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(Refer Slide Time: 0:14)

Last lecture we spoke about describing images using the bag-of-words approach or the

VLAD approach. We will now take this forward and show how these descriptors can be

used for matching between images.
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(Refer Slide Time: 00:39)

Before we go there, once again, an acknowledgement that these slides are taken from the

excellent lectures of Professor Avrithis at Inria Rennes.

(Refer Slide Time: 00:47)

We also left behind one question from last time: since bag-of-words is inherently

dependent on k-means to define its cluster centers, can we consider extensions of

k-means to improve how bag-of-words performs. So one specific example could be

hierarchical k-means which is an extension of k-means clustering algorithm, where the
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cluster centers are organized in a hierarchical manner, starting from a root note, all the

way to a set of leaf nodes. So it happens that this has been explored for bag-of-words two

using a method known as vocabulary tree way back in 2006.

And what this method does is to take hierarchical k-means and build a final partition tree

and now your image descriptors descend from each, from the root to one of the leaves in

each level of the tree. So you have a bunch of cluster centers that you put together from

all of the visual words that you have from different images. Recall that in bag-of-words,

when you build your cluster centers, you pool all the images in your data together, you

take all the features, the descriptors around the features, cluster them using a method, and

then you take those clusters as your, what are known as codebook centers to which each

key point is assigned.

Your image is finally represented as xi, which is one of the elements in your image, in the

descriptor of your image is given by wi into ni, wi is the weight of that particular node in

the tree and ni is the number of key points assigned to that particular cluster center or

cluster centroid in the tree. So one evident thing here is it is difficult to know how wi is

given a value. One could argue that perhaps for levels down the tree, you must have a

higher weight because they are a better match. One could also argue otherwise,

depending on a particular setting there a high level match is perhaps more important than

a low level match. It depends on the application, depends on what is important in a

particular context.

So, which is a constraint of this method that there is no principle way of defining wi,

although you could come up with some juristic on top of the method. The dataset is again

searched using inverted file indices just the maybe we saw it in bag-of-words. And

fundamentally there is an issue here which is that distortion is often minimized only

locally, for example, around a particular cluster centroid. So any error that you make or

any differences between images are only local with respect to that particular cluster

centroid, distortion is not measured on a global sense. It is all with respect to each cluster

centroid, across the occurrence of each cluster centroid in each image across two images

that you are matching. That is how hierarchical k-means can be extended for
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bag-of-words. So one could also consider other extensions of k-means and be able to use

them in such methods to be able to describe images.

(Refer Slide Time: 04:28)

Let us now talk about how you match descriptors from two different images in a more

principled manner. Before we go there, let us try to assess what we know so far? One of

the simplest methods that we have explored so far is nearest neighbor matching, where

you have one image, which is a set of feature points, another image, which is a set of

another feature points. At this time, we are not talking about any bag-of-words

aggregation. It is simply a set of features in one image and a set of features in the other

image.

We use each feature in a set and its corresponding descriptor to independently index into

a feature from the second set. We simply do a nearest neighbor matching based on the

descriptor of the feature in each of these images. Can you think of what could be a

limitation of such an approach?

An inherent limitation of this approach is that you could be ignoring useful information

of co-occurrence. So it is possible that there could be one image where there could be

multiple instances of the same feature. Think of, say, spots in a leopard or stripes in a
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zebra or so on and so forth. And you may be mapping a single feature in one image to

multiple different features in the other image because they all look similar.

For example, a spot on a leopard in one image could get mapped to multiple spots on a

leopard in a second image. You ideally would not want to have, want this to happen. You

would want each spot on a leopard to get mapped to be one spot on the leopard in the

other image and another spot to get mapped to another spot and so on and so forth.

Or the example that you see on the slide here, which is a giant panda, which again has

some features which repeat in its structure, which could get mapped to the same instance

in the second image, which is what you see illustratively here. This will be the ideal

setting where each feature gets mapped to the same, to an independent feature in the

second image and this could be another scenario where two different instances of the

same feature get mapped to the same feature on the second image which is not desirable.

This could lead to some problems when you use a nearest neighbor matching approach.

(Refer Slide Time: 07:01)

We have also seen the bag-of-words matching approach so far. Any glaring limitation that

you see of this approach, an evident limitation is that the bag-of-words approach is

limited to a full image matching, not a partial matching, because you are going to be

looking at the histogram of the occurrences of a cluster centroid in image one versus such
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a histogram for image two, you would say two images match only when the complete

histograms are fairly close to each other. So if only a part of the second image matches

the first dimension, these histograms will not match and you will not get a good match in

this kind of setting. So in other words, you could say the bag-of-words is an all-all

matching, but we ideally want some sense of a one-to-one matching of one part of the

image matching with another part, so that we can still match some images which could be

partially close to one another. Ideally speaking, the nearest neighbor matching was a

one-to-one matching approach, but it has its own limitations.

(Refer Slide Time: 08:16)

Now let us try to generalize how you can do this descriptor matching using a method that

you would have seen in machine learning which is kernels. You may have heard about

kernels in support vector machines. So we are going to use a similar idea here to be able

to generalize matching between descriptors. Recall that even in support vector machines

or for that matter any other machine learning algorithm works where kernels can be used.

Kernels are a sense of similarity between two data points. It is the same principle that is

being used here also.

To be able to do that let us define the setting so far. So you have an image described by

end descriptors let us say. So X is an image given by where each of these𝑥
1
,  𝑥

2
,  ···,  𝑥

𝑛
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is a d dimensional vector. Remember this could just be the cluster centroids or could be

individual features.

And looking at the bag-of-words example, these descriptors are typically quantized using

k-means clustering or for that matter any other clustering method. They are quantized,

which means you simply do not take all the features in an image. You try to see which

cluster center they belong to and only have a count in that particular cluster center as a

representation of that particular feature or that particular cluster center. This quantization

function is given by q, which takes us from to a subset of C of , where C is called a𝑅𝑑 𝑅𝑑

codebook, which is given by to .𝑐
1

𝑐
𝑘

So there are k possible cluster centroids which, as I just mentioned, you get by doing a

k-means clustering on the features from all images. And in a single image, you try to see,

you use a quantizer function, which takes you from every feature to one of these cluster

centroids which is nearest to it. This is the setting.

Now let us try to define the kernel. So the kernel now is given by given two images, X

and Y, the matching kernel which as we will see soon are𝐾(𝑋,  𝑌) = γ(𝑋)γ(𝑌)

normalization functions, we will see why we need this in a moment, into summation over

all the cluster centers that you have , where M is the within-cell matching Σ𝑀(𝑋
𝑐
,  𝑌

𝑐
)

function.

So it is the, M is the matching kernel function that you are talking about and that happens

for each, the occurrences of each cluster centroid in one image and the occurrences of

that cluster centroid in the second image. So we still have to define what M is. We will

see a few examples of that as we go forward.

So is required here because you do not want to be biased by the presence ofγ(𝑋)γ(𝑌)

number of features in a given image. For example, it is possible that you may detect say a

1,000 features in one image and just 200 in the other. If you would simply do a

summation you would always be biased by an image that has a lot of features because the

count would go up and which may not really be a perfect match.
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So the are normalization functions, where you can divide by the total numberγ(𝑋)γ(𝑌)

of features in the image so that the matching is not biased by the, simply the number of

features in an image.

(Refer Slide Time: 12:01)

Now let us try to see a few examples of how M would look in examples that we have

seen so far. So if you turn to the bag-of-words matching, bag-of-words matching is in a

way a cosine similarity between the cluster centers in the two images. You could define

that whatever we have seen in bag-of-words similarity so far can be defined by a

matching kernel which is given by, you take which is one of your codebook elements𝑋
𝑐

or your cluster centroids and you count how many occurrences of that are there in image

X, how many occurrences are there in image Y and you simply add them all.

Rather for one particular codebook entry , if you had 10 such features in image X that𝑐
3

correspond to and three such features in image Y that correspond to , the𝑐
3

𝑐
3

corresponding matching kernel is simply 10 x 3 here, which becomes 30. You simply

count that over a double summation. So that is simply a bag-of-words model. Remember

that the normalization function, as I said, would take care of normalizing by the total

number of features in the image itself. But this is what M is defined as.
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(Refer Slide Time: 13:24)

You could extend this to another approach known as hamming embedding for matching,

where if you assume that each descriptor can be binarized in some way, for example, you

could take a descriptor and simply say that anything greater than a threshold is one and

anything less than a threshold is zero, you could binarize any descriptor for that matter.

Then you compute your matching kernel as it is, again, similar to your bag-of-words

kernel. The only difference now is you are only going to count the number of instances

where the hamming distance between bx and by is going to be less than a threshold. This

is simply your hamming embedding. So the hamming, h, is the hamming distance

between the two binary vectors and is a threshold that you have to specify to be able toτ

get a matching kernel in this particular setting.
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(Refer Slide Time: 14:25)

You can also define VLAD matching in the same framework. Remember, again, that

VLAD is similar to bag-of-words, the only difference is you do not count how many

features belong to a codebook element or a cluster center. You rather obtain all the

features that belong to a codebook element or a cluster center and rather count the

residual vector.

Recall again, in VLAD you have a cluster center. For example, you could have two

cluster centers. You have a set of features that are closest to this particular cluster center.

You have another set of features which are closest to this particular cluster center. So you

take the difference between them which is going to be a residual vector and you add up

all the residual vectors that belong to one particular cluster center and that becomes the

representation for this cluster center. And similarly, you would do this for other cluster

centers.
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(Refer Slide Time: 15:30)

Now, if this was the representation, how do you do the matching kernel? So the matching

kernel is given by the entire representation of image X is going to be a set or an entire

vector represented by That is going to be the(𝑉(𝑋
𝑐

1

), 𝑉(𝑋
𝑐

2

), 𝑉(𝑋
𝑐

3

), ··· 𝑉(𝑋
𝑐

𝑘

))

representations corresponding to each of your codebook elements. And your matching

kernel is now given by , which is an inner product between the𝑉(𝑋
𝑐

1

)𝑇𝑉(𝑌
𝑐
)

representation for the codebook entry in X and the codebook entry in Y. But this is𝑐𝑡ℎ 𝑐𝑡ℎ

simple to expand, because is a summation over all the Xs that belong to that𝑉(𝑋
𝑐
)

particular code entry and their corresponding residuals.

So you expand using a summation. Similarly, using its summation and you𝑉(𝑋
𝑐
) 𝑉(𝑌

𝑐
)

now have the new matching kernel as a summation over all the elements or the, all the

features that belong to that codebook entry in image X and a summation over Y for the

same codebook entry and inside you are going to have , so the residuals are𝑟(𝑥)𝑇𝑟(𝑦)

aligned with each other.

Rather, if you try to understand the intuition here, you are trying to say that if you have a

cluster center, say in image X, the same cluster center in image Y. Let us say you𝑐
3

𝑐
3
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have three features in image X belonging to this cluster center. Similarly say three

features belonging to this cluster center in image Y. You are going to take one of these

residuals and see how the other residual matches with this residual. If the two residuals

match, you are going to get a high matching score. Rather, if even how the features were

configured around the cluster center match between the two images, it is a better match.

(Refer Slide Time: 17:41)

A more general way of combining all of these ideas was known as the aggregated

selective match kernel or ASMK which combines a few ideas that we have seen so far. It

combines the non-linear selective function that we saw with hamming embedding. We

will see that in a moment and also it combines ideas from VLAD.

So the way this method works is you take VLAD, which is what you see as the argument

inside and you normalize the VLAD vectors, which is what you define as . So , what𝑉
^

𝑉
^

you see at the bottom of the slide is given by , effectively you are trying𝑉(𝑋
𝑐
) / ||𝑉(𝑋

𝑐
)||

to make the VLAD vector which is the sum of all residuals into a unit norm vector. And

you now take an inner product between the VLAD vectors, very similar to what we saw

in the previous slide. Because this is an inner product, the output of this is going to be a

scalar.
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Now you use a non-linear selective function of this scalar to get your final matchingσ
α

function. What is this ? The is defined as for any input u, is defined as theσ
α

σ
α

σ
α

. If u is greater than a threshold , remember the inner product is a measure𝑠𝑖𝑔𝑛(𝑢) |𝑢|α τ

of similarity. Higher the value, the better for u. So if u is greater than a threshold, you

may want to weigh things a bit more which you can control using . And if u is less thanα

a threshold, it is zero, very similar to the hamming distance. We say that if the hamming

distance was less than a threshold, we will count it more. If not, we would not count it.

This is a very similar idea, although we use VLAD vectors for achieving the same goal.

So you can see here that if is 1, this is just u itself. If is 1, will be u itself.α α 𝑠𝑖𝑔𝑛(𝑢) |𝑢|

(Refer Slide Time: 20:01)

Let us see a few illustrations of this idea to make this clearer. So this is a few illustrations

of different choices of alpha and tau values. So on the top left here, you see is 1, whichα

as, we just said, which is u itself. It is simply the dot product of the normalized VLAD

vectors and in this case is zero. So anything greater than zero, you are going to considerτ

that as u itself to be the as the, the score to be u itself.

So you can see here, in this case, yellow corresponds to say zero similarity and red

corresponds to maximum similarity per image pair. So there are few features that do not
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match at all and there are a few features that match very well and all of them are shown

in the top left image.

If you see the top right, you can see here, again is equal to 1, but is equal to 0.25. Youα τ

can see now that a lot of the yellows have come down. You are now saying that that score

u must be at least 0.25 for us to consider that to be a match. And you see now that many

of these false matches disappear because anything, any low score is now disregarded.

The bottom row shows an example where is equal to 3. Where you see again, when isα α

equal to 3, remember that because you are normalizing your VLAD vectors, being highα

is going to reduce the value because u is going to be a value lying between 0 and 1,

because you have normalized the vectors, it is likely to be a value between 0 and 1. So if

, which is the exponent of u is high, the values are going to go even smaller and that isα

what you see here on the left, where do you see that some of these reds have disappeared,

because they have gone closer to 0.

And on the right, you see a similar thing where when is equal to 3 and is equal toα τ

0.25, again you get a few more yellows, which could be smaller values at this point in

time, because u, the exponent u, exponent which is 3 here may have reduced the valuesα

because u lies between 0 and 1.

So you can see here that larger selectivity down-weights false correspondences, which is

what we see here with tau is equal to 0.25 on both the images on the right. And this entire

approach replaces the hard thresholding that we have in hamming embedding and gives a

different way of going about a similar approach.
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(Refer Slide Time: 22:41)

Here is another illustration of results after applying the ASMK method. Where you see

here that each of these colors in these different images correspond to the same visual

word. It is, so the green or the yellow or the blue is the same visual word occurring in

different images. So you can see here that if you take any particular example, for

example, if you take, say the pink or the red, you would see that the pink or the red visual

word corresponds to some corner or some pointed corner in each of these images.

(Refer Slide Time: 23:18)
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All of these kernels can be generalized into efficient match kernels, where you could

define this kernel as some continuous function and avoid using any codebooks𝐾(𝑋,  𝑌)

for that matter at all. Because codebooks can be computationally intensive to compute

and then compute the residuals and so on and so forth, you could directly impose a kernel

function between the individual features in one image and the individual features in the

other image.

Once again, very similar to how kernel functions were used in support vector machines or

other machine learning algorithms which had a kernel competent to it. Ideally you would

want this can be decomposed into , where is the representation of𝐾(𝑋,  𝑌) ϕ(𝑥)ϕ(𝑦) ϕ

each feature in a different space. Then you would have your final kappa to be some

normalization of X into the summation of all of your representations of x for each of

these, for all your features transpose a similar aggregation for Y. This is a generalization

of these methods that we have seen so far.

(Refer Slide Time: 24:42)

That concludes this lecture. So for more readings, this particular paper to aggregate or not

to aggregate summarizes these kernels very well. Please do read through it when you get

a moment and chapter 14.4 from Szeliski’s book would be your other reference for this

lecture.
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