
Deep Learning for Computer Vision
Professor Vineeth N Balasubramanian

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Lecture 27
Regularization in Neural Networks

(Refer Slide Time: 00:14)

In this lecture, we continue and talk about Regularization in Neural Networks, which is an

important topic to obtain good test set performance with these models.

601

(Refer Slide Time: 00:33)

Before we start, let us review some of the questions we left behind in the previous lecture. The

first question was, how to know if you are in a local minimum, or any other critical point on the

loss surface, when you train Neural Networks. All the algorithms that we spoke about so far,

backpropagation Gradient Descent, all the variants of Gradient Descent always had this clause in

its while loop put follow, which said until convergence or until stopping criterion is achieved.

What should be the stopping criterion? Hope you had a chance to think about it. We are not

going to talk about the answer now. But we are going to talk about it over the course of this

lecture a little later in this lecture. The second question that we left behind was why is training

deep Neural Networks using Gradient Descent and Mean Squared error as cost function, a non

convex optimization problem?

I think we should probably spend some time here. Hope you tried to answer this question. And

you have a good understanding of convex and non convex functions, but let us very briefly

review that before answering this question. So, remember, this is a simple example of a convex

function and a convex function says that if your x axis was here, and here was your axis, a𝑓(𝑥)

convex function says the definition says that if you have a point , and if you have a point ,𝑥
1

𝑥
2

this is and this is .𝑓(𝑥
1
) 𝑓(𝑥

2
)

602

Then all that we say is that this line connecting and will always lie above the curve.𝑓(𝑥
1
) 𝑓(𝑥

2
)

So, mathematically speaking, 𝑓(λ𝑥
1

+ (1 − λ)𝑥
2
) <= λ𝑓(𝑥

1
) + (1 − λ)𝑓(𝑥

2
)

That is the definition of a convex function. So, clearly, a non-convex function is one which is not

convex. So, a non-convex function as an example could be a surface something like this. So, you

can clearly see that you will find lines such as these for instance, where the curve does not

necessarily lie below the line at all times. Now, let us come back to our question as to why is

training deep Neural networks using Gradient Descent and Mean Squared Error as cost function,

a non convex optimization problem?

One thing that you have to first understand here before answering this question is the nature of

the cost function Mean Squared error itself. Remember, Mean Squared Error you all know is

given by let us just take let us use the same, let us assume that y was the label and say wasℎ(𝑥)

the output of the Neural Network, Mean Squared Error tries to minimize the square of these

terms and of course, you take a mean, half can be added for simplicity, you of course, take a

mean of these quantities, quantities, that is Mean Squared Error.

Now one look at it, you can say that Mean Squared Error will be a Convex function, it is is a

quadratic function, which means it could be very similar to what we drew here and it could turn

out to be a convex function. Now, in this context, let us ask this question, then why is training

Deep Neural Networks using Gradient Descent and Mean Squared Error, a non convex

optimization problem.

603

(Refer Slide Time: 05:27)

The reason is you could have nonlinear activation functions in your Neural Network that can

make the problem non convex with respect to the weights, okay, then your counter question is

okay, let us assume now a linear deep neural network, where you do not use any nonlinear

activation function at all, no sigmoid, no tanh, no relu so on and so forth, you only use linear

activation functions, which is as good as saying no, no additional activation function other than

the Neural Network itself.

Now, would training a Neural Network using Gradient Descent and Mean Squared Error be a

convex optimization problem or non convex optimization problem? From the answer I said

earlier, it should be a convex optimization problem, because the cost function is Mean Squared

Error. And I just said that nonlinear activation functions are what could make the problem non

convex. So, which means, if you have linear activations, it should be convex.

604

(Refer Slide Time: 06:35)

But the answer is no, it is still not convex. Or other Yes, for non convexity? A reason for that is

the phenomenon of Weights Symmetry. There are many other symmetries in a Neural Network.

But Weights Symmetry is at least one reason. What does this mean? What does Weight

Symmetry mean? Remember that, when we talk about an error surface, we have to give an index

to each weight in the Neural Network, that inner surface has to have a certain dimensionality to

it.

So, the first dimension would be the first weight in the first layer connecting to the first weight in

the second layer. The second dimension would be that first weight in the first layer, connecting to

the second weight, the second layer, so on and so forth. That is how you index all your weights,

and you build your error surface. Now, let us take any two layers in a Neural Network.

And let us connect them using some set of weights. It is obviously fully connected. But these are

some set of weights. Now, in a trained Neural Network, what I could do now is take this neuron

here, and this neuron, neuron, in the second layer, and simply swap them, and also swap all the

weights coming into those neurons. Once again, you have a trained model, you are no longer

learning it, you are fully trained.

But what I am going to do now is take a couple of these neurons and simply swap them and also

swap all the weights coming into these neurons, will the output change? No, because the weights

605

are the same, it simply changed the ordering of the weights in one of the layers. But on the error

surface, this corresponds to a very different position. Let us take an example of three dimensions.

Let us say we had x dimension, y dimension and z dimension. And let us say we had values

which are 2, 1 and 0 in these three dimensions. What we have d1 now is swapped, and Y. That is

what we did for some of the neurons and hence some of the weights.

(0, 1, 2), (2, 1, 0) and (2, 0, 1) are different points in three dimensional space. Similarly, for a

Neural Network, if you swap neurons, after you swap these points are different weight

configurations, because of the index to construct the error surface. But because of the symmetry

of the Neural Network, they would give exactly the same output, exactly the same error.

Which means these two weight configurations, as I said, we take a train model, which means it is

already at a critical point. Let us see a minimum. We are not saying that here is another weight

configuration, which I am giving you which also will give you the same minimum which is

going to be far away because (2, 1, 0) and (2, 0, 1) are not necessarily close by in the grid, there

are many points in between (2, 1, 0) and (2, 0, 1), if you plotted them in three dimensional space.

Which means there is another point further away, which also has the same minimum value of

error and this is just one swap of a neuron. For a Neural Network, assuming you have a million

neurons, you could swap a million times. So, which means there are going to be many similar

weight configurations, which all have the same error, which clearly tells us that the error surface

must be non-convex. It is something like this. All these points have the same error, which can

happen only if your error surface is non convex, because there are many other points in between

those minimums.

606

(Refer Slide Time: 11:07)

Let us move on to Regularization, which is the focus of this lecture. Let us first start with an

Intuitive understanding of Regularization. Most of you may have perhaps covered this in an

introductory Machine Learning course, but let us briefly review this, and then talk about how

Regularization is done in deep Neural Networks or Neural Networks.

Let us take a very simple example. Let us take these sets of values 1 2 3, we say that it satisfies

some rule 4 5 6, it satisfies the same rule 7 8 9 also satisfies the same rule. 9 2 31 does not satisfy

the rule. The question for you now is what is the rule? If you observe carefully, this is very

similar to the Machine Learning setting that we have. Imagine now that these are all data points.

And we are given in training data that certain data points have a certain label and certain other

data points have another label. And our job is to find out what is the model that tells us whether

something satisfies plus 1 or plus 2. Coming back to this example, what could be the rule here,

which satisfies these first three, and does not satisfy the set of values. A simple thought process

should tell you that there are many possibilities.

You could say three consecutive single digits. You could say three consecutive integers, you

could say three numbers in ascending order, three numbers whose sum is less than 25, three

numbers less than 10. It should have 1 4 or 7 in the first column, or for all you know, you can

607

just say, say Yes to the first three sequences, and No to all others, which is also correct in this

particular case.

Clearly, the last two cases would not have been the answers that you came up with intuitively.

Why is that so? The reason is, even as humans, we are always looking for a rule that can

generalize well if I gave you newer data points. I never even mentioned to you at this time that I

am going to give you newer data points. But still, it is human tendency to always come up with

rules that can generalize well to data that we may see tomorrow.

And this is exactly what we want to do with Neural Networks, or Machine Learning in general.

And we call this process Regularization, where we use methods and Machine Learning to

improve generalization performance and avoid overfitting to training data. So, we do not want to

necessarily come up with a rule that fits only the training data.

But we want to come up with a rule that can do well, maybe on data that we will see tomorrow,

which is what we mean by test set performance or generalization performance. Sometimes even

at the cost of not getting hundred percent accuracy on your training data set. Let us see now how

we can do this with Neural Networks.

(Refer Slide Time: 14:36)

We need one of the concepts to be able to follow some of the discussions in this lecture, which is

the concept of norms. Hopefully you are all aware of this, but let us quickly review them and𝐿
𝑝

608

move forward. Remember, norm is formally written as . Let us assume that x is a vector𝐿
𝑝

𝐿
𝑝
(𝑥‾)

of the d dimensions . is given by or also denoted by is given by[𝑥
1
, 𝑥

2
, ···, 𝑥

𝑑
] 𝐿

𝑝
(𝑥‾) ||𝑥‾||

𝑝

.(𝑥
1

𝑝 + 𝑥
2

𝑝 + ··· 𝑥
𝑑

𝑝)
1/𝑝

You can make out that if you put p as 2 you'll get your standard Euclidean, Euclidean norm or L2

norm. Similarly, you can have norm, norm and so on and so forth till . You can actually𝐿
0

𝐿
1

𝐿
∞

have to be any number for that matter any, any, any positive number for that matter, non negative

number. So, you see here diagrammatically you can see that this is how the unit ball of each of

these norms look like.𝐿
𝑝

If you took the unit ball of norm, it looks like a rhombus, the unit ball of norm will look𝐿
1

𝐿
2

like a circle and norm will look like a square, norm given by max of a value max of the𝐿
∞

𝐿
∞

vector, max element of that, of that vector. This is important because this helps us understand

certain aspects of Regularization that we will visit. So, a couple of points to keep in mind here is

that when p is less than 2, it tends to create sparse weights. And when p is greater than 2, or

greater than or equal to 2 for that matter, it tends to create similar ways. We will see why this is

the case in some time from now.

(Refer Slide Time: 16:55)

609

The most popular Regularization method for training, not just Neural Networks, even other

Machine Learning models is known as Regularization which imposes a penalty on the𝐿
2

𝐿
2

norm of the parameters, which is the reason it is also known as weight decay, or simply𝐿
2

weight decay. In this case, the loss function that we have for a Neural Network is upended by

another term, which has the norm of the weights.𝐿
2

This loss function can be any loss function used to train your Neural Network. So far, we have

seen Mean Squared Error, so you can assume its Mean Squared Error. But in future, we will see

other loss functions that you can use to train your Neural Network. And the penalty is added𝐿
2

to any of those loss functions. So, the here denotes how much importance you want to give toα

penalizing the norm of the weights. And the by 2 here is for mathematical simplicity.𝐿
2

(Refer Slide Time: 18:08)

So, the gradient now of the total objective function will look like . This∇𝐿(𝑤)
~

= ∇𝐿(𝑤) + α𝑤

new objective function with the L2 weight decay term is equal , which was your original∇𝐿(𝑤)

loss function, plus . And you differentiate this with respect to w. 2 and 2 get cancelled, andα𝑤

you are left with . So, your Gradient Descent update rule is going to look likeα𝑤

. That is going to be your new Gradient Descent rule for your𝑤
𝑡+1

= 𝑤
𝑡

− η∇𝐿(𝑤
𝑡
) − ηα𝑤

𝑡

regularized loss function.

610

(Refer Slide Time: 19:07)

Let us do some analysis of this Regularization to understand what is really happening. Let us

first talk about it conceptually, intuitively, and then we will go over one mathematical way of

looking at what is going on in Regularization. We just said some time back that the shape of the

norm ball can help you understand what you are doing with Regularization. Let us let me add𝐿
2

one point here.

(Refer Slide Time: 19:40)

611

That you could also minimize other norms of w in this term. You could have weight decay𝐿
1

which is also a common approach which enforces sparsity in weights in the Neural Network. By

sparsity we mean many of the weights in the Neural Network will be forced to go to 0, in 𝐿
1

weight decay, we would say this is going to be with respect to norm. And remember the 𝐿
1

𝐿
1

norm of any vector is the sum of the absolute values in that vector. This is also possible.

(Refer Slide Time: 20:19)

Let us try to see what would be the effect on these different cases. Remember, in the last lecture,

we talked about contour plots. So, you have these contour plots of your error surface with respect

to the weights, piece of contour plots such as these, if you recall, which will cross sections of

your error surface something like this. This is the contour plot of your error surface, which is the

term without a regularizer.

So, when we add the regularizes, what are we doing, we are now saying you want to minimize

over the set of weights, your loss with respect to the weights, as well as some constant times you

are 2 norm of the weights or 1 norm of the weights in certain cases, 2 norm of your weight,

weight square.

This is equivalent to saying that you want to minimize your loss function such that your 2 norm

of your weights is less than a certain quantity, you can come up with some number, there is some

constancy. These formulations are equivalent to a certain degree under certain conditions. From

612

an optimization standpoint, why are we saying this? What this means now is the minimum of this

new object to function is equivalent to the minimum of this original objective function subject to

the 2 norm being lesser than some value.

If you recall, this is nothing but a norm ball of the weights. And it is not the unit normal ball

now, it is a C norm ball that a unit norm ball is when the 2 norm of the weights lies within 1 or

all the weights lie within, within a norm of 1 around the, around the center, around the origin.

Now, we just C norm ball as a measure C, which should be less than. So, which means this, the

solution here will be the intersection of let us assume that the C norm ball was something like

this.

Let us assume that that is where the origin was. Let us assume that here is the origin and the C

norm ball is somewhere here. You can see now the C norm ball intersects the error surface at

some point, that is now going to be the minimum of this new function, not the point at the center,

because that is outside the C norm ball. So, you have to find a minimum somewhere here, which

is 1, which is minimum for both the loss and lies within the C norm ball, which is what you are

trying to do.

So, when you have your norm, your norm ball is going to look like a sphere, and you intersect𝐿
2

with the error surface and you get a certain solution. However, if you had weight decay, then𝐿
1

in that particular case, your norm ball is going to be a rhombus, not a square not, not a sphere.

So, a rhombus has sharp edges, which means it is very likely that you will find minimum along

points where 1 of the axis is 0.

You can probably see this in a slightly different way to let us try to draw the error surface

elsewhere just to make a point clear. So, we want to find the intersection of the error surface and

the 1 norm ball. And the intersection will typically happen at one of these corners. And what

happens at one of these corners in norm ball, the other weight is going to be 0. And in a high𝐿
1

dimensional rhombus, there may be many weights that go to 0.

And that is why enforcing weight decay will enforce sparsity in your weights. Both are valid𝐿
1

regularizers. In one case, you are reducing the 2 norm of the weights. In the other case, you are

613

reducing 1 norm of the weights but the effect can be slightly different. Let us now also see it as

to what we are trying to do from a mathematical perspective.

614

(Refer Slide Time: 24:49)

Let us assume that we have an optimal solution for your original problem. That is called that 𝑤*

So, which means . So, was our optimal solution before Regularization, only with∇𝐿(𝑤*) = 0 𝑤*

the original loss function. Let us now consider a term , let us write a Taylor series𝑢 = 𝑤 − 𝑤*

expansion of loss function at .𝑤* + 𝑢

By Taylor series expansion this is given by , where H is the𝐿(𝑤*) + 𝑢𝑇∇𝐿(𝑤*) + 1/2(𝑢𝑇𝐻𝑢)

Hessian of the loss with respect to your weights, what is the Hessian, the matrix of all second

partial derivatives you can have matrix H is a matrix of second partial derivatives you can have

or , so on and so forth. If you had many more weights, you can have that∂2𝐿/∂𝑥2 ∂2𝐿/∂𝑥∂𝑦

many that is the size of your Hessian. The other if you had 1 million weights, the size of your

Hessian will be 1 million times 1 million. It is definitely a large matrix to compute.

615

(Refer Slide Time: 26:19)

But let us move on with this mathematical discussion. So, which means is actually w.𝐿(𝑤* + 𝑢)

So, I can say . We now know𝐿(𝑤) = 𝐿(𝑤*) + (𝑤 − 𝑤*)∇𝐿(𝑤*) + 1/2(𝑤 − 𝑤*)𝑇𝐻(𝑤 − 𝑤*)

that , because that is our assumption of what is, it is an optimal point for your∇𝐿(𝑤*) = 0 𝑤*

original loss function. Which means we are left only with the first and the third term.

.𝐿(𝑤) = 𝐿(𝑤*) + 1/2(𝑤 − 𝑤*)𝑇𝐻(𝑤 − 𝑤*)

616

(Refer Slide Time: 27:16)

Let us take its gradient now. The gradient will be given by

.∇𝐿(𝑤) = ∇𝐿(𝑤*) + 𝐻(𝑤 − 𝑤*) = 𝐻(𝑤 − 𝑤*)

(Refer Slide Time: 27:51)

(Refer Slide Time: 28:05)

617

Going back to this equation that we have on the previous slide, let us write that out.

(Refer Slide Time: 28:12)

Here, , that is what we saw earlier. So, .∇𝐿
~

(𝑤) = ∇𝐿(𝑤) + α𝑤 ∇𝐿
~

(𝑤) = 𝐻(𝑤 − 𝑤*) + α𝑤

Why all this? What do we want to do?

618

(Refer Slide Time: 28:30)

Let us now consider to be the optimal solution in the presence of regularization, which means𝑤
~

.∇𝐿
~

(𝑤) = 0

(Refer Slide Time: 28:46)

Which means , because we just showed on the previous slide that can𝐻(𝑤
~

− 𝑤*) + α𝑤
~

= 0 ∇𝐿
~

be written this way. Since that 0, this also ought to be 0.

619

(Refer Slide Time: 29:08)

Now, let us rearrange the terms a little bit. And you can write it this way. Let us group all the 𝑤
~

terms. That would give us , because when you add it, you have to make it a matrix. So,𝐻 + α𝐼

we have to put here to ensure that is added to every diagonal element of H you are going toα𝐼 α

have (.𝐻 + α𝐼) 𝑤
~

= 𝐻𝑤*

(Refer Slide Time: 29:37)

620

This means , which is a solution of your regularized loss function is going to be given by𝑤
~

. Just to remind you, I hear this notation means the identity matrix in case you(𝐻 + α𝐼)−1𝐻𝑤*

do not you did not get that already. This is your identity matrix.

(Refer Slide Time: 30:12)

Now, in this expression, if goes to 0, it is very evident that you would be left with andα 𝐻−1𝐻𝑤*

, or rather, itself? That is equivalent to doing no Regularization, of course,𝐻−1𝐻 = 𝐼 𝑤
~

= 𝑤*

because if , the coefficient of your L2 weight decay term goes to 0, and there is noα = 0

Regularization.

(Refer Slide Time: 30:39)

621

So, we are only concerned about the case when is not equal to 0, what can we say about . It isα 𝑤
~

not trivial to say something in general about , unless you assume some form for H.𝑤
~

(Refer Slide Time: 30:58)

So, to do that, let us assume that H is symmetric positive semidefinite. Positive semidefinite

means that the Eigenvalues of H are all greater than or equal to 0. In such a scenario H can be

decomposed as where Q is an orthogonal matrix Q, which means . This should𝑄Λ𝑄𝑇 𝑄𝑇𝑄 = 𝐼

also tell you that .𝑄𝑇 = 𝑄−1

622

(Refer Slide Time: 31:39)

So, why do we do this with this, let us try to analyze what is? . Finally,𝑤
~

𝑤
~

= (𝐻 + α𝐼)−1𝐻𝑤*

we get .𝑤
~

= 𝑄(Λ + α𝐼)−1Λ𝑄𝑇𝑤*

So, this is what you get as . What are we doing with this seems to be a complex representation𝑤
~

of w tilde up what do we want to do with it?

The main takeaway here is that is connected to . The optimal solution of the regularized loss𝑤
~

𝑤*

is connected to the optimal solution of the original loss by this transformation, the transformation

that multiplies . Let us try to assess this transformation more carefully.𝑤*

623

(Refer Slide Time: 34:19)

If you observe here,

(Refer Slide Time: 34:23)

You first take multiplied by a matrix which is equivalent to doing some transformation on𝑤* 𝑄𝑇

. And after you do that, you are multiplying by this term here. Remember as a diagonal𝑤* Λ

matrix, whenever you have a decomposition such as this will be a diagonal matrix. So, youΛ

have .(Λ + α𝐼) −1Λ

624

(Refer Slide Time: 35:01)

You now write this more succinctly as you take every element of , it gets scaled by𝑄𝑇𝑤*

. How did we get this, we got this as one element of lambda, this is ,λ
𝑖
/(λ

𝑖
+ α) (Λ + α𝐼) −1Λ

which is what we had on the earlier slide. So, this is just one term of that, because this is

equivalent into So, these are going to be diagonal matrices, one of these terms will actually turn

out to be , which means every element of you first taking , transforming it by ,λ
𝑖
/(λ

𝑖
+ α) 𝑤* 𝑄𝑇

scaling it by .λ
𝑖
/(λ

𝑖
+ α)

(Refer Slide Time: 35:50)

625

And then at the end, you are rotating it by Q again, Q is again, when we say rotate, we mean it is

a transformation imposed by Q on the output.

(Refer Slide Time: 35:58)

Now, you are initially transforming it by and later transforming it back by Q. So, in some𝑄𝑇

sense, they will probably cancel out each other in terms of the effect, but in between, you are

imposing a scaling on your weight vectors or on your optimal weight vector.

(Refer Slide Time: 36:20)

626

Let us see what that scaling means, the scaling says that if . This is going to become 1.λ
𝑖

>> α

(Refer Slide Time: 36:31)

And if , this will become 0 rather, the scaling is going to be a value only when ,λ
𝑖

<< α λ
𝑖

>> α

because in other cases, it is going to become 0. So, those components of may just become 0𝑤*

after this transformation.

(Refer Slide Time: 37:00)

627

So, only when we have large Eigenvalues, the components will be retained in which is the𝑤* 𝑤
~

new solution for your regularized loss. And the total number of parameters is going to be given

by which has to be less than n because will be a quantity less than 1
𝑖=1

𝑛

∑ λ
𝑖
/(λ

𝑖
+ α) λ

𝑖
/(λ

𝑖
+ α)

less than or equal to 1. So, which means the sum for all n elements will be less than n. So, which

means, even if you had n parameters or n components of your vector, the effective parameters𝑤*

will definitely be less than the number of parameters divided by the number of components that

you had or dimensions that you had in your .𝑤*

(Refer Slide Time: 37:52)

628

The summary here is that your original solution is getting rotated to . When you do𝑤* 𝑤
~

𝐿
2

Regularization, all of its elements shrink, because is always less than 1 as long asλ
𝑖
/(λ

𝑖
+ α) α

is a non-zero value. is always going to be less than 1 which means all of its elements areα

shrinking, but some are shrinking more than the others depending on those Eigenvalues andλ

what are those Eigenvalues of H.

629

(Refer Slide Time: 38:33)

But that is why we wrote it. A couple of slides back it is Eigenvalues of H then Hessian.

(Refer Slide Time: 38:37)

This ensures that only important features get high weights and other features may not get high

weights. That is one way of understanding weight decay.𝐿
2

630

