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Let us now try to analyze, we have seen gradient descent, we have now seen at least one or two

methods, momentum based gradient descent and Nesterov momentum based gradient descent,

which can help you improve gradient descent training, what are the pros and cons of gradient

descent you have seen so far?

(Refer Slide Time: 0:36)

For every parameter update gradient descent passes the entire dataset, we already saw that it

computes the gradients, it keeps aggregating the gradients and then takes the average, we called

it an epoch. So, gradient descent passes the entire dataset and it is hence called batch gradient

descent.

And the advantages of batch gradient descent is, theoretically speaking from an optimization

standpoint, the conditions of convergence are well understood and many acceleration techniques,

there are improvements from an optimization perspective, such as conjugate gradient operate

very well in the batch gradient descent setting, once again it is called batch gradient descent.

Because you are waiting for the entire batch of data points to get completed, take all of these

gradients, average them and then make an update.
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So, the disadvantage of batch gradient descent is, it can be computationally slow for the same

reason. Especially if your training dataset had say 10000 data points or 1 million data points, you

are going to wait for passing through all of them before making an update. ImageNet which is a

computer vision challenge, it is a very commonly used dataset in vision, has today about 14

million samples and one iteration over all of those 14 million samples can be very slow to wait

for one parameter update.

(Refer Slide Time: 2:10)

That brings us to a very popular approach known as stochastic gradient descent. Stochastic

gradient descent or SGD stands for, you randomly shuffle your training dataset and update your

parameters after gradients are computed for each training example. So, you randomly shuffle and

pick one data point, forward propagate it, compute the error, compute the gradient, update all

your parameters right away before propagating your next data point. So, here is your algorithmic

difference with gradient descent.

The third, the third step here, sorry, this step 5 here on this algorithm was outside the for loop in

gradient descent, you did all, you went through every data point accumulated all your gradients

and then made the parameter update, whereas in stochastic gradient descent that step of updating

your parameters goes inside the for loop, which means for every data point you are going to

make a parameter update, this is going to be faster, let us see a few pros and cons for stochastic

gradient descent too.
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(Refer Slide Time: 3:26)

But before we go there we are going to talk about the setting which lies in between, which is

known as mini batch stochastic gradient descent. What is mini batch stochastic gradient descent?

Mini batch stochastic gradient descent as the name says is you take a mini batch of training

examples, do not just take one, do not take all, take 20 examples from your training dataset,

forward propagate all of them, compute all the outputs, compute all the errors, compute all the

gradients and then taking average of those 20 gradients alone and update your parameters.

Why do we need this? It is possible that if you keep updating your gradient with every sample, it

may give you random directions, one data point will tell you go like this, this is where Himalayas

lowest point is there, another data point will tell you another step, you will just be taking

different zigzag steps as you traverse through the surface if you listen to every data points

gradient.

Averaging gives you a better sense of a gradient direction that is consistent across a few more

data points. This mini batch version of stochastic gradient descent is the default option for

training neural networks today, often today when people say they use SGD they actually mean

mini batch SGD.

Remember mini batch SGD with batch size to be 1 is your SGD itself. But typically people use

larger batch sizes 20, 100, so on and so forth to compute these gradients. So, algorithmically
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speaking the applying update once again went out of the loop but this time you are not going to

compute, you are not going to aggregate gradients for the entire training dataset, but only for one

mini batch which you denote as B-mini and you are only going to aggregate the gradients and

average the gradient only for that mini batch in the algorithm.

(Refer Slide Time: 5:32)

Let us try to see an illustration of stochastic gradient descent, this is once again a contour plot of

an error surface, let us try to see how stochastic gradient descent works. You can see it

progressing towards the minimum, remember the minimum is the blue surface, as it goes closer

to the minimum, it seems to oscillate. Do the oscillations remind you of something?
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(Refer Slide Time: 6:08)

Momentum may be, momentum also had similar oscillations when it reached the minimum.

(Refer Slide Time: 6:16)

Here is an illustration of mini batch SGD, once again the same error surface, let us see if

batching data points and computing the gradient helped us a little bit, you do see here the

oscillations have mildly reduced for many batch SGD when compared to SGD but the batch size

here was just 2, you could probably see lesser oscillations when you keep increasing the batch
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size, because then you are not going to vacillate based on every data points gradient, but you are

going to batch them across a larger set of data points before you update your parameters.

(Refer Slide Time: 7:04)

What are the pros and cons of stochastic gradient descent when you compare it to batch gradient

descent, let us try to understand this? The advantages of stochastic gradient descent far

outnumber its disadvantages, it is usually much faster than batch learning when you train neural

networks. Why is that so? It is simply because there is a lot of redundancy in batch learning.

Because if you have one million data points in your dataset, while training your neural network

model, then many of these data points may give you similar information, you probably do not

need to wait for all of them to give you the gradient and then average, even if you take 100 of

them maybe you are going to get some sense of where the gradient is for that particular iteration

and move forward in that direction.

So, you are exploiting the redundancy in data to go much faster than standard batch gradient

descent, it also often results in better solutions, this may seem a little counterintuitive because

you would think that by using the entire batch it could be computationally slow but that is the

ideal way to do it, then why does stochastic gradient descent yield better solutions?

The reason is stochastic gradient descent is a noisy version of gradient descent. What do we

mean by that? We mean that you are only taking 20 data points, let us assume the mini batch size
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was 20, you are taking just 20 data points getting the gradient and you keep moving along those

directions.

So, it is like asking once again if you are traversing Himalayas, if you ask a thousand people

assuming that you had infinite computation and infinite access to people, if you ask a thousand

people and they avoid going in a particular direction you probably can rely on that direction. If

you asked only two people and asked them what direction to go in, maybe they may get it wrong.

Which means that when you ask a smaller set of people you may oscillate, you may take one

direction then somebody else tells you go in another direction, you keep moving around and

fluctuating a little bit but you eventually get there because between across all of these people

they may point you in the direction, in expectation you would get there. But there may be

fluctuations along the way.

But this noisy updates of stochastic gradient descent is what would actually help you in escaping

local minima, bad local minima or saddle points because of these noisy updates you may avoid

saddle points and probably get to better local minimum over time, that is what researchers have

been able to understand from how SGD has performed in deep learning.

Stochastic gradient descent is also useful for tracking changes. What do we mean? If you have a

new set of data points that come in, it is very easy to update with just 20 data points rather than

have to run an entire epoch with 1 million plus 20 data points, so remember in batch gradient

descent you have to recompute the gradient for all the data points before you make your next

move, but in stochastic gradient descent if new data points come that is what we mean by

tracking changes here, you can easily update the system and keep moving.

What about disadvantages? Disadvantages of stochastic gradient descent is that the noise in

stochastic gradient weight updates can lead to no convergence. To this day sometimes remember

as we said that because of the complexity of the error surface where you initialize your weights

is very important as to where which local minima you converge to, so often today in practice if in

the first few iterations you find too much fluctuations in your error people often simply change

the initialization and try again.
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Which means noise in SGD weight updates can lead to no convergence but the solution is fairly

simple if in the first few iterations things are not going well for you just stop, go back and start at

a different location and start all over again, it is fairly a simple solution. This can also be

controlled using learning rate, if the gradient you know is noisy do not use a high learning rate,

so it can also be controlled using a learning rate but then identifying a proper learning rate can be

a problem of its form and that is the problem we are going to talk about next.

(Refer Slide Time: 11:54)

How do you choose a learning rate? We said that momentum was one way to artificially inject a

learning rate into the system because the momentum in the previous step and the current gradient

aligned it is almost like you had a high learning rate in those directions. In general, though if the

learning rate is too small it can take a long time to converge, if the learning rate is too large the

gradients can explore.

Now, how do you choose a learning rate in practice, assuming we do not use momentum, how do

you choose a learning rate in practice? One simple option is naive linear search, you just keep

your learning rate to be constant throughout the process, just fix it, just use the same learning rate

across all your iterations until you reach convergence.

Or you could use annealing based methods, annealing based methods are methods where you

gradually reduce the learning rate over time using some formula that you come up with, let us
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see a couple of them now. One of them is known as step decay, where you reduce the learning

rate after every n iterations or if certain degenerative conditions are met.

For example, if the current error is more than the previous error which should not happen and

you do gradient descent, you expect that the current error should always be lesser than the

previous error but when you do stochastic gradient descent that may not be guaranteed because

you are using only 20 data points to design your gradient.

So, what you can do is keep reducing your learning rate after every n iterations. So, that is one

simple approach. The idea here is that as you keep training over iterations in epochs you are

probably getting closer to your minimum and when you get very close to your minima you want

to take small steps so that you reach your minima and do not over shoot it, that is the reason for

reducing the learning rate over time, that is called step decay.

Another popular option is known as exponential decay. In exponential decay you set an initial

learning rate called and then where and k are hyper parameters and t is anα
0

α = α
0

−𝑘𝑡 α
0

iteration number. So, you start with the learning rate and keep progressively reducing itα
0

exponentially in this particular form over every few iterations, because t is an iteration number

here, as the iteration number increases the learning rate automatically starts falling down.

You can also use a simple 1 by t decay formula, where you start with an and at a particularα
0

α

time step can be given by , where and k are hyper parameters and t is anα = α
0
/(1 + 𝑘𝑡) α

0

iteration number. All of these as you can see are heuristics, we are just saying let us just do one

of these and maybe it will work. Can we do something better, can we be more aware of what a

neural network is doing and accordingly choose a learning rate rather than have these global

rules that we fix irrespective of what the network is doing? Is there a way to do this?
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(Refer Slide Time: 15:29)

Yes, there are a few methods which we are going to discuss now. One of the earliest methods in

this context was known as adaptive gradient or adagrad. Adagrad has a simple intuition as to the

fact that sparse but important features may often have small gradients when compared to others

and learning could be slow in that direction.

In our case features means dimensions of weights rather a subset of weights, so you have your

entire space of weights, a subset of weights which change only once a while, so let us assume

that there are certain weights that to keep do not change with every mini batch, in mini batch

SGD, but change only once a while.

They may change by a small amount but that amount is important because they only change once

in a while. Sparse features could be important and learning could be slow in this direction

because the gradients could be small in that direction. So, a simple thought then is why should

the learning rate be the same for every gradient in your neural network?

Once again remember that the gradient is a vector of the derivatives of the loss with respect to

every weight in your neural network. Why should you use the same learning rate for all of them?

Why can't you use a different learning rate for each of these weights? So, what you do in

Adagrad is you accumulate the squared gradients as a running sum, rt is a quantity that holds a

running sum of squared gradients, once again keep in mind that the gradient is in is simply∆θ
𝑡
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the gradient that is the parameter update and that is a vector of the gradient with respect to every

weight in the neural network.

So, for each of those weights you maintain a running sum of the gradient squares and then your

parameter update states , is your gradient in your currentθ
𝑡+1

= θ
𝑡

− α/(δ + 𝑟
𝑡
) *  ∆θ

𝑡
∆θ

𝑡

time step.

Now, why does this address this intuition? Delta here is simply used for numerical stability, you

just set it to be a value like or so that you do not face a divide by zero error, in case10−6 10−7 𝑟
𝑡

is zero you do not want to divide by zero error when you compute so that is the reason you have

a there.δ

But otherwise what this is doing is, when is small which is going to be a very small value, this𝑟
𝑡

is going to become large or rather the learning rate for that weight is going to become large,

when is large the learning rate will become small. We are saying that for one of your weights𝑟
𝑡

if your gradient was large give it a small learning rate and for one of your weights if your

gradient is small then give it a larger learning rate.

This seems to fit with the intuition that we had so far and the nice part now is this kind of an

approach because is maintained for each gradient or each weight individually. This𝑟
𝑡

automatically takes care of changing the learning rate for each weight differently.
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(Refer Slide Time: 19:08)

Let us try to understand this from a simple example. So, we do understand that your error

surface, these are contour plots, when your contour plots are spherical, things are easier, it is

easier to converge, when your contour plots get elliptical is where your oscillations can occur.

Another important property of elliptical contour plots is that there are certain dimensions where

the change can be rapid, and certain dimensions where the change could be rather small, which is

what elliptical basically means.

So, if you see this example here which denotes, let us assume the gradient and the corresponding

value, they are now saying here that if you look at one of these, let us look the black frequent𝑦
𝑡

and predict irrelevant which simply states that all those values keep changing regularly but they

do not seem to be connected to the class output, these are some values and they do not seem to

be connected to the class output in this particular scenario or the output of whatever function you

are modeling.

While there could be other values such as red and green which change only once a while so you

can see in it does not matter here as to what these quantities are as this is only an example,ϕ
𝑡, 2

so when is 1 we see that definitely becomes 1, it does not matter when it is 0 but when itϕ
𝑡, 2

𝑦
𝑡

is 1 the output is definitely 1.
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Similarly, for you see that when it is 1 the output is definitely minus 1. So, it looks like thisϕ
𝑡, 3

particular parameter changes only once a while but when it changes it makes an impact on the

final decision. So, this is a scenario that says that even if the gradient is small but if it happens

only once a while, let us give more weight to changes in those directions, in those weights and

that is what this algorithm does.

(Refer Slide Time: 21:18)

So, here is the algorithm, so you aggregate the gradient, you update your gradient accumulation,

so you initialize your gradient accumulation in a parameter called and you update your𝑟
𝑡−1

= 0

gradient accumulation to be , you keep accumulating the square gradients and𝑟
𝑡

= 𝑟
𝑡−1

+ (∆θ)2

then this is the formula.

One small observation here which is probably not clear from this algorithm is this particular

quantity on step nine is an element-wise product. So, which means, remember in this case that

while alpha was a scalar so far, is a vector, will also be a vector, so this entire𝑟
𝑡

𝑟
𝑡

will become a vector, it is a vector of learning rates multiplied by a vector ofα/(δ + 𝑟
𝑡
)

gradients element-wise multiplication, it is sometimes also called Hadamard product. Hadamard

product is nothing but element-wise multiplication, remember it is not like dot product, in a dot

product you take element-wise multiplication and then add them all up and get a scalar.
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In a Hadamard product, you simply take element wise multiplication and your output is still a

vector, you do not add them all, that is the main difference and this operation here in step nine is

actually a Hadamard product, element wise multiplication between two vectors. There is one

problem with the Adagrad method, can you try this for the problem?

The problem is that this gradient accumulation term is a running sum that simply keeps𝑟
𝑡

accumulating over iterations, which means as you run more and more iterations, it will only keep

increasing and get higher and higher and higher over time which means this denominator is

definitely going to get high over time for all the weights.

(Refer Slide Time: 23:22)

In particular, there are some of the weights for which gradients keep occurring in every iteration

where the denominator term can very quickly increase, this will lead to a lower learning rate for

those dimensions in the weights and learning may not happen along those directions. RMSProp

which was a method that came along the same time as Adagrad proposed a slightly different

approach to this problem and said let , it is a linear combination𝑟
𝑡

= ρ𝑟
𝑡−1

+ (1 − ρ)(∆θ
𝑡
)2

where the two coefficients add up to 1.
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This now ensures that because of the and , the sum cannot keep exploding and is nowρ 1 − ρ

controlled. Think about it for a while as to why and you will get why this will not allow you to

explode. And now your and the entire expression is exactly the same as Adagrad.θ
𝑡+1

θ
𝑡
,

(Refer Slide Time: 24:42)

Here is the algorithm for RMSProp with only that change in the step where you have now the

running sum of the accumulated squared gradients to be a convex combination monitored by a

quantity called which is known as the decay rate. The decay rate decides how much you wantρ

to consider the previous squared gradient while you get the current squared gradient, very similar

to momentum but in a different context.

(Refer Slide Time: 25:12)
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The most popular algorithm that is used for training neural networks today for adapting learning

rates is known as ADAM or adaptive moments. Adaptive moments uses a simple intuition of

combining ideas of RMSProp and momentum in a way, let us see how that is done. While

Adagrad and RMSProp accumulate the squared gradients ADAM accumulates both the gradient

and the square gradients, accumulates the gradient, accumulates the squared gradient just𝑠
𝑡

𝑟
𝑡

like RMSProp. Why?

You look at the final update equation here, the update says that . Iθ
𝑡+1

= θ
𝑡

− α𝑠
𝑡

~
/(δ + 𝑟

𝑡

~
)

will explain the tilde part in a moment but let us first assume that there is no tilde let us just

assume and . So, what is this doing is exactly the same that we saw in𝑠
𝑡

𝑟
𝑡

α𝑠
𝑡
/(δ + 𝑟

𝑡
)

RMSProp and Adagrad, would have been the current gradient in Adagrad and RMSProp but𝑠
𝑡

now is the running sum of the gradient. And what is the running sum of the gradient?𝑠
𝑡

Momentum, remember momentum was what you use the previous gradient, the previous gradient

so on and so forth using momentum term is the momentum coefficient for us in this particularρ
1

context, that is why ADAM can be looked at as a combination of RMSProp and momentum.

Now, coming to why this is tilde here, why not just and is for a very simple reason of doing𝑠
𝑡

𝑟
𝑡

what is known as bias correction in the initial iterations. In the initial iterations if is set to aρ
1
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high value which is what is typically done, just like momentum could be set to somethingρ
1

ρ
1

like 0.9 or something like that.

In your initial step would be initialized to 0 that is where will start, 1 minus will𝑟
𝑡−1

𝑟
𝑡−1

ρ
1

make it a very small value because is close to 1, so which means the gradients will not haveρ
1

any impact on in the initial iterations until they add up, so there may not be much training that𝑠
𝑡

happens in the initial iterations.

So, what do we do for that? We say let similarly . What𝑠
𝑡

~
= 𝑠

𝑡
/(1 − ρ

1
𝑡) 𝑟

𝑡

~
= 𝑟

𝑡
/(1 − ρ

1
𝑡)

does this do? If is 0.9, remember 1 minus 0.9 is 0.1, so by 0.1 will now increase it 10 fold,ρ
1

𝑠
𝑡

so by whatever fold it was reduced here, it is now going to increase it by 10 fold in the initial

iteration.

What happens in later iterations? We have here, t is the number of the iteration that you are𝑡

talking about. What happens here? Remember is less than 1 it is chosen to be 0.9 orρ
1

something like that, so will keep reducing all the iterations, 0.9 into 0.9 is 0.81, so it keeps asρ
1

𝑡

long as you have a value less than 1 as you raise it to the power t it is going to keep reducing

which means this quantity the denominator will keep reducing over iterations and sorry this is

not the quantitative denominator that will keep reducing to 0 and will get closer to 1ρ
1

𝑡 1 − ρ
1

𝑡

over the iterations.

Which means after a few iterations will become , will become . So, the step of bias𝑠
𝑡

~
𝑠

𝑡
𝑟

𝑡

~
𝑟

𝑡

correction was only to handle the initial epochs where the gradient may not have a significant

impact.

(Refer Slide Time: 29:27)
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This is your ADAM algorithm, it is simply a summary of what we just said. These are the two

steps, you update a first moment estimate which is the gradient, second moment estimate which

is the square gradient you maintain a running sum of both, correct for biases and do your update.

The key thing in the update is you do not have the gradient here because the gradient is

subsumed into .𝑠
𝑡
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(Refer Slide Time: 29:54)

That summarizes the various methods of improving gradient descent while training neural

networks. So, some of the issues that we saw are plateaus and flat regions, local minima and

saddle points, other issues that we will see as we go forward are vanishing and exploding

gradients, as neural networks become deeper and deeper the gradients that propagate from the

last layer to the first layer can keep vanishing or exploding, that can cause what are known as

cliffs in the error surface, we will see this a bit later.

Other challenges that could happen is sheer ill conditioning of the matrix of weights or the loss

functions or the gradients that you are dealing with, please look at this link here to understand

what this means, you could face from a (prob), you could face a problem of inexact gradients, the

gradients numerically may not be computed properly, for example, finding if a gradient is 0 is

not trivial because numerically attaining 0 while training is not possible, you have to ensure that

you manage it in some way.

But in general numerical issues and gradients could also cause problems. There could be poor

correspondence between local and global structure, which means you have a global error surface

and you want to get to the global minimum but the local region in which you are in may not

really correspond with that global structure, you will be stuck with trying to handle the

undulations in that local structure. Choosing learning rate and other hyper parameters like the

momentum hyper parameter or the decay rate are also problems to deal with.
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(Refer Slide Time: 31:34)

To summarize, the error surface or cost surface in neural networks is often non-quadratic,

non-convex, high dimensional. Potentially in many minima and flat regions, there are no strong

guarantees that the network will converge to a good solution, the convergence is swift or that

convergence occurs at all, but it works. This is an issue that is being investigated today, but it is

fabulous that training neural networks with stochastic gradient descent works and is being used

around the world in several applications.

(Refer Slide Time: 32:15)
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Here is your homework, read up on Deep Learning book chapter 8, at least the relevant sections

in that, as well as you can also go through this particular lecture on SGD. A few questions for

you to take away is how to know if you are in a local minima or any other critical point on the

loss surface, I did mention a few times that finding that or finding the convergence criterion is

not trivial. Let us ask that question for you to find before we answer.

Why is training deep neural networks using gradient descent and mean square error a

non-convex optimization problem? This is the first question that we started the lecture with, this

is something for you to ponder upon. And finally if we assume a deep linear neural network, no

activation functions at all, would using gradient descent and mean square error still be a

non-convex optimization problem when you train deep neural networks? These are some

questions to think about.

(Refer Slide Time: 33:18)

And here are references.
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