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Lecture 16 
Hough Transform 

The next topic that we are going to talk about in trying to match shapes or any other                  

templates on an image is the method known as Hough Transform. 

(Refer Slide Time: 00:31) 

 

Once again, these lecture slides are also based on the excellent lectures of Professor Yannis,               

at Inria Ren, as well as the lectures of professor Mubarak Shah at the university of Central                 

Florida. 
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(Refer Slide Time: 00:48) 

 

We have already seen a couple of line fitting methods. We saw least squares fit and then we                  

saw RANSAC. The question that you are going to ask now is, what do you do if there are                   

multiple lines placed in a particular orientation or placed in a particular configuration in an               

image? It could be multiple lines, it could be a polygon, it could be a circle, then how do you                    

deal with fitting a shape onto the set of data points that you have? And that is what we are                    

going to talk about now, when we Hough Transform. 

(Refer Slide Time: 1:30) 

 

This method dates back to the early 60s, by Hough, who filed the U.S. patent for this, but                  

since then, there have been many efforts that have translated this into what we see today. In                 
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the early 70s, the Hough Transform was used for detecting lines and curves. Then in the early                 

80s, there was a method that came that was called a generalized transformation and we will                

see all of these over the next few slides. 

Let us start with the simple equation of a line and Cartesian coordinates, which we all know                 

is , where we say that is the slope and is the intercept. You could just play xy = m + c      m      c    y      

with the terms of the equation a little bit, and then write this as .− xc = m + y   

Rather we now live in an space where is intercept, define the line in that space.      , cm     x   c   y        

So, were originally in the space, where define the slope and define the y intercept.     , yx     m      c      

We could just rearrange these terms slightly to now go to an space where becomes            , cm     − x   

the slope and becomes the intercept. In this kind of a context, every point in space   y    c            , cm    

becomes the equation of a line in the space, remember for every choice of and , you        ,x y        m   c   

will get the equation of a line as we see here. And every point in the x y space similarly                    

would become the equation of a line in the space. There is a dual correspondence         , cm         

between these two spaces. So what do we do with this? 

(Refer Slide Time: 3:35) 

 

We know that to fit any model we need a certain number of samples. For example, to fit a                   

line, we need two samples. If it was any other model, if you were fitting a square or a circle,                    

we need a different number of points. To fit a line, you may need two points. Let us start with                    

that example. But even if you had just one point instead of two points, you know that it could                   

397



belong to a certain family of lines. It gives you some partial information about the line                

equation itself. 

So, what we can ask every point in your space to do is to vote for certain configurations         ,x y           

of , in case you are talking about a line, if aligned. Every point can vote for what  and cm                  

configuration of m and c would have resulted in this point being at that particular location.                

And then you collect words for all such points and try to seek consensus and wherever the                 

majority vote, you are going to say that that is the equation of the line that I am looking for.                    

Let us elaborate on this and go through slowly. 

(Refer Slide Time: 4:50)  

 

Before we go forward, we spoke about the Cartesian coordinates on the previous slide.              

Unfortunately, the Cartesian formulation can be problematic for vertical lines. You may say             

why? When you have a vertical line, your slope is unbounded, it becomes difficult to               

represent such a line in your m, c space because m has to be infinity. 

So, in such a scenario, it may be wiser to use a slightly different parameterization, the polar                 

parameterization, which is been written in terms of and , where is the distance of the        ρ   θ   ρ       

line from origin and is the angle made by the normal to the X axis. You can also write    θ                 

This is a standard polar parameterization that is used going from.ρ = x cos θ + y sin θ             

Cartesian coordinates to polar coordinates. 
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We know now that in this space, is at least lower bounded by 0 and lies between 0 and       ρ          θ      

360. We know that these quantities are bounded, which makes it slightly easier to work with. 

(Refer Slide Time: 6:17)  

 

So, every point in your original space, in your Cartesian space votes for many points in           x, )( y       

your parameter space. So, if you had a certain line, certain point in your original Cartesian            x1      

space. For the moment, we are going to talk about this method generally, in terms of a                 

Cartesian space and fitting a line or fitting a circle and so on and so forth.  

A little later in this lecture, we will talk about how you use this with images. If you already                   

have a sense of what is coming, we are trying to find out how do you use Hough Transform                   

to match lines or circles or any other shape in an image. That is the goal of this lecture or the                     

method discussed in this lecture. 

But before we go to an image, we are just going to talk generally about Cartesian coordinates.                 

So, if you have a point in the space, you know that there are a family of lines that      x1  x, )( y             

can pass through , and each of those lines has a correspondent it is going to have a   x1          , cm         

slope and the intercept, and all of them will result in corresponding points in the   y              , cm   

space or the space. If you go to the space, you will have a slightly different   , θρ        log         

variation. They will correspond to a point here in the r theta space. 

So, for every point can vote for many points in your parameter space, which that    , yx              

particular point could have been lying on. So, each line to through this point, is a x1               x , )( 1 y1    
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vote for a point in a parameter space that satisfies . Let us see a few          ρ = x cos θ + y sin θ       

examples. 

(Refer Slide Time: 8:12) 

 

Here is another line that passes through and that would work for a different point in the       x1            

parameter space, which is here. 

(Refer Slide Time: 8:23) 

 

Here is another line that passes through , that would vote for a different point in the       x1           

parameter space. Remember the parameter space now is defined in a polar parameterization. 
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(Refer Slide Time: 8:36) 

 

And you keep repeating this for several lines that could have passed through and all of             x1     

them get votes in the parameter space. 

(Refer Slide Time: 8:46)  

 

Similarly, you could have another point in your original space through which you would      x2          

have another set of lines that can pass in your original Cartesian space and each of those lines                  

may vote for them for a different parameterization in your parameter space. You can see that                

again, here, these are little examples for several lines that pass through , you get several            x2     

votes in the parameter space.  

 

401



(Refer Slide Time: 9:17)  

 

Let us try to re recount this through an algorithm. So, you have your data X, you have a set of                     

quantized parameters, theta min to theta max. For example, if you take polar             

parameterization, you may not want to vote for every angle between 0 and 360, you may                

want to divide 0 to 360 into 10-degree bins and have only 36 possible theta values. That is                  

what we mean by a quantized parameter here. 

You also initialize an accumulator array, which is simply a frequency count. It is simply a                

frequency count of vote. You can look at it that way. So, for every point in your               (x, )y     

Cartesian space, we try to see for theta belonging to theta, you have 10 possibility thetas. If                 

you write out . We try to see for each set of model parameters consistent   ρ = x cos θ + y sin θ             

with the sample, so which rho and which theta would align with this particular X, Y that we                  

have taken. You increment A for that theta and rho. 

So, you imagine the accumulator being a 2D matrix defined by theta values on one axis and                 

rho values on the other axis, which could also be quantized, you could quantize distance into,                

distance of say a certain number of units. And whichever rho and theta we know corresponds                

to this X and Y that we have, you go to that rho and theta and in each of these cases, you                      

could check for consistency and increment that cell in the accumulator matrix by 1. And you                

keep doing this for every X Y point that is given to you. Those are your set of points that are                     

given to you and you keep accumulating and at the end, you do a non-maximum suppression                

in A. 
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So, if you have many different bins that have a high vote, you do a non-maximum local, local                  

non-maximum suppression to see which bin has the really highest votes and your define that               

theta and rho to be corresponding to the model that corresponds to your, that directly has a                 

bearing on the data in your X matrix. This gives you a way of estimating the theta and rho or                    

in Cartesian coordinates, finding the equation of the line, corresponding to this set of points               

that are given to you. 

As you can see this is very similar to a least square fit, but doing it in a slightly different way.                     

We are still trying to fit a line to a set of points that is given to us, but we are doing it using                        

the Hough voting approach. 

(Refer Slide Time: 11:54)  

 

Now, as I promised, here is an example from an image perspective. Let us say we have an                  

image and the image has several lines and we want to find the equations of those lines. That                  

could be several applications where this may be required. Let us say for instance, that you are                 

trying to take images of a computer chip and trying to find out how those lines are aligned on                   

a computer chip and so on and so forth. You want to find the equations of those lines. 
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(Refer Slide Time: 12:24) 

 

So, using the same approach that we just talked about on the earlier slide, you assume a                 

certain parameterization, you ask for each point to vote to which parameterization may have              

generated in that particular point, and you end up getting votes over your accumulator 2D               

matrix, let us just say a and . So, you can see here that you have a bunch of votes that is      ρ   θ                

spread across many different accumulator bins, we said that accumulated as a matrix that is               

rho and theta. 

(Refer Slide Time: 12:54)  

 

Now, you are doing non-maximum suppression to maintain only the local minima in your              

accumulator. And once you do this local maxima, you find that there are four maxima here                
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which corresponds to four values or four parameterizations of lines, which are the four lines               

that you actually have in the original image. And those are the points that were voting for                 

each of those accumulator bins. This way you can find out the equations of those lines, as                 

well as which points in the original image correspond to those equations, to be able to extract                 

that shape in that image. So, you can actually find equations of lines in any image given to                  

you using this approach. 

(Refer Slide Time: 13:44)  

 

Let us make this a bit harder now. Let us say we want to now find circles in an image. We did                      

talk about block detection earlier, but now we want to exactly find the circle with its radius                 

and center and be able to parameterize it perfectly. So, circle fitting is very similar to line                 

fitting, that is going to be the fitting that you are looking for .             x ) y )( − x0
2 + ( − y0

2 − r2 = 0  

What should be the dimensions of the accumulator? For line, the accumulator was a 2D               

matrix. What would be the dimension of the accumulator for circle fitting? 
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(Refer Slide Time: 14:29) 

 

It would be a 3D three-dimensional accumulator, where you have , which corresponds          , yx0  0    

to the center of the circle and r which corresponds to the radius of the circle. Those are the                   

three votes that each point is going to be voting for. Since we have three possibilities here,                 

one option is to fix one of the parameters and generally you fix the radius and then look for                   

the rest, ask every point to vote what is the center and then you can keep going around and                   

going in a round Robin manner to ensure that every point works for all three parameters at                 

the end. 

So, you keep incrementing the accumulator for every vote that a point makes to each of these                 

values and at the end, you do a local maxima in a, and this way you can actually estimate the                    

parametrization of the circle that you are looking for. Here is a visual illustration, where               

given a set of coins in an image, you can actually now find out where those coins lie and what                    

is the radius of that coin by first extracting edges.  

So, in this, you have to first extract edges, and then be able to use those edge information to                   

be able to find the exact parameterizations on the surface. So when I say parameterizations, I                

mean define the centers and radii of each of those circles that you have,  
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(Refer Slide Time: 15:56) 

 

You need not stop with just lines or circles, you can obviously do this for any other shape. As                   

long as you can parameterize any shape in an analytical manner, you can give a set of                 

equations to define a shape. All you have to do is take a point in your original image and ask                    

you to vote for what would be the parameters of a polygon that that point belongs to or lies                   

on. And then you just count which parameterization got the highest votes amongst all the               

possibilities in your parameter space, and simply define that to be the polygon or any shape                

that you are looking for. 

But what, if you are looking for the shape that has no analytical description. For example, on                 

this slide, you see this irregular shape, which has no analytical distribution, which has no               

analytical definition. How do you estimate, how do you find such shapes in an image? We do                 

assume that the shape has given to us.  

So, you do know that this is the shape that you are looking for in a given image and it could                     

be of different sizes, could be rotated in different ways, it could be scaled, all of those                 

transformations are possible. But we want to find where in the image it lies. The only thing                 

we know is that the shape in this particular case may not have an analytical definition. You                 

cannot write it as an equation. What do you do in this particular case? 

You define a reference point in the shape. Like you could define, for example, an x naught y                  

naught as a reference point in that shape and now every edge point of this shape can be                  

defined with respect to that reference point. So every point here has a certain length           x, )( y      
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from your reference point and a certain angle with respect to the reference point    , )(x0 y0            

. As an example, could be the centroid of that object that you are looking for., )(x0 y0     , )(x0 y0              

But it need not be the centroid, it could be any reference point. 

So, once you have a centroid or any other reference point, for each edge point that you have,                  

so remember again, that given a new image, you have to first do an edge detection to get the                   

edge points. Then for each edge point you compute what is the distance to the centroid. You                 

would first do this for the template object that you have before you run it on any new image.                   

This is when you know that this is the shape you are looking for, you define a reference point                   

for each edge point in this particular shape, you compute a distance to the centroid, which is                 

 and an each orientation .ri  ϕi   

And then you create something called an r table. And what the r table says is that, for a given                    

edge orientation , what are all the possibilities? What are all the points that could have a   ϕ1                

certain radii with the same orientation, with respect to the reference point? Similarly, for              

another point with another orientation , let us say is this particular edge point. That      ϕ2      ϕ2        

has a certain radius with respect to the reference point. Similarly, there could be another point                

with the same angle, which would have a certain radius , there could be a third point with          r21         

the same angle, same image orientation and that could have a radius and you create an r            r23       

table, which connects these orientations and these distances to that centroid of the reference              

point. So once you have built this r table, what do we do?  

(Refer Slide Time: 19:31) 
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Here is the algorithm of what is known as Generalized Hough Transform. So, you have your                

data. You are given your r table, which you have already built from the shape that was given                  

to you. Remember once again, that the shape is defined for you. Not defined is given to you,                  

it is not well defined mathematically is given to you. Using that shape you construct               

something called the r table and you also construct an accumulator array for how many of the                 

dimensions you have to estimate.  

So, if that reference point has two coordinates, you have only two coordinates to vote for.                

Otherwise, you may have other parameters too. If you allow your shape to change in multiple                

ways, you could have other dimensions in your accumulator for which also the points can               

vote. 

In this particular case, to keep it simple let us assume that the shape is going to be the same,                    

just that the shape could be placed anywhere in the image. No scaling, no rotation. Let us                 

assume that that is the scenario here. So, the only thing that we are trying to find is where                   

would the centroid of that object?  

So, you have an accumulated array, which is of two dimensions going from to ,             Xcmin  Xcmax  

are the maximum values that the centroid can assume in the X axis.c to Y cY min   max               

Similarly, and . And you initialize the accumulator, every cell of the accumulator Y cmin   Y cmax            

to 0. Then for every point for every , in your r table, you try to write if your centroid can        ri   ϕ              

be written as this , . x + ri cosϕi  y + ri sinϕi   

If you can write your centroid with respect to this, given x y using this particular formula,                 

you would increase the accumulator for that particular centroid. And you keep doing this for               

various different centroid possibilities, where your centroid possibilities will come from           

to and to , where you discretize your possibilities of the centroid andXcmin  Xcmax   Y cmin   Y cmax           

you create an accumulative array. 

That is the way you would do it. And at the end, you would get a set of values, a set of                      

frequency counts as to what each x y voted for and you do a non-maximum suppression to                 

find the local maxima and that is going to give you the final xc yc which correspond to this                   

new set of points that are given to you.  

Speaking in terms of images. Once again, let us assume that this is the shape that you are                  

looking for. As I said, we assume in this example here, that we are only looking for the shape                   
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as is, no scale change no rotation change. So, which means the only thing that can change is                  

the center of the object could be all different parts. So, that is why we are voting only for                   

where the center is. And so given a new image, you run an edge detector and for each edge                   

point, let it work for where the centroid would be and wherever you get the maximum votes                 

for the centroid is where your centroid potentially could be. 

You could use this kind of an approach to say, find a car in an image. If you knew a car has a                       

particular shape, you defined that shape, you now ask every, you run an edge detector on the                 

new image, and then ask each point on the edge to vote for where the center of the car is and                     

based on that, you can probably trace where the car is located in the given image.  

So, you could use such an approach even for object detection. Again, within sudden changes               

in your shapes in the possibilities of the shape. If a car’s pose completely changes, obviously                

this kind of an approach will not work in that scenario. So, it works only with certain                 

tolerance. 

(Refer Slide Time: 23:23) 

 

To summarize the Hough Transform, it is an effective approach for detection of shapes,              

objects, including say multiple, even if there were multiple cars, you can probably find all of                

them. You could have multiple maxima in where, edges vote for the centroids of the cars and                 

each of them may be different instances of a car in a given image. So, you can also use this                    

for detection of multiple instances of object in an image. 
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The advantages of the Hough Transform is that it deals with occlusion fairly well because it                

is a voting procedure. As long as the number of votes is high, it does not matter if certain                   

votes went wrong. So, even if a certain part of the object was occluded it can work.                 

Obviously, if a significant part of the object is occluded it will not work. It is also robust to                   

noise for the same reason, because you only need to look at certain set of pixels, and as long                   

as they vote for a majority, as a majority, you are going to get your shape or object in the                    

image. 

The problem here is it can be computationally expensive because depending on how you              

quantize your parameter space. Remember that every point has to cast a vote for different               

possibilities in your parameter space, which can be time consuming. And setting your             

parameters and quantizing them may not be easy for different kinds of shapes. For line, circle                

and a few really defined shapes, it may be straightforward, for certain other shapes this may                

not be easy or quantizing them may not give very accurate answers. Those are some               

limitations to work with here. 

(Refer Slide Time: 25:02) 

 

Here is the visualization of the car example. So, you have a model image and there are some                  

key points with respect to a reference point at the center of the image. So, you record the                  

coordinates relative to the reference point in the model image and for every test image, you                

look for the same configuration of the key points with respect to the centroid of the object.  
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(Refer Slide Time: 25:37) 

 

So, in these particular cases, the car is inverted, but when the test image is of the same                  

conphiguration as the original object, you would find a match in this particular scenario. 

(Refer Slide Time: 25:47) 

 

Here is one more example. So if you consider your model image to be the Eiffel Tower and                  

here is a test image which is also the Eiffel Tower taken in a different scale on a different day                    

with different lighting conditions. 
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(Refer Slide Time: 26:02) 

 

You then have your accumulator after you find your model image points in your original               

image and your test image, you have your accumulator that votes for the centroid of the                

object with respect to various key points in that object. You consider a local maxima, you do                 

not see very clearly here, but the local maxima is somewhere in the middle. 

(Refer Slide Time: 26:29) 

 

And based on that you vote for where the Eiffel Tower is located in the test image. 
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(Refer Slide Time: 26:36) 

 

Your home work for this lecture is Chapter 4.3 of Szeliski’s book and a couple of questions                 

for you to think about. How would you Hough Transform to detect ellipsis, squares and               

rectangles? Try to work out what the parameterizations or the analytical forms of each of               

these shapes is, and try to find out how the accumulator array would look in each of these                  

cases. That should help you address these problems. 

And a real-world use case. Let us assume your friend working in a diagnostic startup asks                

you how to count the number of red blood cells in a blood sample automatically? So you                 

have a blood sample, you want an automated way to count the number of red blood cells                 

using Hough Transform. What would you advise him or her? Something for you to think               

about. 
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And here are the references. 
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