
Deep Learning for Computer Vision
Prof. Vineeth N Balasubramanian

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Lecture 12
Image Segmentation

Last lecture, we spoke about feature extractors and feature distractors. In particular, we spoke

about shift and it's variants. Before we go to other kinds of features, we will take a slight

detour, and talk about another important task in processing of images, which is image

segmentation.

(Refer Slide Time: 0:46)

Human vision has been studied extensively from several perspectives, and one of the

perspectives of human perception has been based on what is known as the Gestalt theory,

which emerged almost 100 years ago, which had this fundamental principle that the whole is

greater than the sum of its parts.

And one of the important cornerstones of this theory was the idea of grouping, to understand

human vision. So this is a very popular optical illusion. It is known as the Muller-Lyer

illusion which asks a viewer as to which of these horizontal lines is longer. And because of

the human perceptions bias towards viewing things as a group and not the individual

components, the illusion actually arises here and makes one line look longer than the other

while the horizontal lines are exactly the same length in both of these images.

280

(Refer Slide Time: 2:00)

So Gestalt theory proposes various factors and images, which can result in grouping. So on

one hand you could have proximity to be a reason, when there are objects or artifacts in the

images, which are simply close to each other and these groups lie in different parts of the

image, that could result in one kind of a grouping or it could just be the similarity of the

objects themselves.

Some objects are hollow circles, some objects are filled circles, and just because these objects

are different they get grouped differently, when we perceive this image. Other factors could

be parallelism, and there are groups of lines that have similar properties in terms of

parallelism we end up grouping them or another option could also be just symmetry.

Just seeing artifacts in the symmetric sense makes us group them in one particular manner.

Further, you could also have similarity of a different kind, you could have a common fate in

terms of these arrows telling you where these dots are going. So in the second example here,

all these dots are more or less lying in a straight line, but the arrows let us group them

differently. So in a sense of where they are going to go along the direction of the arrows,

gives the human visual system a queue to how they should be grouped.

Or it could be purely, because of a common region that was already marked as a circle, it

could be due to continuity of artifacts, it could be due to closure of artifacts, as you can see,

there are many factors that result in human perception viewing things as groups.

281

(Refer Slide Time: 3:57)

And Gestalt theory is fairly descriptive, it lays down various different rules and principles

that could lead to grouping when humans perceive images. However, these rules by

themselves are not clearly defined enough to become algorithms, so you really, cannot take

the rule directly and implement a pseudo code for that rule that could help you find say

groups in an image.

So for the rest of this lecture, we are going to talk about that task called image segmentation,

where we try to group similar pixels into different groups. You could call this akin to

clustering, where you group different pixels into their own clusters. So a significant part of

this lecture is taken from David Forsyth’s book and Szeliski’s books and we will share these

references at the end.

282

(Refer Slide Time: 4:53)

One of the oldest methods for image segmentation is known as watershed segmentation. This

was developed way back in 1979. An image segmentation, remember is the task of grouping

pixels in an image, right, so that is the task that we are looking for. So watershed

segmentation method, segments and image into what are known as catchment basins or

regions. It goes along with the name that is why it is called watershed segmentation that will

be become clearer in the next slide.

So you can view any grayscale image as a 3D topological surface. So for example, if you

have this grayscale image, very similar to how we viewed an image as a function way back in

one of the earlier lectures, so you can view an image as a 3D topological surface where the

whiteness peaks at these bevelled locations and the whiteness subsides in other locations, and

the dark areas are where you have black pixels in the original image.

What watershed segmentation tries to do is to segment region, segment the image into

regions with a conceptual idea of rain water flowing into the same lake, so you are going to

create a methodology, we are going to assume that you are going to flood water in your

image, and wherever you have catchment basins in the image, imagine this 3D topographic

representation of the original image. Wherever you have water stagnating, those groups of

pixels form segments. Let us see this in a bit more detail.

283

(Refer Slide Time: 6:50)

So you identify various local minima in your image, remember, local minima, as simply

values were our pixel locations where your image intensity value is low. Remember again,

that image intensity can lie between 0 and 255 or 0 and 1 if you normalize the values in the

image.

So, you pick in, you take certain neighborhoods say whatever 5X5 patch or 7X7 patch

whatever that may be, and using that process, you find out local minima that lie across the

image and you flood the landscape from local minima, and prevent merging of water from

different minima, which means you would start with a local minima, and slowly keep

expanding, which is equivalent to flooding here until you go to a point which is reachable in

the same number of pixels from another local minima.

So that is where the boundary between these two regions would lie. So the simple process

results is nothing very fancy about this other than whatI just mentioned. So this process

results in partitioning the image into catchment basins and the watershed lines. Remember,

this method was proposed in the late 70s and it was used for many years to segment images

into various parts.

284

(Refer Slide Time: 8:20)

It was generally applied on image gradients rather than the image itself, just to give you a bit

of visual example. So, the original image is this one, we ideally want to group the pixels. So,

you first take a gradient image. Now, you know how to take a gradient image run an edge

filter on the original image.

So, now the watersheds of your gradient image are given in your bottom left image and you

finally refine and get your segmentation output and put it back on the original image the last

image. A simple method, but works rather effectively, however, it does have some

limitations.

285

(Refer Slide Time: 9:06)

If there is a lot of noise and irregularities in the image for example, let us say you have a

heavily textured image, so you can imagine a lot of undulations in the texture of the image or

if there is noise in the image, you are going to end up with something like this, because they

are going to be lot of catchments. So now trying to flood those areas will lead you to many

watershed lines that separate many different regions, resulting in what is known as over

segmentation.

So keeping this in mind, watershed segmentation is typically used as part of an interactive

system, where a user points out a few different centers in the image, and then the algorithm

floods from those centers alone, not worrying about other centers that could be in the image,

so this idea can help overcome the limitation of over segmentation. If you would like to know

more, you can read chapter 5.2.1 Szeliski’s book. This is one of the earliest methods.

286

(Refer Slide Time: 10:17)

Since then, there have been many methods that people have developed, and one could

broadly categorize methods into two kinds, Region Splitting, and Region Merging. In region

splitting methods, as the name suggests, the idea is to start with the image, and then keep

splitting it into finer and finer regions.

We will see one example of this method a little later in this lecture. The other kind, which is a

bit more popular are what are known as region merging methods, where you start with a pixel

as a region and keep merging similar pixels and forming regions and you can keep going

forward all the way till the complete image.

So here is an example of an image, which has been merged into groups of pixels, groups of

pixels are also sometimes called superpixels, and this is sometimes generally used as a

preprocessing step for higher level segmentation algorithms.

287

(Refer Slide Time: 11:19)

One of the popular methods to do image segmentation was graph-based segmentation, which

was proposed in the early 2000s by Felzenszwalb and Huttenlocher, they proposed a

graph-based segmentation algorithm, which used dissimilarities between regions to find out

which regions to merge in a given iteration. So, if you considered an image as a graph G with

vertices V, and edges E, so, you have a set of vertices and a set of edges and the pixels form

your vertices initially and edges are defined between adjacent pixels.

So, we define a pixel to pixel dissimilarity metric for example, this could be based on the

intensity values in these two pixels. You could also define this using more sophisticated

mechanisms by probably taking a neighborhood and taking oriented gradients and so on and

so forth, but whatever be that measure you have a pixel to pixel dissimilarity metric, which is

defined as W of E which is the weight of that edge joining those two pixels on which we are

defining the dissimilarity where edges is given by v1, v2, where v1 and v2 are two pixels.

For example, this dissimilarity metric could be the intensity differences between the N8

neighbors of both these pixels. When we say N8 neighbors, we stake a three cross three

neighborhood and excluding the central pixel you will have eight different neighbors, we are

calling that as N8 neighbors, so you take two different pixels, take their N8 neighbors and

find their intensity differences that could be one way of computing W of E.

288

(Refer Slide Time: 13:10)

Once, W of E is defined the method defines a quantity called internal difference for every

region C. Initially, remember, the region C would just be a pixel, but in future iterations a

region could be a collection of pixels.

The internal difference is defined as the largest edge weight in the regions minimum spanning

tree, which means if you have a bunch of different pixels you find the minimal spanning tree

of the bunch of pixels that you have. Now you take the largest edge weight in the minimum

spanning tree. We are going to define that as internal difference. To some extent, that is going

to be the largest edge weight in that region, it is just a simplified way of saying that, that is

one quantity we are going to define.

289

(Refer Slide Time: 14:06)

Another quantity we are going to define is called minimum internal difference. Minimum

internal difference is given by, if you had two regions C1 and C2, the minimum internal

difference between these two regions is given by minimum of the internal difference of C1

plus τ(C1), where τ(C1) is some manually chosen penalty.

So, I will explain that in a moment, and then the second quantity is the interval difference of

C2 and τ(C2). So, τ(C1) and τ(C2) could just be say the number of pixels that you have in the

region may be normalized based on that or so on and so forth, and so you have a quantity and

you take the minimum of both these quantities.

You have region one for whom you define, its internal difference plus some penalty region

C2, whose internal difference and its corresponding penalty, and you take the minimum of

these two.

290

(Refer Slide Time: 15:08)

Once you have this for any two adjacent regions, which have at least one edge connecting

any of their vertices, we define a quantity called Diff(C1, C2) which is given by the minimum

weight edge connecting these two regions. So for example, you consider all edges V1, V2

such that V1 comes from region C1 and V2 comes from region C2, so all edges between

those two regions and you take the minimum weight of the edges that connect these two

regions.

(Refer Slide Time: 15:46)

291

With these quantities defined, the method defines a predicate D for any two regions C1 and

C2 as if Diff(C1, C2) is greater than the minimum internal difference between C1 and C2,

then you say it is true, otherwise, you say it is false. This illustration should help you

understand this a bit better. Remember, diff is the minimum edge weight between two

regions, whereas minimum internal difference is a minimum internal difference within each

of these between C1 and C2, whichever is the minimum. So, if the difference between the

two regions is greater than the minimum internal difference, you do not want to do anything.

(Refer Slide Time: 16:36)

If it is the other way, regions would be merged. It means if this predicate turns out to be false

you know that diff is equal or lesser than minimum internal difference, which means C2 is as

close to C1 as the farthest separated pixels in C1 so you may as well merge C1 and C2. That

is the main idea with this particular method. So to summarize, this algorithm merges any two

regions whose difference is smaller than the minimum internal difference of these two

regions.

292

(Refer Slide Time: 17:18)

Here is an example of how this works using the N8 pixel neighborhood. So you can see that

the results are fairly good, the different players get separated reasonably well,parts of the

body gets separated reasonably well. If you are more interested, please look at chapter 5.2.4

in Szeliski’s book.

(Refer Slide Time: 17:41)

The next method we are going to look at is another popular method called probabilistic

aggregation, which was proposed by Alpert et al in 2007. This method is again, a region

merging algorithm and it is a probabilistic approach as the name suggests, and it uses two

different cues, intensity values for the gray level values, as well as some texture content of

the specific regions in the image.

293

So initially, the method considers each pixel as a region and then you assign a merging

likelihood pij. So for every two pixels, i and j, there is a likelihood pij, which says how likely

are these two pixels to merge? And how do you assign that pij? Based on their intensity and

texture similarities.

We are not going to go into each of these details. I will point you to the reference if you are

interested in knowing how exactly it is implemented you can look at the paper for those

details, but it is broadly based on intensity. You know how to compute intensity by now you

know how to compute texture we talked about it the last time, so the pij is based on intensity

and texture similarities between the two pixels.

(Refer Slide Time: 19:00)

Now, given a graph in a particular iteration, let us say it is an (S-1)-th iteration the graph is

given by a set of vertices V(S-1) and E(S-1). So the graph at the next iteration G(S), where you

hope to merge a few regions is obtained by you consider a subset of node C from V(S-1) and

you merge nodes or regions if they are strongly coupled to regions in C.

So what you would do here is you would consider those pixels so which means you would

say that if you took a subset of nodes in V(S-1), whichever other nodes, right, we would ideally

consider other nodes which are in V(S-1) - C. So those will be the other pixels in V(S-1). You

consider those pixels and for whichever pixels you have V summation of pij j belonging to C

divided by summation of pij j belonging to V(S-1) - C, when this ratio is greater than a

threshold, you know that there are certain pixels that are quite likely to merge as the pixels in

the region C itself.

294

So, if this ratio is greater than a threshold which the paper recommends to set to point 2 then

you merge those images.

(Refer Slide Time: 20:35)

And once you merge those regions, you propagate those assignments to the final level

children, which would be the property of any region merging algorithm and you do this

coarsening process recursively.

(Refer Slide Time: 20:54)

Here is an example of how probabilistic aggregation works in practice. So this is an image

taken from Szeliski’s book. So you can see here that image A is the original gray-level pixel

grid, so it is a 5x5 image. So you can see the inter-pixel couplings in B image so a thick edge

295

means a stronger coupling, a thin edge means a weaker coupling so you can see that the

pixels that are white are strongly coupled to each other, because of the intensity similarity.

Then in an image C, you perform one level of coarsening where you combine edges that are

close to other edges, that you take one particular pixel when you start which would be C, then

you take all the other V(S-1) - C of all the other pixels in V(S-1) - C and then you would try to

find out which of them has a higher probability of merging based on intensity similarity and

texture similarity again.

And then you keep repeating this process, you can see that after two levels of coarsening, you

get a fairly good estimate of different regions in the image.

(Refer Slide Time: 22:12)

Moving on to another popular method known as Mean Shift Segmentation, this method is a

different approach and it uses a mode finding technique based on non-parametric density

estimation.

So, non-parametric density estimation is a standard procedure for that people in machine

learning use to estimate the density of any given set of observations. So the feature vectors of

each pixel in the image are assumed to be some samples from some unknown probability

distribution and we are going to estimate the probability density function of the image and

find its modes.

Remember, in some sense the modes would be like what we had for the watershed

segmentation. Aalthough, in that case we did a minimum, now we are going to talk about a

296

maximum. And then the image is finally segmented. Once you identify the modes in the

image the image is segmented pixel wise by considering every set of pixels which climb to

the same mode, as a consistent segment we will describe this for the next few slides.

(Refer Slide Time: 23:24)

So, let us consider an example image as you can see here, so, it is fairly real world image. On

the right, you see the representation of the image. So, we talked about color spaces in week

one. So, one of the color spaces that is popularly discussed is known as the L*u*v* or LUV

color space. So, this is simply for simplicity a plot of only the L*u* features of this image just

for simplicity of plotting.

So, in this feature space, we ideally want to find out what are the modes of the overall

distribution of the intensities in the L*u* space. So how do you find the modes of such a

distribution?

297

(Refer Slide Time: 24:13)

If you recall your studies in machine learning, you would recall that one of the popular

upload approaches to estimate the probability density function or modes would be through

kernel density estimation. So we are going to use the same method here to be able to estimate

what is the PDF and what are the modes of the distribution of intensities in a particular space

while we have taken example, as the LUV space, you could do such a mod finding in any

other space for that matter too.

Just for simplicity, we are going to consider a one dimensional example. So remember once

again, that this is a one dimensional signal, which can be extrapolated to image as a 2D

signal. So the way we would estimate this function is, we would convolve the data let us

assume that you have observations given by these impulses here so you can see those vertical

lines, those are your observations that are given, so you would estimate your density function

f, which is what we want to estimate by convolving, your data, your observations with some

kernel of width h.

Let us assume that you have a kernel k, so you could do it as a falling of function where h is

the width, and you have x-xi to be your function, your quadratic function that you are falling

off over.

So convolving your observations with this kernel will give you an estimate of what is your

original F function, that your observations were coming from? What do we do with this?

298

(Refer Slide Time: 25:49)

So to find the modes, mean shift segmentation uses a gradient ascent method with multiple

restarts. Why ascent? Because we want to find the maximum of or the modes of that

probability distribution.

So we start with some guests, y0 for a local maximum, which could just be any point,

remember, we are going to perform gradient ascent, which is an iterative procedure. So you

start with some point and at every iteration you add some constant times the gradient to the

previous estimate and you update your estimate again, and again and again. So you have a

guess, y0, which could be any random point xi.

(Refer Slide Time: 26:35)

299

So we calculate the density or the gradient of the density estimate f(x), we just talked about

how f(x) is computed using that kernel. How do you choose that kernel? We will talk about it

in a moment. So you have the gradient of the density estimate f(x) at y0 and we take an

essence step in that direction. So the gradient is going to be given by something like this

summation (xi - x)g of this quantity where g is nothing but k prime or the derivative of the

kernel k, which is written as the simple derivative.

(Refer Slide Time: 27:14)

So, the gradient of the density function can actually be written slightly differently, you can

write the gradient again, let us see the previous slide. So, this was the gradient that we just

had (xi - x)g() when g is -k՛(.) or the gradient of kernel.||𝑥−𝑥𝑖||2
ℎ2

300

So we are going to show that this can actually be written slightly differently, where the

gradient can be written as ΣG(x-xi), where G(x-xi) is simply the same small g that we saw on

the previous slide into m(x) where m(x) is like a weighted contribution of the X values that

you are considering in this particular combination. So .Σ𝑥𝑖𝐺(𝑥−𝑥𝑖)
Σ𝐺(𝑥−𝑥𝑖)

(Refer Slide Time: 28:16)

Why is this a correct way of writing from the previous slide? I am going to leave it to you for

homework. It is not too difficult to find this out, try to work it out stepwise and you will

actually get the answer.

So this vector m(x), which corresponds to the gradient is also known as the mean shift. It is

the difference between x sorry, I did not point you to this -x here, but the mean shift is the

difference between x and the gradient weighted mean of the neighbors around x, x is where

you place the filter and (x-xi)s are the values in the range of that filter and you do convolution

very similar to how we saw convolution earlier. In this case, we are only talking about 1D

convolution for simplicity.

So the vector m(x) is the mean shift the difference between x and the gradient weighted mean

of the neighbors around x.

301

(Refer Slide Time: 29:13)

And once you get your mean shift, which is also your gradient, in this particular case, subject

to a scalar multiple, then your next iteration in your gradient descent, your gradient ascent,

you are going to say yk+1 is equal to yk + m(yk), which can also be written this way.

Remember, we just have yk and x would get canceled because that is where we are placing yk

at this point in time and you will be left only with yk as the quantity which will become yk+1.

(Refer Slide Time: 29:58)

And you keep doing this process iteratively and you would finally reach the mode of the

distribution, and then you would find out all the neighboring points which by climbing would

lead to this mode will form one segment.

302

Other points, which by climbing would reach to other modes, would go to those segments.

Clearly, this method relies on selecting a suitable kernel width in addition to the kernel itself,

we use a quadratic kernel here what width you choose is also important and will impact the

final result and that is chosen empirically.

In the above description, the approach seemed to be color-based we took it in the LUV space.

You can also consider other kinds of features, other kinds of feature spaces to find the modes

in it. More interested, please look at chapter 5.3.2 in Szeliski’s book.

(Refer Slide Time: 30:55)

One more method which is not a region merging method, but a region splitting method is

normalized cups for segmentation. Once again, a very popular method was used for many

years. Once again a graph-based method, but a different approach.

In this case, a graph representing pixels in an image is successively split into parts. It is not

about merging this time, it is about splitting. How do you split it, you mark edge weights

between pixels based on their similarity, so if two pixels are very similar, maybe they have

similar intensities, you give them a high edge weight and if two pixels are further apart in

their similarity you give them low weight.

So here is an example of such a graph that is constructed. So the goal of this would be to find

the min cut, you are not going to work out the entire math here. If you are interested, you can

look at the references and learn more about it, but you try to find the min cut, which is going

303

to give you two different regions as shown here. And those edges when you remove, you get

the corresponding two segments, which is your original objective.

(Refer Slide Time: 32:19)

The min-cut is defined as sum of all weights being cut. So you consider two sets A and B,

two sets of vertices and for all i belonging to A and j belonging to B, you add up those edge

weights wherever you get for whichever choice of A and B, you get a minimum cut value that

is the cut that you are going to choose to divide the graph into two segments.

So, clearly as you can observe here, this method only divides two segments at a time. So if

you want more segments, you will have to do this more and more times or probably use other

heuristics if you wanted to combine them later into fewer signals.

304

(Refer Slide Time: 33:11)

But one of the problems with using the min-cut is that it can also result in trivial solutions.

Why so? Can you think about it? Why does this min-cut problem result in trivial solutions?

The answer is very simple, when A consists of say only one pixel, and B consists of say,

another region of pixels, this summation may be restricted to a smaller set and hence may

have a smaller value when you sum all of them up, which means min-cut could favor regions

where there is only one pixel on one side, which may simply be an outlier and may not really

form a good segmentation for the image.

How do you overcome this problem? This problem is overcome by a method called

normalized cut, which improves the min-cut problem and the normalized cut is defined by

.𝑐𝑢𝑡(𝐴,𝐵)
𝑎𝑠𝑠𝑜𝑐(𝐴,𝑉) + 𝑐𝑢𝑡(𝐴,𝐵)

𝑎𝑠𝑠𝑜𝑐(𝐵,𝑉)

305

(Refer Slide Time: 34:29)

We will see a moment what they are. Association is defined again, as sum of all the weights

in A and V where assoc(A,V) is given by assoc(A,A)+assoc(A,B). It is the sum of all the

weights.

(Refer Slide Time: 34:50)

And now what you have done by doing this association of A, V and association of B, V is to

ensure that the denominator contains the number of pixels in each of these regions. So if there

was only one pixel in one region, remember that one of these quantities will become very

high as against another region, which had many more pixels where the denominator will pull

down.

306

This ensures that you do not get trivial solutions such as what you saw in min-cut, but you get

more useful solutions in practice.

(Refer Slide Time: 35:28)

So the normalized cut happens to be an NP-complete problem, but there are approximate

solutions to solve this slightly more involved, but you can look at the paper called normalized

cut and image segmentations if you are interested in how the method is actually implemented,

that this is the overall formulation.

(Refer Slide Time: 35:49)

307

Here is an example of how normalized cuts work. So this is the input image and you can see

the various different regions gets segmented using normalized cuts in over the iterations of

the method.

(Refer Slide Time: 36:08)

There have been many other methods for image segmentation too, such as simply using K

means clustering. There have also been methods based on Markov Random Fields and

Conditional Random Fields, and many more.

If you want to have a detailed understanding, please read chapter five of Szeliski’s book there

are more references at the end of this lecture too.

(Refer Slide Time: 36:29)

308

But the question that people to ask now is, do we really need all of these segmentation

methods. So think the entire course is based on deep learning for computer vision? Are not

there deep learning methods that can segment images today? Do you really need all of this? It

is a valid question for many tasks today, you do not need these methods. The purpose of

covering these topics is to give you a context of computer vision in the pre deep learning era,

but some of these methods have also been used in the deep learning era.

(Refer Slide Time: 37:06)

For those of you who are a little bit more aware about these areas, the earlier methods of deep

learning that were used for detection of objects, which means given an image, you try to find

an object and draw the bounding box as to where in the image that object lies that is the task

of detection and there could be multiple instances of objects or multiple objects in an image.

For the initial methods of deep learning for object detection, these kinds of segmentation

methods but actually used to generate what are known as region proposals where the objects

could lie. As I said, one of the first R-CNN, which is a region CNN work, that was used for

object detection, used a min-cut segmentation method known as CPMC, Constraint

Parametric Min Cuts, to generate region proposals for foreground segments.

We will talk about this in detail when we come to that section of this course.

309

(Refer Slide Time: 38:06)

But that is the reason why image segmentation is useful for you to know at this time.

Segmentation can also go beyond images into videos. If you go into videos, the principles for

the methods are very similar, although, there is a third dimension that comes into the picture,

but the kind of tasks that one wants to solve in videos is say shot boundary detection, which

is an important problem in video segmentation, where you have to divide an entire video into

shots.

Remember that if there is a very long video, and you want to understand the video, let us say

you have a movie and you want to be able to understand the movie by automatically passing

the video on the movie, you first have to divide the entire movie into shots, and then try to

analyze each shot for understanding the scene understanding the characters so on and so

forth.

So that is an important task in video segmentation. Another important task with videos is

what is known as motion segmentation, where you may want to isolate the motion in the

video of an object. So you could be wanting to isolate a person running. For example, there is

a football game and you want to track a person moving with the ball from one end of the field

to the other into the field, or you may want to track a car, so on and so forth.

So for further information on this, please look at chapters 15 and 17 of the David Forsyth

book in the references of this course.

310

(Refer Slide Time: 39:37)

That concludes this lecture, which gives you an overview of how image segmentation

methods were used in the pre deep learning era. Some of them as I said were used actually

even with deep learning methods, although not as much at this time, but for more readings

please do read these references given here and recall we left one derivation as homework for

you, go back and see, how to derive the final expression for the gradient of the kernel density

function used in the mean shift method.

(Refer Slide Time: 40:12)

There are some references.

311

