
Deep Learning for Computer Vision
Professor Vineeth N Balasubramanian

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Lecture 30
Improving Training of Neural Networks

(Refer Slide Time: 00:15)

Another important component we are going to talk about here is weight initialization. You

know by now that for a neural network to learn, you must first initialize the weights with

certain values. And then you perform gradient descent to learn. Is this really important? Can I

just initialize all of them with 0’s and go?

It is important because if you recall the neural network error surface where you start is critical

to which local minima you will reach. We saw that the error surface can be very complex

which means it depends on which starting point you have. And you may accordingly

converge to a local minima.

If you want to get to a better local minima, you may have to start at a better position initially

to be able to get that solution. There have been recent studies which tried to analyse this from

other perspectives. But weight initialization in general is considered a very important aspect

of designing neural networks.

In fact, to a certain extent, this was a game changer when deep learning started becoming

popular in the first decade of the 21st century. Let us first ask the trivial question: Why do not

we just initialize the neural network weights to 0’s and let it learn what it should learn? Is this

680

a good answer? No. In fact, any constant weight initialization scheme will perform poorly.

Why so? Let us take an example and understand this.

Let us consider a neural network with two hidden units. Let us say ReLU activation. And let

us make all biases 0 just for us to understand this and let all the weights be initialized with

some constant . It could be zero; it could be non-zero; any constant initialization is okayα

here.

If we do this and forward propagate an input in the network, the output of both hidden units

in the next layer will be because the weights are the same. Now, why is𝑅𝑒𝐿𝑈(α𝑥
1

+ α𝑥
2
)

this an issue? Which means both hidden units will have the same output. They will have an

identical influence on the cost or the loss, which means they will have identical gradients.

If they have identical gradients, they will have identical updates and the weights will always

remain the same. They start the same, the gradients will be the same and they will keep

taking the same value always though training. This is not desirable. So, we want to do

something more than simply initialize the weights with the same values.

(Refer Slide Time: 03:24)

How are weights initialized then? They are generally chosen randomly. Or for example, you

can sample weights from a Gaussian distribution. You have some variety in the weights. Both

very large and small weights can cause activation functions such as sigmoid and tanh to

saturate. So, that is something important to keep in mind when you initialize. Let us see more

specifics on how we can initialize.

681

(Refer Slide Time: 03:59)

In 2006, weight initialization was one of the major factors in turning around how deep neural

networks were paid attention to. Salakhutdinov and Hinton introduced a method known as

greedy layerwise unsupervised pre-training which is considered to be a significant catalyst in

the training and success of deep neural networks.

For a few years since 2006, the general understanding was this was extremely essential to

make deep neural networks work in practice and led to widespread adoption of deep neural

networks for various applications. However, today it is understood that you do not need this

method. That there are simpler weight initialization methods that you can use and you get

good results. But let us try to understand what this method tried to do.

As the name says, greedy layer wise, unsupervised pre-training. The suggestion was when

you have a deep neural network, before you start training the neural network we are talking

about the weight initialization step here, you take the first two layers and train them using

some unsupervised technique. For example, you could use methods such as Boltzmann

machines or auto encoders. We will see that later to be able to train these two layers in an

unsupervised way.

Using that, you would get a set of weights. Now, you freeze those weights and then take the

next two layers and train them in an unsupervised manner. Because the first layer's weights

have frozen, you could provide inputs and multiply it by those frozen weights, and they will

become inputs to the second layer.

682

So, you could take the second and third layer, train them in an unsupervised manner. And you

would get a certain set of weights. Then you freeze those weights. Then you take the third set

of third layer’s weights, and train them in an unsupervised manner. And you keep repeating

this process to get an initialization on your weights for the neural network.

(Refer Slide Time: 06:27)

Why is this called so? Greedy because it optimizes each piece independently rather than

jointly. Layer wise because you are doing initialization in a layer wise manner. Unsupervised,

as I just said, is because you use only the data, no labels to be able to train those networks.

Because this is not a formal training process. It is only to initialize the neural network. And it

is called pre-training because this is done before the formal training process starts. As I

mentioned, it is for weight initialization.

So, a question that you may have now is how do you do that unsupervised training between

every pair of layers? You may have to wait for that answer in this course. This is achieved by

networks known as autoencoders or Restricted Boltzmann Machines. Or you could even use

other methods to be able to achieve this. But we will see these examples; we will see

autoencoders and RBMs, a little later in this course.

683

(Refer Slide Time: 07:35)

But as I mentioned, this got superseded by newer weight initialization methods over the last

decade. Let us try to understand what has been the thought process behind coming up with

newer initialization methods. If you took a neural network such as what you see here, let us

consider that all your inputs have been normalized already. With mean 0 and variance 1. It is

very common these days to normalize your data inputs before providing it as input to any

machine learning algorithm. Let us also assume now that your weights have to have mean 0

and a certain variance. We do not know what that variance should be. That is what we want to

find.

Let us now take one of these neurons. Let us call . Let us take one of the neurons here. Let𝑎
1

us call that for simplicity. That is going to be given by . Then the variance of𝑎
1

𝑖=1

𝑛

∑ 𝑤
𝑖1

𝑥
𝑖

𝑎
1

would be .
𝑖=1

𝑛

∑ 𝑉𝑎𝑟(𝑤
𝑖1

𝑥
𝑖
)

Assuming now the w and x are not correlated with each other. You can write it as

. The joint covariance would go to 0. And assuming that we also want all𝑛𝑉𝑎𝑟(𝑤)𝑉𝑎𝑟(𝑥)

neurons to have the same variance, the summation turns into n. Let us now try to understand

what happens to the variance when we go deeper in the neural network. The variance would

keep getting multiplied, and you would have the variance of a pre activation at the later layer

to be . This could result in blowing up or becoming 0, depending on what(𝑛𝑉𝑎𝑟(𝑤))𝑘𝑉𝑎𝑟(𝑥)

the variance of w originally was.

684

Remember now that we ideally want, we already know the variance of x is given to be 1. We

would want the variance of every succeeding layer also to be 1 because that would ensure

that even the layers in between are normalized. So, we would ideally want the variance of 𝑎
1

also to be 1. The way to do it is that . We know the variance of x is 1. We want𝑛𝑉𝑎𝑟(𝑤) = 1

variance of to also be 1 because then even the variances of activations in later layers will𝑎
1

be normalized.

And then . So, which means for a good initialization, you can draw weights𝑛𝑉𝑎𝑟(𝑤) = 1

from a normal distribution, a Gaussian distribution, and scale them by , where n is the1/ 𝑛

node’s fan-in. That is the same thing here. By fan-in we mean the number of weights coming

into a particular neuron.

(Refer Slide Time: 11:04)

685

Using the skew, there have been a few weight initialization methods that have been

developed. The most popular ones today are Xavier’s initialization or Glorot’s initialization,

which is given by this down here. You uniformly sample from a certain range given by these

values or timing these initializations where you uniformly sample in this range. These came

from these two papers which were published in 2010 and 2015. Let us try to understand one

of them at least in detail as to how that range came through.

Let us not derive how Xavier’s or Glorot’s initialization was derived. We just now showed

that it is good to have the variance of w to be . But we also have to consider the1/ 𝑓𝑎𝑛
𝑖𝑛

backward pass during backprop which also could result in affecting the weights and the

gradients. So even the backward pass could have an impact when you have to design the

variance of the gradients because the gradients are distributed based on how the weights in a

particular layer are, which flows through the previous layers, and so on and so forth.

So, it may be wise to also consider variance of w to be . Fan-out is the number of𝑎/ 𝑓𝑎𝑛
𝑜𝑢𝑡

weights going out of a neuron for the next layer. Let us hence go with the average variance of

w to be . Now we know from statistics of uniform distribution that given2/ 𝑓𝑎𝑛
𝑖𝑛

+ 𝑓𝑎𝑛
𝑜𝑢𝑡

a uniform distribution from the range, m, n; we know the variance is given by .(𝑛 − 𝑚)2/12

Which means if we now sample uniformly from minus , its variance is going to be[− 𝑎, 𝑎]

given by which is .(2𝑎)2/12 𝑎2/3

686

Now, let us put these together. We said that must be 1. Fan-in is the same as𝑓𝑎𝑛
𝑖𝑛

* 𝑉𝑎𝑟(𝑤)

n of the previous slide. We know that the variance of w coming from a uniform distribution

from an interval is . Putting these two together, or .𝑎2/3 𝑓𝑎𝑛
𝑖𝑛

* 𝑎2/3 = 1 𝑎 = 3/ 𝑓𝑎𝑛
𝑖𝑛

And now considering the backward pass and the forward pass, you get Xavier’s initialization

to be uniform(,).− 6/(𝑓𝑎𝑛
𝑖𝑛

+ 𝑓𝑎𝑛
𝑜𝑢𝑡

) 6/(𝑓𝑎𝑛
𝑖𝑛

+ 𝑓𝑎𝑛
𝑜𝑢𝑡

)

Kaiming initialization is built on top of this. But that is going to be homework for you to

work out as to how you get this as another possible initialization. You can by looking at it say

that the ideas have to be similar, but there are some minor changes. You can also look at the

paper that proposed this, which was in the footnote on the previous slide, to be able to do this

homework.

687

(Refer Slide Time: 14:18)

688

Let us move to the last component of this lecture that we are going to talk about which is an

important development that came about in 2015 known as batch normalization. Covariate

shift is a problem that in machine learning refers to a change in input distribution between

training and test scenarios. This generally causes problems because the model needs to adapt

to a new distribution. This could also happen even during the training process itself between

the distribution at one stage and the distribution at another stage.

In a neural network, this issue can show up as internal covariate shift where the input

distribution can change across the layers. So, the first layer we could normalize the data and it

would have the inputs would follow a certain distribution. Depending on the weights in the

first layer, the second layer would receive a different distribution. The third layer would

receive a different distribution based on those weights, and so on and so forth. And the neural

network has to learn to handle these different distributions. Can we do something to address

this?

We know that a network trains well when its inputs are widened or normalized. They are

linearly transformed to have 0 means and unit variances. Can we now do something to also

have a similar effect in each layer? Can we make each layer also a unit Gaussian? That is not

in our hands entirely because it depends on the weights. But how do we achieve such an

effect? The answer to this is, we could do this by considering a mini-batch.

Since we train neural networks using mini-batch SGD, we could try to see if we could

compute the mean and variance of any layers or outputs in a mini-batch. And then come to

subtract the mean and divide by the variance to normalize them in some way. To do this, this

689

method known as batch normalization, which was proposed in 2015 introduces 2 additional

parameters: gamma and beta. The superscript k denotes the specific layer in which you

introduce these parameters because you have to do layerwise. andγ = 𝑉𝑎𝑟(𝑥(𝑘))

.β = 𝐸[𝑥(𝑘)]

690

(Refer Slide Time: 16:59)

Let us look at how this batch normalization works. Batch normalization is often introduced as

a layer itself that succeeds one of the layers, one of the existing layers of a neural network.

So, let us consider this. We assume that after a certain layer you have certain output values

that you get. Let the mean of all of them across the mini-batch that you are propagating in a

certain SGD iteration, let that be .µ
𝐵

Similarly, you can compute the mini-batch variance across those values that you are

considering, across that layer that you are considering to be . Now, if we normalize yourσ
𝐵

2

.𝑥
𝑖

^
= (𝑥

𝑖
− µ

𝐵
)/(σ

𝐵
2 + ϵ)

691

What we do is to say that the output of this batch normalization layer, , where𝑦
𝑖

= γ𝑥
𝑖

^
+ β γ

and are learned.β

How does this help? Once you learn and , in a sense the output of that layer isγ β

renormalized. The mean, the new so-called mean would be and would be the standardβ γ

deviation of this new distribution. And by learning and , you are asking the neuralγ β

network, normalize each layer the way you want to normalize it. You do not need to do

standard normalization. That means 0 and unit variance. Choose the mean, choose the

variance that helps you perform the best and let the neural network learn and .γ β

The Batch Norm layer is generally inserted before you apply your non-linearity. So, you have

a layer which receives inputs from the previous layer, you do batch normalization, and then

apply your non-linearity. This is typically the way it is implemented. And this has given good

empirical results. Batch normalization allows higher learning rates. Why?

One of the reasons to keep your learning rates low was to avoid your weights to explode in a

neural network or on the other side if it becomes too low. But we are talking about higher

learning rates here. By ensuring that your activations are controlled because of the batch

normalization, the learning rates can now be increased because this learning the and willγ β

take care of what the neural network needs to not let it explode.

It reduces a strong dependence on initialization. Because now, irrespective of the

initialization, the weights can be controlled using the and in every successive iteration ofγ β

SGD. It also acts as a form of regularization. Because whatever weights come or whatever

activations come out of a layer, you are going to multiply by a and , which has a sense ofγ β

adding noise to those activations which becomes the regularizer.

An important difference, an important concern of batch normalization is that at test time, your

data may not be forward propagated in batches. You may want to predict only on a single

point. Then you may not have a mean and variance for a mini-batch at test time. How do you

handle it? You choose and based on your training data. Maybe the last few trainingµ
𝐵

σ
𝐵

2

batches or you take a running average of and over a set of training iterations, and youµ
𝐵

σ
𝐵

2

use those values at testing.

692

(Refer Slide Time: 21:15)

That concludes our discussion of batch normalization. Your recommended readings for this

lecture are chapter 8, section 8.7 of the deep learning book. And a very nice article called

Efficient Backprop by Yann LeCun. It is a very old article. Some of it is not relevant to deep

neural networks but some of it has very nice insights on efficient training of neural networks.

I would recommend you to read it.

Your exercises are visit this link here which has some nice animations of how a neural

network behaves with different initializations. It is a simple “click and try” exercise for you.

The second exercise is to prove batch normalization is fully differentiable. Can you try

finding out how you would compute gradients for the Batch Norm layer? It should be by

looking at it you can make all that it is simply a multiplicative factor and an additive factor

which should be differentiable. But how would you get and . Please work it out.∂𝐿/∂γ ∂𝐿/∂β

And as we already left behind, derive Kaiming He’s initialization.

693

(Refer Slide Time: 22:32)

Here are some references.

694

