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That was one regularization approach by imposing penalty of the norm or norm of the          L2    L1     

weights which is very popular. But even then you have to specify a coefficient for the weight                L2   

decay or weight decay or any other weight deca that you choose. Another approach is known  L1                

as Early stopping, which is perhaps the crudest simplest approach that you can use. The simple                

idea here is keep monitoring the cost function. 

And do not let it become too low, consistently stop attempting earlier iteration. Rather, do not let                 

your model over fit your training data. If it goes to 0 error, you are probably 0 training error, you                    

are probably over fitting your data. And you do not want that to happen. So, you want to stop a                    

little earlier. So here is a visual example. So if your y axis is accuracy, and x axis is the Epoch                     

core training. 

So, It is possible that your red curve here tells you that as you keep training, your training set,                   

accuracy keeps increasing, or your training set loss keeps decreasing. They are both             

complementary. But It is possible that if you held aside some portion of your training data, called                 
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it is a test set or a validation set and did not use it for your training, as in when you complete the                       

Epoch, you can take that model and test it on that holdout set and see how it is performing. 

As long as the performance from that holdout set or test set keeps improving, you keep training.                 

When it starts dipping on that holdout set, it is probably time to stop. Even if you start going                   

lower in training error. Even if your training set, performance keeps increasing. That time when               

you start when you when your performance on your holdout set, which you do not use for                 

training decreases, it is time to stop training your Neural Network. This is the idea of early                 

stopping. 

(Refer Slide Time: 02:13) 

 

This reminds us of the question that we asked last lecture, which we said we will cover some                  

time here is when do you stop, we said we will talk about the stopping condition or the                  

convergence criteria of these algorithms that we saw last lecture. So, when do you really stop,                

there are a few heuristics that you can use when working with them. The problem here is that                  

when you work with computers, which are numerically approximated at some precision, it may              

not be possible to get an absolute 0 value for the grading. 

You may have to ensure that you are Gradient say or something like that, and say I          0 , 101 −5  −6         

am going to stop here. But even that can lead to numerical errors. So, we are going to talk about                    

a few heuristics, which we can use to decide when to stop training. One thing you can do is to                    
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train n epochs, lower the learning rate, train m epochs epochs, so on and so forth. This is an                   

approach. 

(Refer Slide Time: 03:18) 

 

But it is not a very advisable approach, because you do not know what n and m should be for all                     

kinds of Neural Network models. Instead, what we can use are a couple of criteria, we can use a                   

criteria known as the Error Change condition. In the Error Change condition, we keep checking               

for the error, and how it has been dropping over a window of epochs could be 10 epochs, 5                   

epochs, 3 epochs whatever. 

And if the error is not dropping significantly across those epochs, or many batch iterations, you                

say it is time to stop your training. After you stopped, you can always train for a fixed number of                    

iterations, you decide to stop because you still have not got to a critical point, which means your                  

gradient is not absolute 0, you as well may just train a little bit more just to ensure that you                    

probably get closer to the critical point. That is one heuristic you can use. 

Another heuristic is a Weight Change criteria, you can compare the weights at an iteration on a                 

epoch, that was at t-10 and at t which is your current iteration. And you can test if the maximum                    

weight change is bounded by a value. Why do we say maximum weight change? If we simply                 

take norm of weights in the earlier iteration and norm of weights in this iteration, that L2          L2         

could be less than drop. 
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Because there were some weights that were not changing, but some weights were changing by a                

large amount. And you may have decided that the norm of the weight change is fairly small,         L2          

but by focusing on pairwise differences between weights in t-10. And now, and ensuring that the                

maximum pairwise difference between the weight at that epoch and this epoch is less than a                

constant is a good heuristic to stop training to. 

(Refer Slide Time: 05:13) 

 

So in this case, it may be better not to base it on the length of the overall weight change vector,                     

as I said, you could probably even this row could also be a percentage of your weight, you could                   

also say that instead of row being a number saying less than 10th of - 3, you can say that it must                       

be less than 10%, your overall norm of the weight or something like that. Those are ways in                  

which or any other value for that matter. Those are ways in which you can use this as a stopping                    

criterion for your Neural Network. 
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Another regularization method is Dataset Augmentation, where, in addition to the data that is              

given to you in your training data, you also add more data through transformations on your                

original data, which, to some extent, exposes your Neural Network to data beyond the training               

data, and hence gives you better generalization performance. So, let us see how we go about this.                 

So, let us see how you really augment your data in other ways. 

You exploit the fact that certain transformations to the image do not change the label of the                 

image. For example, if you had a cat in an image, and you want to call it a cat, whether the cat                      

was small in size, large in size, rotated by 30 degrees rotated the other way, by 60 degrees, the                   

cat is a cat. So why do not we take the original image, make these transformations, and then train                   

the model with all of these transformations to hope that it will probably do well on some data                  

that it has not seen so far. 

Because that cat that comes tomorrow, and a new image could be rotated. So, there are different                 

things that you can do, you can do Data Jittering, which means you can blur the image, you can                   

distort the image a little bit to handle nice variations in your test data, you could rotate the image,                   

as we just said, you could impose color changes in the image. How do you do color changes?                  

Remember that every image has an R channel, G channel and B channel, it is common to have 3                   

channels as input to the Neural Network. 
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People generally do not use other color spaces, although you can. You can take the intensities in                 

each of these channels and mix them up, you can take the intensities in the green channel and                  

call it the direct channel, you can take the intensities in the blue channel and call it the green                   

channel. And you can get several permutations combinations out of these, you could also inject               

noise in your data, you could inject some Gaussian noise across your image, you could also                

mirror your image. In cases where the mirroring does not change the label. 

Whether you have if there are objects, I mean, if you see a cat one way or the other, It is still a                       

cat. And you may still want your model to not change its decision based on how the cat looked                   

this way or the other way. This helps increase data Firstly, because Neural Networks need large                

amounts of data for training. And in addition to increasing data, it also acts as a regularizer                 

because it is exposing the model to newer kinds of data beyond the training data alone. 

(Refer Slide Time: 08:39) 

 

Here are some examples of how these augmentations look. So, here is an Original photo, here is                 

Red color casting, just by increasing the intensity of the red channel, Green color casting,               

similarly Blue color casting, RGB all changed as we said just keep flipping color channels,               

Vignette, more Vignette, Blue casting plus Vignette. 
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Here are some more examples, Left rotation and crop, see you rotated by left so let us see the                   

original image again. 

(Refer Slide Time: 09:13) 

 

So, you can see the difference you can see. So, you can see that this was the original photo                   

observed on the top left on the next slide. 
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You can see that there was a left rotation and then what went outside the frame was cropped                  

rather what went outside the size of Original image was cropped similarly Right rotation and               

crop, Pincushion distortion, Barrel distortion, Horizontal stretch, more Horizontal stretch,          

Vertical stretch, more Vertical stretch so on and so forth. Horizontal stretch is this way. Vertical                

stretch is this way. It is a good exercise for you to see which image processing operation would                  

do all of these. 

Remember, these were all byproducts of image processing operations that we talked about in the               

very beginning of this course, you can now try to see how you construct these distortions with                 

simple image processing operations. If you need help, you can also look at this paper called Deep                 

image scaling up recognition to understand what kind of augmentations and how you can arrive               

with them. 
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More newer methods in the last one or two years have done data augmentation in a very different                  

manner. A very popular method today is called Mixup. What Mixup does for doing data set                

augmentation is create virtual training examples by interpolating data. If you have two data              

points xi and xj could be two images, xi and xj, you construct a new sample x tilde, which is a                     

convex combination between xi and xj. 

So, the new image lies on a line drawn between xi and xj. And for the label to xi may have a                      

label yi, xj may have a label yj, remember that when you use it for training the Neural Network.                   

yi let us say you had three class labels, yi would maybe be [1 0 0]. This could mean a dog could                      

mean a cat. And this could mean a horse. So, you represent yi for a dog to be [1 0 0] and yj for a                         

cat to be [0 1 0]. 

So, now you could take combinations of these, you can say . And that will give           y 1 )yλ i + ( − λ i      

you a new combination, the values need not be 1 and 0, it can lie between 1 and 0. And that is                      

the purpose here. tilde will give, for if you mix up the image in a particular way, you also mix   ỹ                   

up the label in the same way, that is what Mixup does and Mixup for the last couple of years has                     

led to several variants like Manifold Mixup, AugMix, CutMix, so on and so forth. 

This is one interesting and effective way of performing Dataset augmentation today. Another             

popular method today is known as Cut Out, where you randomly mask out square regions of                
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input, you can see these gray boxes here. So, these are all boxes of gray, which have masked out                   

certain regions during training. That is the reason it is called cut out, we just cut out certain                  

portions and give the rest of the image you fill in black in that location and fill in the rest of the                      

image and fill in the image with that black portion. And let the Neural Network train on that. 

Even these kinds of augmentations have shown fairly good performance, fairly good            

generalization performance when you train Neural Networks. More recent variant of a cutout is              

also called CutMix. And there are many other follow up methods, but these are the broad, broad                 

ones, which you perhaps should know. 

(Refer Slide Time: 13:13) 

 

Another approach as we said for regularization is Injection of Noise. So, this noise can be                

injected at a data level and can also be indicated at a label level or a gradient level as we will see.                      

In data noise, you add noise to the data while training. And you can mathematically show that                 

adding Gaussian noise to the input is equivalent into doing weight decay, when the loss          L2       

function is the sum of squared error. 

That is an interesting connection. We are going to leave it to us to do homework. So, this is the                    

paper that actually showed it way back in the 90s. You can look at that paper if you want to, if                     

you want to try to understand how to do it, but we will review it next, next lecture please try on                     

your own to see if you can prove this. 
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So, just adding noise to your input data. As I just said, adding Gaussian noise to input is                  

equivalent doing weight decay for a particular kind of a loss function. But which means  L2               

adding noise is also a regularizer and also becomes a certain kind of Augmentation. We can also                 

do Label noise and Gradient noise. 

(Refer Slide Time: 14:31) 

 

And let us see how that is done. In case of label noise, you disturb each training sample with                   

some probability alpha. And for each disturb sample, you label you the, you draw the label                
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randomly from a uniform distribution, regardless of the true label. So, here is a more this is the                  

algorithm drawn from this paper known as discrete disturbed label, just published in 2016. You               

generated Disturbed Label so for a particular training sample, which picked up with probability              

alpha, you instead of taking its correct label, you uniformly sample from any of the labels that                 

you have in your set of categories when you do a classification problem. This just adds some                 

label noise. This is clearly an incorrect label. But this, you hope will keep the Neural Network                 

from over fitting to training data, and hence, generalize with. This is an idea, but it is not used                   

too often, in practice. 

(Refer Slide Time: 15:34) 

 

An idea that is used in practice is known as Gradient noise. In this case, you add noise to the                    

gradient, instead of the input or the output, you add noise to the gradient while training. And how                  

do you do that, you take the gradient of any weight in the Neural Network when you are doing                   

back propagation, and to that gradient, before you update your parameter add some noise.              

Remember, you would have formerly propagated, got an output, got an error, got a gradient. 

And then you would ideally use that gradient to back propagate, before you back propagate and                

update your weights. You add noise, what noise Gaussian noise with mean 0 and variance .               σt
2

  

And this work also suggests that you anneal the Gaussian noise by decaying its variance over the                 

iterations. So, the  can be written as , where  are user specified constants.σt
2

 
η

(1+t)γ , γη     
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You have to specify them to use this method. But what it is doing now is, as you keep training                    

over time, you are trying to reduce the variance of this Gaussian, which means you are trying to                  

keep the nice, lesser and lesser and less as you go through training. This does seem to show                  

significant improvement in performance in certain applications? 

(Refer Slide Time: 17:03) 

 

A gentle approach to achieve regularization in Machine Learning is Ensemble methods. In             

ensemble methods, you train several different models separately, and then have all models vote              

on the output. Why is this a regularizer? Because if one of those models over fit your training                  

data, you still hope that the other models would not have over fit. And they would perhaps help                  

you do well on test data in the generalization setting. 

A standard example of a strategy for assembling is model averaging. So, you have k different                

models, and you get all their outputs an average the outputs and the hope is that not all of them                    

would over fit your training. So, these different models that you choose for assembling could be                

different models that you get from different hyper parameters, you could use different learning              

rates or different number of layers in a Neural Network. 

It could be different features in terms of input that you give to these models, or it could be                   

different samples of your training data. So, if you have 10,000 data points in your training data                 
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you can take 1000 of them, and then train one model, take another 1000 train another model, we                  

will see that in a slide from now. 

(Refer Slide Time: 18:29) 

 

So, here is that example, bagging with stats, which stands for bootstrap aggregating is an               

ensemble method in traditional Machine Learning, which does one ensemble using the training             

data set. How does it do this, if you had, say, k logistic regression models or any machine                  

learning models for that matter, we just take an example of logistic regression here. 

Given a data set, a training data set, you construct multiple training sets, by sampling with                

replacement. So, you construct k different data sets from your original data set by sampling with                

replacement. So, you take if you had a data set with 10,000 data points, you take thousand of                  

them, train a model, replace them and take another thousand so you just keep you can train as                  

many models as you would like by when you start sampling with replacement. And each such                

model here is trained with the corresponding training data set. So, you can get k such models                 

now using k samples of your training data. 
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Now, let us try to analyze why this can be useful. Suppose each model makes an error epsilon i                   

on a test sample. Let us make this assumption. Let us to be able to mathematically analyze this.                  

Let us assume that epsilon i is drawn from a 0 mean multivariate normal distribution with                

variance of epsilon I square to be given us V, and covariance epsilon i, epsilon j that is the                   

variance between these models to be given by quantity called C. 

The error made by the average prediction of, of these models is 1 by k summation over i epsilon                   

i. That is the average error made by all models for the given training example test example. Let                  

us now look at the expected squared error of this ensemble predictor. The mean square error of                 

the ensemble is going to be the expectation over 1 by k summation epsilon i square. That is what                   

you have here. 

Now, that can be expanded since 1 by k is constant, 1 by k square, because 1 by k was inside the                      

brackets, it comes out as 1 by k square. And the term here can be expanded this way, a simple                    

way to understand why that is correct is remember, a plus b, the whole square is a square plus b                    

squared plus ab plus ba. So that is exactly the way we are writing it. So, we are writing out a                     

summation over i epsilon i whole square, which is which is equivalent to saying something like                

epsilon 1 plus epsilon 2 plus so on and so forth, till epsilon k whole square which is like a plus b                      

whole square is a square plus b squared plus ab plus ba. 
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So, in this case, we are writing epsilon i epsilon j, when i and j are the same, those will give you                      

the square term, and epsilon i epsilon j, when i and j are not equal, so that will be the ab ba terms                       

you can. Now work out for higher dimensions, but that is how the expansion comes. So, you then                  

have since j is equal to i, this can be summarized as summation over i epsilon i square. And the                    

rest, the other term remains the same. 

Now, by our definition is here. And the linearity of expectation, over expectation can be of the                 

term can be because of the linearity of it, you can say expectation of a plus b is expectation of a                     

plus expectation of b. Using that you can write this expectation of sum of i epsilon i square,                  

which would be sum of i epsilon expectation epsilon i square so let me write that out to make it                    

clear. 

So, this would be expectation of summation epsilon i square plus will have an expectation of the                 

other term. Now, but this term is can also be written as summation over i expectation, epsilon i                  

square, once again, because of the linearity of expectation, you can write this way. So, when you                 

do that, you would have an expectation of epsilon I square, which is V, and you will take a                   

summation k times over V so you will have kV. 

Similarly, in this case, you would have k into k minus 1 C, why is that the case you would have i                      

going from 1 to k, j not equal to i. So, you will get the k minus 1 values in the second                      

submission. So, k into k minus one into epsilon i epsilon j, the expectation is given by C. So you                    

will have that to be C. Now cancelling out case, you will be left with 1 by kV plus k minus 1 k                       

by C. 
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Why, what are we going to do with this? Let us again write that out. So, we are saying that the                     

mean squared error of this ensemble is given by . What does this tell us?        SE V CM =  k
1 + k

k−1       

This does tell us something interesting. It tells us that if the errors of the model are perfectly                  

correlated, which means V and C are the same. 

(Refer Slide Time: 24:20) 

 

So, remember, in this case, they are perfectly correlated, which means all of them are exactly                

correlated the same way. 
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So then V is equal to C, then when you substitute V is equal to C here, so you replace this with                      

V, you will end up with V itself to be the answer. Rather, bagging really does not help. 

(Refer Slide Time: 24:46) 

 

Because we are saying now that V is the variance of any one model. And it is also the variance                    

of between the models. 
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And our ensemble also has the same variance from the mean squared error. So, it does not really                  

help much, when all the errors of the model are all exactly the same, they are all correlated in                   

exactly the same way. 

(Refer Slide Time: 25:03) 

 

However, if the errors of the model are independent or uncorrelated, especially if C is equal to 0                  

number C was the correlation between epsilon i and epsilon j. So, if two different models errors                 

are uncorrelated, and C will be 0, and your mean squared error will be 1 by k times V. So, which                     
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means the ensemble will have significantly lesser variance, the MSE of the ensemble will have               

significantly lesser variance. Another way of summarizing this discussion is that the ensemble             

will perform at least as well as its individual members. 

(Refer Slide Time: 25:44) 

 

Now, why did we talk about ensembles? We want to now see, how do you bring that idea of                   

ensembles to regularize a Neural Network that an ensemble of Neural Networks for that, for that                

matter. So, one major issue before we design ensembling for Neural Networks, a major issue that                

occurs when you learn large Neural Networks is what is known as co-adaptation. Co-adaptation              

is, as it should remind you of what we talked about as Hebbian learning at the start of this week,                    

that as Network is trained iteratively powerful connections are learned more and more while              

weaker ones are ignored. 

You could ask me what is wrong, that is what Hebbian learning does. Hebbian learning is written                 

this way by a person called Donald Hebb. So Hebbian learning seems to say the same thing. It is                   

all right in general. But when the same connections get to learn more and more and other weaker                  

connections are ignored, you may have to be concerned that your model may be over fitting to                 

your training data. 

Because you do want to ensure that your models, as we said earlier, It is okay if you make a few                     

mistakes on your training data, but you want to do well on your test set. So, It is possible that                    
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after many iterations, only a fraction of node connections actually participate in generating the              

output, and just increasing your Neural Network size is not really going to help because the                

situation will continue to proliferate even then. 

(Refer Slide Time: 27:28) 

 

So, what can we do here? We try to use a method called Dropout, which is a regularization                  

method. What does dropout do in the training phase for each hidden layer, for each training                

sample, you ignore a random fraction of the nodes. 

(Refer Slide Time: 27:49) 
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And in the test phase, you use all the activations, but reduce them by a factor of p. p was the                     

probability with which you pick nodes. And the test phase, you multiply all the activations by p.                 

p could be 0.5 for that matter. So when, when p is 0.5, in every layer, you drop 50 percent of the                      

nodes in each mini batch iteration, when you train a Neural Network using SGD. So, you do that                  

for each mini batch iteration, you probably do thousand iterations. 

And each iteration, your Neural Network could be slightly changing, because you are randomly              

dropping of nodes in each layer. So, at the end after training, what is the model that you have to                    

use for testing? You take the old original full model, but you multiply the activations that you get                  

from every layer by 0.5, in this case. Why do you need to do that, because each node could be                    

participated 50 percent of the time, that is how it was sampled. So, you probably should give                 

only 50 percent weightage, to its activation. 

(Refer Slide Time: 28:58) 

 

So, here is the illustration of how Dropout works. This was proposed in 2014. So, you have a                  

standard Neural Network. In this case, this is the input layer. And here is the output layer. So,                  

you see here that when you any apply Dropout in each layer, there are certain neurons that you                  

simply do not consider for that mini batch iteration when you forward propagate. You only               

consider the other weights. It is almost as if those weights were 0 or do not exist, you could also                    

do dropout in the input layer. So certain input features are just not considered at all in that                  

iteration. Why do we do this? 
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Let us examine this a bit more. And we will also give you an intuition of how this how this can                     

be canceled. Remember, we said that ensemble methods are good regularizes because they can              

minimize the variance of a model and hence do well on future test data. Ensemble is generally                 

more robust than a single model. So, we want to see how to do it with a Neural Network. And if                     

a Neural Network has H hidden units, each of which can be dropped, you can now have                 2H  

possible models. That is the total number of possible models that you can have the Neural                

Network to create an ensemble. 
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So, how do we go about creating such an ensemble, you probably do not want to train                 2H  

models, and then ensemble them by voting or any other means. So, what we do now is impose                  

one small constraint, we say that, for a particular hidden unit H, there are models, which              2H−1    

can vary when that hidden unit is fixed. Because there are H-1, so models. Apart from this             2H−1      

node can be changed when this unit is fixed. We are saying now that across all of those                  2H−1  

models, this unit H must have the same weight, this does not change, It is weight is fixed, and                   

only the other weights can change. This is the trick that we are going to use. 
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And how does that actually work? It happens that if you do this, if you drop out with a                   

probability of a particular probability p of 0.5, during training in every mini batch iteration, test                

time, simply multiplying your activations by half, or p for that matter, is equivalent to the                

geometric mean of all your models. We are going to prove this. But before we prove, let us     2H               

try to understand intuitively why this could be useful as a regularizer. 

(Refer Slide Time: 32:02) 
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An intuitive example is let us assume that there was a leader of an organization who had 1000                  

employees. Now each of these neurons here are like employees of an organization. And the CEO                

puts together these employees in certain configurations to achieve a certain task. Now, the way a                

Neural Network learns to perform a task is not through knowledge, is by repetitively doing the                

same thing again, and again and again.  

And it is effectively trial and error, where you keep changing the weights and effectively get                

there get to performing well on your task. So, if an organization had to run this way, what could                   

happen is, over time, certain people in the organizations gather certain specializations and they              

keep getting better and better at that, while maybe others who are not exposed to the task did not                   

do so well, in that kind of task. 

This is what we mentioned as co-adaptation. And this could be dangerous, because after              

finishing a particular task, if the CEO had to take up a new project, and certain employees left,                  

then the CEO would be left with certain people who may not really know certain tasks well. So,                  

what does the CEO do? The CEO simply takes an interesting decision of asking employees to                

randomly show up every week, only 50 percent of the employees show up every week. 

And they have to do all the tasks between them, even the tasks that the other 50 percent was                   

doing. How does this help? Now each employee is even learning other tasks, which they may not                 

have specialized on. And this builds a robust organization that can handle newer tasks in the                

future. This should give you the intuition of how Dropout works. Now let us see mathematically                

about how dropout ensembles. 
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So, let us consider a single example. Let us consider a logistic sigmoidal function on an input x.                  

So, the output is equal to , which for the moment, let us define it as something like this, let      (x)σ               

us call it  where c >= 0. So, this is a valid logistic sigmoidal function.1
1+ce−λx  

(Refer Slide Time: 34:30) 

 

Let us assume now that there are possible sub networks, which are indexed by k.2n  
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k is the index we could use for covering all of those to power m sub Networks. Let us define the                     

geometric mean of the outputs from all of these sub networks as G. This is your geometric mean                  

formula for all those k models. Remember, k is indexing possible sub networks for all          2n       2n  

possible sub network models. G is the geometric mean of the outputs. 

(Refer Slide Time: 35:03) 

 

Similarly, you could also get the geometric mean of the complimentary output instead of ok. You                

can also take 1 minus, ok. So, if you have a sigmoid, it is going to give you a value between 0                      
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and 1. So, if you get this is typically used for binary classification setting, where if your output is                   

0.6, you are telling that this is probability with a probability of 0.6, you are saying it is class 1.                    

But that also means the probability of class 2 is 0.4. That is the information that we are using                   

here to get the complimentary outputs geometric mean. 

(Refer Slide Time: 35:41) 

 

The normalized geometric mean now is given by G/(G+G`) prime, where G and G` are as                

defined here, this can be written as this will turn out to be 1/(1+G`/G), and substituting for G`                  

and G, which are given here and substituting for o, you get this term here. So, G` by G is (1- )/                    Ok

. and you have the product that goes outside. And instead of , you replace it as andOk             Ok      (x)σ   

instead of 1-  you replace it by 1- .Ok (x)σ  

That is how you get the first term there. Now, (1- )/ is equal to c e bar minus lambda x.          (x)σ (x)σ           

we are going to, let us leave that as an exercise for you to work out. But that comes by simple                     

substitution of terms here using here to substitute those terms, you will find that this is the     (x)σ              

answer. So, that is what we are replacing here. Now, this product can be converted, converted to                 

a summation inside the exponential term. Remember, . Using that idea, this product      .e   ea b = ea+b       

can be converted to a summation inside the e power term. And that is how you go from here to                    

here. 
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(Refer Slide Time: 35:14) 

 

And now, let us define this, this if you look at this carefully, this looks very similar to the                   

original definition of just the input x is different. So, this is given by , that expectation   σ             (E(x))  σ    

over x is this term inside. But what is this telling us? You could now summarize this as the                   

normalized geometric mean of can be written as . So, why is this important? We    (x)σ      (E(x))  σ        

are saying now that if you know sample these models in subway, probably you consider only         2n         

half of them at a particular point in time, simply multiplying the values of x by half will give you                    

the same value. 

(Refer Slide Time: 38:15) 
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So, we say that the NGM or the normalized geometric mean is equivalent to the output of the                  

overall Network with weights divided by 2. Rather, this tells us that doing dropout by dropping                

nodes in each layer with a certain probability becomes equivalent to taking the overall Network               

and multiplying the activations by the same probability at test time. And this makes this               

ensemble easy to work in each mini batch iteration, you drop a few neurons. And then at the end                   

of training, you really are not taking different models and averaging, you are using just one       2n           

model, you are multiplying each layers outputs by p, and you are done with your ensemble                

result. That is why it is a powerful tool. 

(Refer Slide Time: 39:08) 
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With that, your homework for this lecture is Chapter 7, Sections as given here. And if you would                  

like a tutorial on Dropout, to understand it better, please look at this link. And as we already said                   

earlier, your exercise for this lecture is show that adding Gaussian noise with 0 mean to the input                  

is equivalent to  weight decay. When your loss function is mean squared errors. Give it a try.L2  
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Here are references. 
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