
Deep Learning for Computer Vision
Professor Vineeth N Balasubramanian

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Neural Networks: A Review – Part 01

In the lecture so far we focused on computer vision as it was studied and practiced before the

advent of deep learning. Deep learning has completely revolutionized how computer vision is

done today. While there have been several dimensions to the efforts in computer vision before

this advent of deep learning, hopefully the few lectures that we have had so far give you a peek

into all those efforts, some of which continue to be relevant today when combined with deep

learning especially.

Moving forward, we focus our lectures on deep learning and its use in computer vision. We will

start with the first lecture as a review on neural networks, for those of you that may have done a

deep learning or a neural network course before, this maybe a review, but even if you have not

done such a course before all the interactive material will be covered in these lectures.

(Refer Slide Time: 01:25)

I would like to acknowledge that most of the content of this lecture is based on the excellent

lectures of Mitesh Khapra on deep learning at IIT Madras.

493

(Refer Slide Time: 001:35)

To start with the history of neural networks, the history of neural networks is perhaps older than

the history of computing itself, it is started in the early 1940’s when two researchers, McCulloch

and Pitts work on developing the computational model of the human brain and being able to use

that model to simulate simple function such as logic gates.

Later in the 1940’s a psychologist named Donald Hebb, who came up with what is known as

Hebbian learning which is used to this day. Hebbian learning states that in the human brain two

neurons that are wired together, fired together two neurons that are out of sync fail to link, rather

if two neurons keep getting fired together the strength of the connection between these two

neurons gets better and better over time.

While if there are two neurons that rarely get fire together the strength of their connection

becomes weaker and weaker over time, this is a principle that is used to this day. Later in the

1950’s Frank’s Rosenblatt came up with the first model of the neural network known as the

perceptron. The perceptron is the simplest neural network one could have, which has a set of

neurons which is known as a layer of neurons, which receives a set of inputs, acts on them

through a set of weights and then gives an output which is thresholded to get the final decision.

Rosenblatt also proposed a learning algorithm to obtain the weights in this simple neural

network.

494

In the early 1960’s this learning rule was improved by Widrow and Hoff which is known as the

Widrow-Hoff learning rule or the Delta learning rule. This was the foundation of algorithms that

we use to this day, which we will talk about. However, Rosenblatt claimed that this perceptron

could classify any kind of a data setting, a binary classification setting, Minsky and Papert two

researchers at that time disprove this using the example of the XOR gate which clearly cannot be

separated by a simple passive drop.

This led to a downfall of neural networks in the 1970’s because all the hype of the perceptron has

simply been crashed because of its inability to handle the XOR scenario as well as similar

complex functions. In the 1980's the interest once again revived with development of

Neocognitron in 1980, which is largely considered as the first version of a convolutional neural

network and in 1986 was the development of a ground breaking algorithm back propagation

which we use to this day by Rumelhart Hinton and Williams.

Later in the 1980’s and the mid 1990’s versions of neural networks such as convolutional neural

networks were developed at that time and these neural networks were adopted in various

different applications. One popular application at that time was the handwritten digit recognition

problem which is today known as the MNIST data set, the reason for the popularity of this data

set was the application setting at that time, which was a requirement of the United States Postal

Service, where they wanted the handwritten digits on postal mail to be automatically sorted by an

analysis of the digits on the postal.

Convolutional neural networks was one of the forerunners at that time of performance on the

USPS of the MNIST data set. In the mid 90’s also came the support vector machines SVMs,

which was backed by an elegant theory and also started performing very well on these

applications and for a large part between the mid 90’s and perhaps the first decade of the 21st

century machine learning applications were dominated by what today are known as traditional

machine learning algorithms such as support vector machines, boosting, bagging and many other

variants of these decision trees many other variants of these algorithms.

In the mid 2000’s Geoffrey Hinton and Ruslan Salakhutdinov came up with a hierarchical feature

learning algorithm also known as unsupervised retraining, using which they could initialize the

weights for deep neural network and they showed that this could give distinct advantages of

neural networks to outperform other methods, that was the seed of the deep learning revolution

495

in the years following there were further efforts to improve the training of deep neural networks,

until then neural networks could not be trained with many layers which seem to be a major

limitation.

This culminated in the development of the Alex Net developed by Alex Krizhevsky in 2012 to

weight the image net challenge. The image net challenge is a data set consisting of about 1000

categories images consisting of objects of 1000 categories with over a million images at that

time. And AlexNet outperformed all competitors by significant margin in 2012 taking the entire

attention of the computer vision community.

Since then, every year's winner of the image net challenge has been a deep neural network, not

only the image net challenge but even other benchmark challenges in vision have largely been

dominated by deep neural networks and that has led to the golden age for deep neural networks,

which we hope to see of the rest of this course.

(Refer Slide Time: 09:10)

Starting with the McCulloch-Pitts Neuron, McCulloch was a neuroscientist and Pitts was a

logician proposed a simple computational model of the neuron in 1943 and the way this model

work was you have a function g which aggregates a bunch of inputs which were all binary inputs

at that time and a function f that took a decision based on the aggregation. So the inputs at that

time were considered to be excitatory or 1 or inhibitory, a 0 or minus 1 depending on what

notation you choose for binary numbers.

496

So, your g function was denoted as summation over each of your and your final output y was𝑥
𝑖

given as , where the vector x denotes in different directions in the inputs in the input𝑓(𝑔(𝑥)

space which was given by 1, if and 0 if . This is what is illustrated here on𝑔(𝑥) > θ 𝑔(𝑥) < θ

the right, so you have a set of n inputs, they all coming into the function g, which aggregates

them and f is the function that acts on g based on a pre-specified threshold theta and that decides

the final output, which also is a binary value.

(Refer Slide Time: 10:52)

Here are a few examples of how the McCulloch-Pitts model of the neuron can be used to

simulate different logic gates. Here is the basic simple MuCulloh-Pitts neuron, here is the

McCulloch-Pitts neuron as an AND function, so you have which are aggregated and𝑥
1
, 𝑥

2
, 𝑥

3

the threshold which is chosen to be 3, so the from the is previous slide has chosen to be 3 hereθ

which means this neuron McCulloch-Pitts neuron would give an output 1 only if all the 3 inputs

where 1, because that is when it would exceed the threshold 3, a simple example of an AND

gate.

Similarly, you could use a similar approach to simulate an OR function, whether threshold would

be 1, if either of is a 1, this condition is threshold be satisfied and you get a 1 as the𝑥
1
, 𝑥

2
 𝑜𝑟 𝑥

3

output and so the NOR function you have the McCulloch-Pitts neuron to be something like this,

where if you notice there is a slight change in notation and these inputs now designate that these

497

are inhibitory inputs and not excitatory inputs, which means if one of them is on, it is definitely

going to give an output as 0 and you can clearly see that as long as the threshold is greater than 0

here you would get an output.

Similarly, the NOT function is another setting where you have a single input and it is an

inhibitory input and if you keep the threshold as 0, you can get your output to be 1 to simulate

the NOT gate. As you can see, you can probably simulate most logic gate functions using the

McCulloch-Pitts neurons, in fact it is possible to show that not a single McCulloch-Pitts neuron.

But the network of McCulloch- Pitts feed forward neurons which means you keep taking input

and feed-forward that input to a set of McCulloch-Pitts neurons you can compute any Boolean

function f that goes around Boolean input in n dimensions to an output that is Boolean in 1

dimension rather which means if you had from machine learning if you had an n dimensional

input and the output is a binary classification problem, you could solve it as long as your inputs

and outputs they are all binary.

Early work has shown that recursive McCulloch-Pitts networks can actually simulate any

deterministic finite automata. We are not going to describe that here, but if you are interested you

can look at this work to understand this connection between neural networks and automator in

computer science.

(Refer Slide Time: 14:04)

498

As I just mentioned a few minutes ago Frank Rosenblatt was the psychologist who proposed the

perceptron model in 1958, this was refined much later in the later part 60’s very carefully

analysed by Minsky and Papert who concluded that this cannot work in certain settings, but

before we go there, let us introduce what a perceptron is. A perceptron was a generalization of

the McCulloch-Pitts neuron and now the inputs were no longer limited to Boolean values, you

could have any real value as input to a perceptron.

In addition, each of these inputs were weighted by a set of values which are denoted as to𝑤
1

𝑤
𝑛

which means mathematically your perceptron is going to look like you have your g function,

which was what we had with the McCulloch-Pitts neurons, which takes an input vector x of n

dimensions, once again this could be any n dimensions in any data you could be looking at a

patient record and you may want to say whether the patient is at risk for cancer, so these each of

these attributes could be say the patient blood group the patients age any real value not just

binary values anymore.

And the output of the g function is an inner product between a vector w and the input𝑤
𝑖
𝑥

𝑖

vectors x and the final output is again , which is going to be 1, if is greater than𝑓(𝑔(𝑥) 𝑔(𝑥)

threshold or 0, if is less than a threshold, as you can see it is a generalization of the𝑔(𝑥)

McCulloch-Pitts neuron where the inputs could be beyond and there are weights which multiply

the inputs.

(Refer Slide Time: 16:22)

499

A more general way of writing a perceptron is where the index starts at 0 instead of 1. And the 0

is simply to substitute the threshold on as the part of the equation itself, rather you are now going

to have i is equal to 0 to n, where is going to be 1, it is a constant input 1 all of the time. Today𝑥
0

this is also known as bias. So, if you look at a perceptron as modelling a line, remember the

equation of a line can be written as w is equal to say where each of w and x can be a𝑤. 𝑥 + 𝑏

vector of a certain di mension say, b dimensions.

So, b is the weight w not that we are talking about which is multiplied by the value 1, that is now

subsumed into a common submission which goes from i is equal to 0 to n where is going to𝑤
0

be denoted as and the x corresponding to which is will always be 1. Why do we do it?− θ 𝑤
0

𝑥
0

The reason we do it is now your output y which is will be 1 when is simply greater𝑓(𝑔(𝑥)) 𝑔(𝑥)

than or equal to 0 and 0 if is less than 0.𝑔(𝑥)

Earlier we had instead 0, we had which was the threshold, we are now subsuming that on theθ

left hand side of that equation inside the , we are bringing the , which means now𝑔(𝑥) θ 𝑔(𝑥)

will be the old , let us call that , so that is now written as which is ,𝑔(𝑥) 𝑔(𝑥)
^

− θ − θ 𝑤
0

− θ𝑥
0

so this is is 1 which is what contributes to this . So, this is a more accepted− θ𝑥
0

− θ

convention of writing out a perceptron.

(Refer Slide Time: 18:41)

500

Let us now look at how the weights of the perceptron are derived. So, you have a set of weights

to , you have a set of inputs 1 and then to , remember 1 corresponds to the input for𝑤
0

𝑤
𝑛

𝑥
1

𝑥
𝑛

the weight , you have an input with certain labels with label 1, let us call that set of inputs to𝑤
0

be the positive class or P and you have another set of inputs with a label 0, which let us call the

class as the negative class or the set N. We start by initializing the vector w randomly and then

we loop over a set of steps, let us see what they are.

(Refer Slide Time: 19:31)

501

The first step says, randomly pick a point and input data from P or N, rather you select x coming

from .𝑃 ∪ 𝑁

502

(Refer Slide Time: 19:44)

If x belongs to P, which means it is a positive class and if your output was less than 0 remember

for a past positive class you would have wanted your output to be greater than 0.

(Refer Slide Time: 20:00)

But if it is less than 0 you simply add x to w, why is this so? We will see in a moment and if x

belongs to the negative class and your output turned out to be positive or non-negative could be

equal to 0.

503

(Refer Slide Time: 20:20)

you once again subtract x from w, now you could ask the question, what about the scenario

where x belongs to P and , you simply do not do anything in that particular
𝑖=0

𝑛

∑ 𝑤
𝑖
𝑥

𝑖
 >= 0

scenario. Same case with x belonging to m and the summation being less than 0, you assume

things are good and do not worry about the weights in that scenario. Now, we have a termination

criterion here, which says, until convergence keep doing this, so how do you converge?

You converge when all of your inputs are classified correctly by the w's that you have. What does

classified correctly mean? For all the data points P the output of a perceptron was greater than or

equal to 0 and for all your inputs coming from the set N the output of the perceptron is less than

0. That is the overall idea of the perceptron learning algorithm, but now let us ask the question.

Why would this work? Why should we add x to w? Why does that constitute a learning

procedure and why would that improve the quality of w? Let us see that a bit more carefully.

504

(Refer Slide Time: 21:42)

Remember as we said on the previous slide that a perceptron is a model of a line, because it is

effectively , so it is the equation of the line and the lines equation is given by𝑤𝑇𝑥 + 𝑏

, this line divides your input space into two halves, the halves of inputs where
𝑖=0

𝑛

∑ 𝑤
𝑖
𝑥

𝑖
 = 0

and the halves of the inputs where .
𝑖=0

𝑛

∑ 𝑤
𝑖
𝑥

𝑖
 < 0

𝑖=0

𝑛

∑ 𝑤
𝑖
𝑥

𝑖
 >= 0

(Refer Slide Time: 22:27)

505

Every point on that line satisfies the equation , remember we say , this is𝑤𝑇𝑥 = 0 𝑤𝑇𝑥 = 0

equivalent to saying , which is equivalent to . This is something that we𝑤. 𝑥 = 0
𝑖=0

𝑛

∑ 𝑤
𝑖
𝑥

𝑖
 >= 0

keep interchangeably using for the rest of this course, please keep in mind that whether we say

or or all of them are the same. We know now that every𝑤𝑇𝑥 = 0 𝑤. 𝑥 = 0
𝑖=0

𝑛

∑ 𝑤
𝑖
𝑥

𝑖
 >= 0

point x on that line has to satisfy the equation of that line, which means .𝑤𝑇𝑥 = 0

(Refer Slide Time: 23:15)

Now, what can you tell about the angle between w and any point x which lies on that line? This

comes from geometry, the angle will always be 90 degrees, rather for the equation of any line, let

us say you take the equation of any line which is given by remember once again that the𝑤𝑇𝑥

intercept b is going to get subsumed into , the vector w will always be perpendicular to the𝑤
0

line. Why is that the case?

Because you have , so if you take a point x here, let us take a particular point x on this line,𝑐𝑜𝑠 α

the angle between x and w which is say given by is given by , a simpleα 𝑤𝑇𝑥 / || 𝑤 |||| 𝑥 ||

expansion of the dot product. And angle we know has to be 0 because has to satisfy 0 for all𝑤𝑇𝑥

points of the line and hence the angle has to be 90 degrees. Rather, the vector w is perpendicular

to points on the line, why does this matter?

506

(Refer Slide Time: 24:41)

Now, let us look at a point belonging to class P, remember this point does not lying on the line, it

lies on this you wanted to lie on the side of the line, where , because it belongs to the𝑤𝑇𝑥 >= 0

positive class, you want your perceptron to classify this point correctly, which means the

perceptron should give you a value greater than or equal to 0. Let us see what it would be.

If you want the perceptron to classify this point correctly, the angle between the vector x to P and

w has to be less than 90 degrees. Why so? Let us again write out that line, this is the line which is

given by , remember this is w, this is the set P, this is the set N, so all the input points which𝑤𝑇𝑥

have a negative class are one side of that line, all the input points which are the positive side of

the line belong to the positive class. So, now any point in the positive class lies somewhere here,

which means its angle is now going to be less than 90 degrees.

507

(Refer Slide Time: 26:06)

Similarly, what about the angle between the angle x, belonging to a negative set and w, this

should be straightforward, it has to be greater than 90 degrees for the same way we should

visualize the positive class a minute ago. If you do not get it, you can spend a couple of minutes

drawing it and you see that this should work.

Now, if you have point x belonging to P for which becomes less than 0, it means that the𝑤𝑇𝑥

angle between this x and the current w is greater than 90 degrees, which you do not want to.α

You want to change w to ensure this does not happen, but currently it is greater than 90 degrees.

508

(Refer Slide Time: 26:59)

So, what do we do? We wanted to be less than 90 degrees. So, we are saying that we are going to

add x to w to achieve this purpose and make the angle between w and this x belong to P less than

90 degrees.

(Refer Slide Time: 27:16)

Why do you think that helps? Let us understand that. Let us consider this w new to be ,𝑤 + 𝑥

which means we have added that x which belongs to P to w and got the new w in the iteration, let

us try to understand what the new angle will be.

509

(Refer Slide Time: 27:35)

We just found out that when for a point belonging to P the angle turns out to be𝑤𝑇𝑥 < 0

greater than 90 which we do not want we wanted to be less than 90.

(Refer Slide Time: 27:47)

Now, Let us see what happens for w new. We know that , so𝑐𝑜𝑠 α
𝑛𝑒𝑤

= 𝑤
𝑛𝑒𝑤

𝑇𝑥 / ||𝑤
𝑛𝑒𝑤

|| ||𝑥||

we are going to ignore the denominator and simply say 𝑐𝑜𝑠 α
𝑛𝑒𝑤

∝ 𝑤
𝑛𝑒𝑤

𝑇𝑥

510

(Refer Slide Time: 28:06)

Which can be set is proportional to because , which can be written(𝑤 + 𝑥)𝑇𝑥 𝑤
𝑛𝑒𝑤

 = 𝑤 + 𝑥

as which can be written as , because we know that .𝑤𝑇𝑥 + 𝑥𝑇𝑥 𝑐𝑜𝑠 α 𝑤𝑇𝑥 ∝ 𝑐𝑜𝑠 α + 𝑥𝑇𝑥

511

(Refer Slide Time: 28:30)

Which means because has to be a positive quantity because it is a dot product of a vector𝑥𝑇𝑥

with itself so all values will get squared and you will add up all of those values. You know that

.𝑐𝑜𝑠 α
𝑛𝑒𝑤

 > 𝑐𝑜𝑠 α

(Refer Slide Time: 28:52)

Rather, this tells us that and hence we will get the right weight vector which willα
𝑛𝑒𝑤

< α

ensure that points belonging to P have the output of the perceptron to be greater than or equal to

C. But you can work out a similar scenario for points belong to the negative class and you will

512

get a negative class where the output of the perceptron is greater than equal or 0, you can work

out a very similar scenario, the only thing is you would a negative sign here and you will find

that the new angle will be greater than the old angle which is what we would want for a negative

class.

(Refer Slide Time: 29:33)

That should convince you that this perceptron learning algorithm will keep improving in each

iteration. Now, when would it converge? We only know that it would keep improving in each

iteration, but whether it will get us to that final solution?

We still have not proved it and probably not going to work out that detail here, but if you want a

formal convergence prove to show that as the number of data points increase as the number of

iterations increase you are going to get a solution as long as you can separate points originally

into two classes P and N using a line, you can see this link shared here for the formal conversion

is proof.

513

