
Deep Learning for Computer Vision 
Professor Vineeth N Balasubramanian 

Department of Computer Science and Engineering 
Indian Institute of Technology Hyderabad 
Gradient Descent and Variants – Part 01 

We have so far seen an Introduction to Neural Networks and how one can train a feed-forward                 

neural network or a multi-layer perceptron using back propagation and gradient descent. We will              

now move on to understanding the challenges of training such a neural network using gradient               

descent and propose variants and adaptations that could be useful in improving the effectiveness              

of training neural networks using gradient descent. 

(Refer Slide Time: 0:55)  

 

We will start with a brief review of gradient descent, as we already said gradient descent is an                  

optimization algorithm that is used to find the minima of any differentiable function. Remember              

again that the loss function that we use to train a neural network, means square error is what we                   

use so far, but even if we use any other loss function that function has to be differentiable.  

Please do not worry if you are not aware of what other loss functions to use, we will see plenty                    

of them as we go through the rest of this course. And when we use gradient descent at each step                    

parameters are pushed in the negative direction of the gradient of a cost function or error                

function or loss function whatever we choose to call it. 

554



And the parameter update rule is given by  

. is learning rate of step size times the change in the parameters. And weΔθ  θnew = θold − α old  α                

saw this visualization also in the last lecture where if you have a simple convex function, you                 

will have, and if you consider a point to the left of the minimum, see this blue point here, the                    

gradient there is negative so when you go in the negative direction of that you are going to be                   

going towards the positive side or the right side which will take you towards the minimum. 

If you have started at this point here on the right side the gradient there is positive so the negative                    

gradient will go to the opposite direction which will once again be towards your minimum and                

this is an a visual illustration of how gradient descent can be used to minimize any objective                 

function. Keep in mind here that this example of a function, this black curve here is a convex                  

function. 

So, you are going to have an exercise at the end of this lecture to know what convex functions                   

are and we will discuss them a little bit later if you are not aware. But for the moment let us go                      

ahead and try to understand how we can improve gradient descent. 

(Refer Slide Time: 3:20)  

 

Here is the gradient descent algorithm, you are given a learning rate, you have some initial                

parameters and a training data set . As long as the stopping criterion is not met, you θt      Dtr            

initialize your parameter updates and for each point in your training dataset you compute your               

555



gradient using back propagation of the loss function with respect to each of your parameters.               

And you aggregate your gradients in your  variable.θΔ   

Once again just to remind you denotes the change in variables, denotes the gradient,      θΔ      L∇     

please note the difference in notation since they can look similar at first group. Then finally you                 

have to apply your update θ Δθθt+1 =  t − α 1
|D |tr t  

How long do you train this? Until your gradient becomes zero. Each of these for loops here is                  

typically called one epoch, one epoch corresponds to one full iteration over your training dataset,               

so we compute the gradients across an epoch, average all your gradients and then update your                

parameters, that is the simple summary of gradient descent. 

(Refer Slide Time: 5:01)  

 

Now, let us move on to understanding what is known as the error surface of neural networks.                 

The error surface of neural networks is simply a plot of all your parameters of the neural network                  

versus the corresponding cost value or the loss function value that you would have. From now on                 

when we say weights we are going to assume that it also encompasses biases in them, so just                  

please assume it that way. 

So, if you see this undulated surface in this slide, each point there is one particular weight                 

configuration, which means one value assigned to each weight and the corresponding loss that              

556



was incurred when you propagate all your training data points through that weight configuration.              

Remember for every training data point you forward propagate it, you get an output, you would                

get a loss. 

Next training data point, forward propagated, an output and a loss, now you average all of these                 

losses that is going to be your overall loss for that weight configuration before you update                

further. This is an error surface which can be very complex, modern neural networks that are                

used in practice especially in computer vision have millions of parameters, a very popular              

network known as AlexNet which once again we will see later has close to 60 million                

parameters. 

This one is ResNet which again has millions of parameters, which means although we see it in                 

three dimensional space here, this kind of an error surface actually exists in a 60 million                

dimensional space. So, you can imagine the complexity that is going to be there on that particular                 

surface. 

And the goal when you train a neural network is to start somewhere on the surface which means                  

you could be starting at any one particular point, remember that is the random initialization of                

the base and your gradient descent has to take you to the minimum. Clearly, you can see here                  

that this is a very non-convex surface, it is not a single bowl like shape, it is a non-convex                   

surface with lots of undulations, so it is not a trivial task to be able to traverse this surface. 

 

557



(Refer Slide Time: 7:32)  

 

 

One of the major problems when you have a non-convex objective function is that you are going                 

to have many local minimum, which means the solution that you finally converge to after               

applying gradient descent is going to depend on where you start, depending on where you start                

that is going to decide which local minimum you are going to converge to. Why so?  

Because when you hit one of this local minima, your gradient is going to be zero and your                  

gradient descent algorithm will terminate, which means it is going to be extremely important to               

558



know where to start and unfortunately when we start training a neural network we do not                

understand the complexity of the error surface involved. 

While we saw one such visualization in the previous slide, it is not possible to understand where                 

your initialization could be or where the actual local minima could be and so on and so forth in a                    

very high dimensional space. While there have been such efforts to visualize these inner              

surfaces, it is not good enough for us to use that for visualizing and training directly. Which                 

means training to find a suitable local minima is still an important challenge here. 

(Refer Slide Time: 8:55)  

 

Similarly, you could also have what are known as saddle points, saddle points are as you all                 

know from high school calculus are critical points again which means the gradient is 0, but it is                  

minima along a set of dimensions and maxima along another set of dimensions. For us               

dimensions in this context are weights, we are talking about the dimension of that error surface                

and remember the error surface is a plot between weights and the cost function. 

So, here is an example of a simple saddle function or a saddle point, so you have here. This is a                     

point which is a minima along this dimension and a maxima along the other dimension. Why                

does this matter to us? Once again because the gradient is zero at a saddle point, if you, your                   

gradient descent converges to saddle point you are going to end your training right there and a                 

saddle point may not be the ideal solution because it is a maximum along certain dimensions and                 

559



you may want to reach a better minima which can give you a better neural network solution that                  

you can use in practice. 

Another important observation which was made in this particular work called identifying and             

attacking the saddle point problem in high dimensional non-convex optimization was that as you              

go to higher and higher dimensional spaces which means as your network becomes more and               

more complex, more and more weights then your local minima which would be more prevalent               

in low dimensional spaces keep getting replaced by saddle points as the dimensionality increases. 

Why so? A simple intuition for that is if your dimension of your error surface, so the dimension                  

of your weights is going to be say 1 million, let us say you found a critical point maybe that                    

critical point is a minimum for nine hundred and ninety-nine thousand nine hundred and ninety               

nine dimensions or weights, but there could be still that one dimension where it ends up                

becoming a maximum. 

And when you have a very large dimensional space it is more probable that there are some                 

points, there are some dimensions where that particular weight configuration could be a             

maximum, that is a simple intuition for why saddle points proliferate as you go to higher and                 

higher dimensions. 

(Refer Slide Time: 11:31)  

 

560



Let us see a simple gradient descent traversal example to understand an issue before we go there                 

just to explain what is happening here, this is a plot of the error surface, as you can see, red is a                      

high value, blue is a low value, so what this plot is showing you is it is taking one value of w,                      

one value of b, it is a very simple neural network and this z-axis here plots the error, so you can                     

see here that there are certain points where the error is high and certain points where the error is                   

low and it is the surface looks like a carpet. 

So, now let us, just before we, so we understand this which is the local minima here, where                  

would you want your neural network to converge? At the deepest blue color because that is                

where your error is leased. So, let us now initialize from a random point on this error surface and                   

see what gradient descent does, watch carefully. 

You see now, on the top surface you see red plots, on the bottom surface you see black spots                   

going, watch now that the updates are slow and then after some time the updates pick up speed                  

and finally you converge to that blue minima that you were looking for. Did you notice                

something interesting?  

Yes, there were some points in the traversal of gradient descent when the traversal became slow                

and there were certain points when traversal became fast. Let us keep this in mind when we go                  

forward with the discussion. 

(Refer Slide Time: 13:22)  

 

561



Let us look at the same error surface again, but let us initialize at a different point and now see                    

what happens, we are going to initialize somewhere in the top left here, that is what you want to                   

be looking for when you see this visualization. You see these red lines, the black lines, gradient                 

descent is traversing initially a bit slow, it travels a bit fast, again a bit slow, again a bit slow and                     

then finally converges. So, you can see that there are different points at which the speed of                 

gradient descent can keep changing. 

(Refer Slide Time: 14:07)  

 

Let us see this now from a slightly different perspective we are going to see this from the                  

viewpoint of what is known as a contour plot. A contour plot is simply a two dimensional view                  

of any surface, so if you take any surface let us imagine the Himalayas in front of your head, let                    

us imagine a mountain range in front of your head, imagine that you are slicing the mountain                 

range with a huge knife and now you are going to view from the top all of these slices laid down                     

on a single table and that view is what you see as a contour plot. 

What do you mean by a contour plot? So, if you take any of these contours what you see on the                     

screen here, if you take one of these lines like let us follow this particular line here. All it means                    

is that for all the points on that line the error is the same, these are also sometimes called iso                    

contours, which means all the error values at those points are the same. Why? Because you took                 

a cross section, a cross section simply means that the error value was the same at that particular                  

point. 

562



Now, let us see the same example that we saw on the earlier slide as a contour point. If you see                     

the contour plot now you would notice that parameter updates which are given here, you can see                 

the parameter update values are smaller at points where gradient of error surface is small.               

Remember we said that these are points which have a lesser gradient the blue areas, and the red                  

areas have a higher error value. And whenever the gradient of the error surface is small the                 

parameter updates are small and whenever the gradient is large these are points where the               

gradient is large the parameter updates are also large on those particular points.  

(Refer Slide Time: 16:15)  

 

That brings us to this another facet of understanding how to train neural networks in terms of                 

plateaus and flat regions. Plateaus and flat regions constitute portions of the error surface where               

the gradient is highly non-spherical. What does this mean? When we say non-spherical it means               

that each dimension of the gradient is of different, different values. 

Remember that the entire gradient is a vector; it is the derivative of the loss function with respect                  

to every weight in your neural network, you unroll all of your weights in the neural network                 

across all your layers into a single vector. Now, you take the loss with respect to each of those                   

weights and put them in the same vector, you would use chain rule and back propagation to                 

compute those gradients but once you compute them you input all of them in a single vector. 

563



Now, if all of those gradients have similar values at a particular weight configuration you would                

then say that that area of the error surface is spherical because it all has equivalent values in all                   

dimensions. But when you go to a plateau or a flat region you are going to have very largely                   

elliptical shapes where in one dimension things move very slowly, whereas in another dimension              

things could move rapidly, that is what we mean by non-spherical in this particular context.               

Non-spherical is elongated elliptical, spherical as a sphere and elongated elliptical.  

So, gradient descent spends a long time traversing in these kinds of regions as the updates could                 

be very, very small. Remember when you have plateaus and flat regions, it is like going through                 

an area where the gradient very gradually tapers and when the gradient gradually tapers the               

gradient values are small, the parameter updates are going to be small as straightforward is that. 

So, one question we could ask is when you are going through a plateau, cannot you just walk                  

faster, cannot you just expedite this process? We can but there are some tradeoffs let us see what                  

we can do there. One simple option is to take longer steps, you know your gradient just take                  

longer steps. What does it mean to take longer steps in gradient descent?  

Increase the learning rate or the step size alpha that we talked about. This is a good idea in                   

general when you go through a plateau, but if you simply just increase the learning rate alpha to                  

a very high value for your entire gradient descent traversable that may not be of use, let us see                   

why. 

Here is an example that you see on the right. So, you see a certain error surface, this is a very                     

simple error surface, where on the x-axis is a weight, on the y-axis is an error, a very simple                   

one-dimensional, one parameter situation. So, you have these updates that go along the direction              

of the negative gradient that happens and at a particular point the gradient changes rapidly and                

you go to the next point. 

At a certain point on your error surface you see here that the curve started jumping around. Why                  

is that so? Because this happens when your learning rate is very, very high, let us try to                  

understand this carefully. So, if you are at a particular point here where the mouse cursor is                 

currently showing you.  

564



Let us say the gradient is along a particular direction and if you choose to take a long step, your                    

alpha was high on your x which is where you are making the parameter updates you may jump                  

by a large amount and go somewhere here. And when you go there the corresponding error there                 

is this particular value. 

So, while you wanted to go towards this minimum, you took a large step and went to this value                   

along the w axis and at that value along the w axis the error turns out to be high. So, the learning                      

rate is too high you actually go to a point of higher error and once again from there if learning                    

rate is high an even higher error and you diverge out of that local minimum rather than converge                  

to that local minimum, not maybe this is the right local minimum you would have wanted to                 

converge to, in that case keeping the learning rate very high is really not going to help you. 

(Refer Slide Time: 21:02)  

 

565



 

That leads us to a method known as momentum based gradient descent. Momentum based              

gradient descent relies on the intuition that with increasing confidence increase the step size and               

with decreasing confidence decrease the step size. Simple intuition is, why not we make use of                

the direction that we have been traversing on so far to make our next update? Why should we                  

rely only on the gradient at the current time step? 

A good way to imagine all of this is as a blind person traversing Himalayas. So, Himalayas is a                   

mountain range and you have to ideally, a helicopter takes you and drops you at a particular                 

point on the Himalayas and your job is to navigate and reach the bottom of the Himalayas where                  

the error value is the least. 

Why did I say a blind person? Because if you had vision you could see far and directly go to                    

where the minimum is, unfortunately gradient descent does not have that privilege. What does              

gradient descent do? Has a stick in its hand, keeps tapping everywhere around it and sees where                 

the negative slope is the highest and goes in that direction at one step. This is the analogy that we                    

are following now to traverse the error surface of the neural network. 

Why is this important, why is this analogy important? Because now, if I were traversing the error                 

surface of this neural network I would simply ask the question, let us say I was at a particular                   

point and I have been coming down in a particular direction all the while and at one point the                   

gradient at that point as I tuck my stick around tells me to go in a very different direction. The                    

566



question I would ask is should I completely change direction now, I have been coming along one                 

way so far, should I completely change direction now? 

Maybe the answer is let us not do that, let us keep in mind that we were coming along a certain                     

direction, use that to some extent and the new gradient direction to some extent and combine                

them in some way. This is exactly what momentum based gradient descent does. So,              

mathematically speaking, how do you implement it? 

You say, you define something known as a velocity vector , velocity is simply change of          vt       

distance over time, so it is simply your update in parameters over one iteration, it is simply a                  

name in this particular context. which is the change of parameters that you are going to have     vt              

in this time step is given by . What was your change in weights in the previous time step       γ vt−1             

into weighted by a particular coefficient plus the rest of it is standard gradient descent, alpha      γ            

learning rate times the gradient of the loss with respect to the parameter .θ  

What is this telling us? It is telling us that if you were coming along a particular direction and                   

your gradient tells you to go to a different direction, combine them in some way and then get a                   

velocity vector which is what you use to update your parameters. Then you have  vt              

, which tells you the weight update.θt+1 = θt − vt  

So, keep in mind here that when and the gradient are in the same direction, this will only       vt−1             

give us more momentum in the same direction and that explains the reason for this name of the                  

term if your -1 and l are in the same direction you are going to use your past momentum to   vt                  

walk even faster in that direction. And this should give you an idea of why we are discussing this                   

in the context of plateaus and flat surfaces. If we were going along the same direction for a while                   

let that give us momentum to take longer steps in that direction and go faster to the minimum. 

Now, you can probably see how momentum can avoid divergence in the previous figure, let us                

go back to the previous figure here, so can momentum avoid divergence here let us see. In this                  

particular case you would have got the gradient to be something like this, the previous gradient                

was something like that and the combination of the gradients would have taken you in a direction                 

which was directly close to the minimum. 

567



And one important thing to keep in mind here is both of these while learning rate is typically                  

chosen based on the designs what the user wants to give a value for, is typically a value              γ      

between 0 and 1. Why is that so, why cannot be greater than 1? There is an important reason          γ           

here, firstly you do not want that to out shadow the gradient that is a simple reason, but the more                    

important reason is remember has a component of in it, because momentum was used    vt−1      vt−2        

in computing  in the previous time step.vt−1  

So, now this would become so the component of that influences will be into     γ      vt−2    vt    γ2   vt−2  

and by ensuring that lies between 0 and 1, will be smaller than which means how much    γ       γ2      γ      

contributes to will be lesser than how much contributes to , that is one reason tovt−2    vt        vt−1    vt       

choose  between 0 and 1.γ  

And that should again tell you how combining these should now give you a smaller time step,                 

you are not giving, your alpha is not a very high learning rate but it now keeps you within check.                    

So, now you can also see that you are not going to randomly diverge. So, if you are at this point                     

and the gradient told you to go in this direction but your previous gradient had told you to go to a                     

particular direction, you now combine these two and you may actually come back to the minima                

from the next data point, from the next weight configuration, this could help you avoid               

divergence even in these scenarios. 

(Refer Slide Time: 27:41)  

 

568



So, here is a contour plot visualization, a very simple contour plot visualization for momentum.               

So, once again these are contour plots, So you could imagine this to be an elliptical mountain                 

cross section and you are seeing it from the top. And you can see here that when you do not use                     

momentum, you start from a particular point on this error surface, this is the point on the other                  

surface that you start. 

When you see things as contour plots the gradient would always be normal to the contour plots.                 

So, when you see it as the entire surface you would be going up but when you see it as a contour                      

plot the gradient is going to be normal to the contour plot. So, at a particular point your gradient                   

will take you this way and then you go there and the gradient takes you the other way, you go                    

this then the gradient will take you again the other way and so on and so forth. 

You still are going towards your minimum which is in the center of this contour plot, but you are                   

going to be oscillating to reach that minimum that you are going for. Keep in mind here that if                   

this error surface or this contour plot was spherical, currently we are looking at it as elliptical                 

which means certain dimensions gradient is higher, certain dimensions gradient is lower.  

But if this error surface was spherical then your gradient would be normal and it would straight                 

point to the center or the minimum and you would probably reach in one step. So, imagine an                  

spherical error surface you can try to draw it and see that the normal at any contour point will                   

point straight to the center and that will take you provided you choose suitable step size you will                  

a learning rate you would straight go to the center. 

But you will see here that you probably may not find the need for momentum when your error                  

surface is spherical, momentum is more useful when your error surface is non-spherical which is               

once again more likely to happen in a complex error surface. When you have momentum you see                 

that the oscillation seems to be reducing, let us try to understand why. 

You first go for one step to the next step, the first gradient. When the next gradient comes you                   

will combine it with some portion of the previous gradient so that takes you here, now let us see                   

what happens at this particular point your gradient is going to point you in a particular direction                 

but your previous gradient was pointing you in this direction, you take a sum of these two                 

gradients and that gradient will take you in this direction. 

569



So, the sum of those two gradients will take you in this direction and this way your oscillations                  

reduce, you still oscillate but your number of oscillations reduce and you can quickly get to your                 

minimum. More simply speaking momentum dams the step sizes along directions of high             

curvature where you get an effective larger learning rate on the directions of low curvature,               

rather when your error surface is very steep go slow, when your error surface is flat go fast. 

Larger the more the previous gradients affect the current step. A general practice is to start  γ                γ  

with 0.5 until your initial learning stabilizes. Why? Because you may not be able to trust your                 

gradients, initially your gradients could be going in different directions, it is remember again the               

blind man on Himalayas, if you keep traversing that for some time then your gradient probably,                

you understand what direction is the right direction to go, it stabilizes after some time then you                 

can increase your momentum parameter to 0.9 or 0.95, wait for your train to stabilize a bit and     γ               

then increase momentum because you can then trust the previous directions you are walking on               

or traversing by. But generally in practice people often just set it to 0.9 or 0.95 from the very                   

beginning itself. 

 

570



(Refer Slide Time: 31:49)  

 

Here is the algorithmic version of a momentum based gradient descent, you have a learning rate                

alpha, a momentum parameter , initial parameters, training data set, pretty much the same    γ           

algorithm as gradient descent, the only change now is lines 8 and 9 where you compute your                 

velocity which was times plus alpha times , which is your update based on your   γ   vt−1     θΔ t         

gradient and then you complete your parameters. 

One small change here is we remove the 1 by t training cardinality of the retraining set here just                   

for convenience, you can assume that when we aggregate the weight updates you are subsuming               

that there and taking the average across the training data points. So, for convenience you are                

going to avoid that. 

 

571



(Refer Slide Time: 32:42)  

 

Here is a visualization of convergence of momentum, this is gradient descent once again this is a                 

contour plot you can see here that red values are high values, blue values are low values, so you                   

know that you want to converge to somewhere in this bottom right region where error values are                 

low. 

So, this is your gradient descent curve until a certain point, a certain number of iterations. Now,                 

let us try to see how momentum does on the same surface. You can see the red curve now, you                    

can see the steps that it is taking are long steps, it seems to overshoot the minima, take a u-turn,                    

come back and seems to get close to the minimum. 

So, what is happening this is what we saw on the previous slide that when the error surface is                   

elliptical the gradient makes you oscillate a little bit around the minimum before converging to               

the minimum itself. So, clearly the momentum performance was better than GD, in fact we will                

mention later in terms of what step and what error was there in this particular example. But it                  

seems to make a sense that momentum this seems to go faster than GD in this scenario, but is it                    

always good is a question that we would like to ask. 

 

572



(Refer Slide Time: 34:05)  

 

To see that let us take this particular example, here is the error surface, you can see here that this                    

is something like a carpet with a hollow somewhere in between. So, you see here that blue                 

corresponds to the minimum, red is again a high value, this is your error surface and the                 

corresponding contour plot is shown on the right, so this is the contour plot you are seeing this                  

from top, where you want to get to this center point here which is the minimum of that error                   

surface. 

Now, you can see gradient descent traversals for a few iterations here, in the same number of                 

iterations the gradient descent traveled this distance you can see the mouse cursor, let us try to                 

see what momentum does. You can see the red line again, it seems to be shooting forward and it                   

reaches the region of the minima, then keeps oscillating and finally gets to the minimum. Let us                 

try to summarize that clearly. 

 

573



(Refer Slide Time: 35:07)  

 

Momentum based gradient descent oscillates around your minimum before eventually reaching           

it, even then it converges much faster than vanilla GD. So, just as I said after 100 iterations                  

which was the number of iterations that was shown for gradient descent of the same figure,                

momentum based gradient descent has an error of 10 power minus 5, whereas vanilla gradient               

descent is still at an error of 0.36. Nonetheless, we see that momentum seems to be wasting some                  

time in oscillating around that area, let us ask ourselves if we can reduce that oscillation time in                  

some way. 

(Refer Slide Time: 35:50)  

574



 

That leads us to another method known as Nesterov Accelerated momentum. This is based on               

Yurii Nesterov’s work, Yurii Nesterov is a huge researcher who has created a significant impact               

in the field of optimization. This work called accelerated gradient descent of his was published in                

1983 and was recently reintroduced in the Machine Learning context in 2013. 

And the key idea of Nesterov accelerated momentum is to develop the idea of momentum to                

include one key thought which is look before Yurii rather I am going in a particular direction on                  

the Himalayas again, traversing the Himalayas trying to find out that minimum point of the               

valley. 

And I do get some sense that my current gradient is telling me to go in a different direction. Can                    

I go one step further along the way I was coming, see the gradient there and then decide rather                   

than use the gradient at the current time step? So, you want to compute a look ahead gradient or                   

and then use that knowledge in taking your current step. Let us see what that means when we                  

write out the equations. 

So, we are saying now that this equation is very similar to what you saw for the momentum                  

equation , what is the difference here? If you observe v ∇ L(θ v ; , )vt = γ t−1 + α
θt̃

t − γ t−1 x(i) y(i)          

carefully the main difference between this equation and the equation that we had a couple of                

slides back for momentum is this term here, this term for momentum was simply but this              θt    

term for us now is , what does this mean?θt − vγ t−1  

575



This means that we take which is the current parameters, was my previous parameter     θt       vt−1      

update, I will have one more update of that with with my momentum parameter, go to that          γ         

step, compute my loss on that weight configuration and then use that gradient to make my move                 

in this step. This idea is empirically found to give good performance. 

 

576



(Refer Slide Time: 38:23)  

 

Here is a visualization of how momentum, Nesterov momentum differ. So, you can see here in                

the momentum update that momentum based gradient descent is a combination of two vectors,              

the momentum step which is the direction in which you have been traversing and the gradient                

step which is what the current gradient is telling you to do, and your actual step is an weighted                   

addition of these two vectors which is perhaps going to tell you the step that you have to take                   

now. 

In Nesterov momentum update you first follow your momentum step and then at that step you                

find what is the gradient and use that gradient to be able to take your actual step, so you do a                     

momentum plus the look ahead gradient which will probably give you this vector. So, there is a                 

slight difference in where you would reach after one step using momentum and Nesterov              

accelerated momentum. 

 

577



(Refer Slide Time: 39:20)  

 

Here is the summarized algorithm for Nesterov accelerated momentum, it is once again the same               

as the momentum based gradient descent, but for step 4 here, step 4 gets your look ahead                 

parameters t minus , you are going to denote that as tilde t and your loss is computed θ    vγ t−1          θ        

with respect to tilde t and that is the gradient that you keep accumulating in your parameter    θ               

updates and the rest of it follows your momentum based gradient descent algorithm. 

(Refer Slide Time: 40:02)  

 

578



Here is the illustration of the same example that we saw a few slides ago. This was the                  

momentum traversal that we saw a few slides ago. Let us see how Nesterov momentum performs                

in the same setting. You see a blue curve starting out there at the same initialization, it seems to                   

form a momentum and here is where it differs, it does not oscillate as much as what momentum                  

does. 

The reason being, when you do momentum remember you are oscillating so you have your               

gradient which takes you to the other bank of that minimum, that gradient tells you to go back to                   

the other bank of that minimum. So, now because your Nesterov momentum is looking ahead it                

is going to also see where you would go in the next step and use that right away this allows you                     

to minimize these jumping around the minima before you actually converge. 

579


