. Similarly, in the 2D case, you slide a 2                   

dimensional filter, as an images such as a sobel edge filter, and so on over a 2 dimensional input.                   

Let us try to take this further. What would happen in a 3D case, why do you need a 3D case is                      

not an image 2D, an image is 2D. But when you get to color images, you have 3 channels of                    

images which becomes a third dimension, if you want to convolve with them together at one go.                 

So, let us try to understand how this convolution would look in the 3D case. 

(Refer Slide Time: 12:51) 
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Let us try to understand what a 3D filter would look like. Let us assume now that our input will                    

be a color image, which has 3 channels R, G, and B which makes the input now a volume. And                    

what would a 3D filter look like, it would also be a volume. And we are going to refer to that as a                       

volume going forward. So, when you now slide the volume over your input volume and perform                

the convolution operation, you will be moving it across the input volume at different locations,               

and getting 1 scalar output as the output of the convolution in the output image.  

See you can see, that as you move the volume on different locations in the input volume, you get                   

the output as pixels in the output image. We also call this output image as a feature map in                   

convolution neural networks. One assumption we make here is that the depth of this filter is the                 

same as the depth of your input volume and this is important. Why is it important, because the                  

depth of the filter is the same as the depth of the input volume.  

In effect, we are doing a 2D convolution on a 3D input. Why do we say that, we slide along the                     

height and the width of the input, but we do not slide along the depth, because the depth of the                    

filter is the same as the depth of your input volume. So, your output of this operation will also be                    

a 2D image. When you did 1D convolution with a 1D filter on a 1D signal, you got a 1D output.                     

When you took a 2D filter on a 2D input and image you got a 2D output.  

Now we are taking a 3D filter on a 3D input and our output now is not 3D, but 2D. And why is                       

that so, because the depth of the filter is the same as the depth of the input. Then can not you get                      

a volume, can not you get a 3D as output here, you can, even with this operation you can by                    
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defining multiple filters. If you define multiple such filter volumes, for each filter volume, you               

would get 1 such output or 1 such feature map, 1 such feature map. And by using multiple filters,                   

you would get multiple such feature maps, which together form a volume. 

(Refer Slide Time: 15:48) 
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Let us now try to understand the dimensions. We know that even when we did convolution, we                 

had some issues around the edges of the image where convolution cannot be performed and we                

use techniques such as padding, let us revisit some of those in the context of convolution the way                  

we see it for color images.  

Let us assume now that our input dimensions are W1 x H​1 x D1 with height, and depth. And the                    

spatial extent F of each filter, the depth of each filter is the same as the depth of the input, so you                      

have a say spatial extent to be F x F, and the depth is same as D1, because that is the depth of the                        

input volume. Let us assume now, that the output dimensions are W2 x H2 x D2. So, we are now                    

allowing the output to have some depth D2, if you are used only 1 filter this D2 will be 1, you                     

can increase D2, but increasing the number of filters that you have. Let us try to work out a                   

formula for W2 and H2 in this context. 

We will also talk about a quantity called stride, which decides how much you overlap successive                

convolutions on different parts of the image. And we will also talk about the number of filters in                  

deciding the size of this output volume or output feature maps. 
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Let us take it one by one. Let us first start with trying to compute the dimensions W​2 and H2 of                     

the output. So, you have your standard convolution, where you place your filter on a particular                

location in your input image, you convolve the filter with the input at that location. And you get                  

one single scalar output at the centered pixel in your output, at the centered pixel location in your                  

output. And you move this all along and keep getting different outputs in the, different pixels as                 

output in the output feature map. 

Let us try to understand, what happens if you place the kernel at the corner. So, remember that if                   

you place the kernel at the corners, you do not have inputs to compute the convolution of. So,                  

this is a problem with all these shaded regions here, depending on the size of the filter. So, this                   

results in an output, which is of smaller dimensions than the input. We have seen this earlier with                  

convolution. But we are revisiting this, to find out what would be the size of W2 and H2. As the                    

size of the filter, or the kernel increases, you can make out that even more pixels along the                  

boundary are going to get affected. 

And for example, if you take a 5 x 5 kernel now, and as you slide this 5 x 5 kernel across, you                       

are going to get an even smaller output, because more border pixels are going to get affected,                 

because of you will not be able to convolve with those pixels that go outside the boundary. So,                  

you would have an entire region which is outside the boundary for which you will not be able to                   

compute convolution, so your output in this case would be a 3 x 3 matrix. 
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We have seen this before. In general, we can say with this restricted set up, the W2 will be W1​-F                    

+ 1, and H2 will be H1- F + 1. So, if your input was W​1, in this case, it is 7 x 7, W1 and H1, F                            

was 5 x 5. So, you have 7 - 5 + 1, which is 3, and the same for H2 and that makes your output a 3                           

x 3 matrix. 

(Refer Slide Time: 20:02) 
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We saw earlier, that if we want our output to be the same size as the input, we do what is known                      

as padding. In the first week, we also talked about a few different ways of doing padding. The                  

simplest way to do padding is to add zeros along multiple rows and columns outside the image,                 

so as to extend the original dimensions of the image.  

So that way you can convolve, even the boundary pixels. Now, you would have something like                

this. So, your 7 by 7 becomes a 9 by 9. And now you can place your kernel, even at the corners,                      

as you convolve your 3 x 3 filter on this image, and your output remains 7 x 7 as your input                     

image. We now have, W2 to be W1-F + 2P + 1, where to P is the padding, that is you have done,                       

the padding that you have done. And it is 2P because you have to pass along both ends along the                    

columns, and both ends along the rows too, that is the reason you need 2P. You are going to                   

further refine this formula. 
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We are not done yet. And that is where we bring in the concept of a stride. When we convolve, a                     

filter over an input, we can also define the interval at which the filter is applied. When you move                   

the filter from 1 location on the input to the next location, you can decide whether you would                  

take it to the immediate next pixel, or whether you want to jump 2 steps and go to 2 pixels later                     

and that decides what your stride S. 

So, if you went to the immediate pixel, your stride is 1, that is the standard convolution. If you                   

went 2 pixels further, your stride is 2 and that is where stride comes into the picture. So, let us                    

see an example. In this example, S is equal to 2 or stride is equal to 2. So, you can see here that                       

when you took your first 3 x 3 window, and the next 3 x 3 window, you skipped 1 step in                     

between, and then went forward. And let us see these skips a bit more carefully, you can see                  

those skips again. It is not only along the columns, it is also along the rows, you also skip pixels                    

along the rows, the stride happens in both directions. 

And this is another way in which the size of your image gets output image gets reduced. And                  

your new formula now with the stride included becomes W2 is equal to W1-F + 2P which is                  

what we had earlier, which is now divided by S the stride. Since the stride along the columns and                   

the rows are the same, you use the same S​. Technically speaking, the strides could be different                 

between the rows and the columns. But in practice, it is generally retained as the same value. Are                  

we done with finding the values of W and H2, not yet done, there is one more detail left. 

(Refer Slide Time: 23:29) 
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And that detail is the depth of the output. As we already mentioned, the depth of the output                  

comes from using multiple feature maps or multiple filters. Each filter gives us one 2D output                

and K such filters will give us K such 2D outputs, as you can see now in the output region. We                     

are saying now that the depth D2 is K​, that is the number of filters you used. For each filter, you                     

would completely convolve your filter volume with the input volume get 1 2D image. 

You take another filter, you could imagine taking a sobel filter along the vertical sobel filter and                 

a horizontal sobel detect those would be 2 different filters. So, you run both of them, and you                  

will get 2 images as output. You just place them one after the other to form a volume. So, your                    

D2 on the depth of the output would be your number of filters, or K. 
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Let us try to work out an exercise so you are clear about this. Let us consider this input to be 227                      

x 227 x 3. Let us assume that your filter size is 11 x 11 x 3. Let us assume that we are going to                         

use 96 such filters. These numbers have a purpose which will probably be clear to you a few, a                   

couple of lectures down but take these numbers for now as they are, you have 96 such filters. Let                   

us assume a stride of 4 and a padding of 0, no padding. 

We already know that the formula W2=((W1-F + 2P)/S)+1. And similarly, for H​2, can we now                

find out what D2 W2 and H​2 are. Let us start with the simplest one. What is D​2, D2 as we said,                      

is the number of filters, which means D2 is 96. 
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Let us then go to H​2, H2 was given by H2 = ((227-11)/4)+1 = 55. And we get a similar value for                      

W2. That is how you can get the output, the dimensions of the feature map. One important thing                  

to keep in mind here is when you embed these kinds of operations in a neural network. Unlike a                   

feed forward neural network, where you would specify how many neurons you want in a first                

hidden layer, here, the size of that next layer is automatically decided by the size of the filter and                   

these choices that you make. 

In a feed forward neural network, the number of weights gets decided by the number of hidden                 

layers and the neurons in each hidden layer. And here, it is the reverse. You decide the number                  

of weights and the output map gets decide. We will explain this in more detail as we go forward                   

now. 
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