
Deep Learning for Computer Vision
Professor Vineeth N Balasubramanian

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Lecture 10
Scale Space, Image Pyramids and Filter Banks

Moving on from the last lecture, we get into Scale Space, Image, Pyramids and Filter Banks

in this one. If you recall, one of the limitations of the Harris Corner Detector that we stated

the last time was that it is not scale invariant. That is, what would have been a corner in an

image could have been an edge in another image which is zoomed in. Let us try to quickly

recall this before we move forward.

(Refer Slide Time: 00:49)

Once again, an application where you would want to detect key points or corners is when you

have two different images or even more number of images. Let us say, if you want to stitch

these images together, this is typically called image mosaicking or this panorama building.

So, let us say we have these two images here, which correspond to the same scene from two

different locations. We really do not know the camera movement between these two images,

but we want to stitch these two images. How do we go about it?

215

(Refer Slide Time: 1:28)

We typically detect key points in each of these images independently. How do we do that?

An example would be the Harris Corner Detector. We are on the Harris Corner Detector on

image one, we run the Harris Corner Detector on image two, and then we match which key

point or set of key points in image one matches which set of key points in image two. How do

we do the matching? We will talk about it a little later in this course, but our focus now is on

finding those key points.

(Refer Slide Time: 2:04)

And one method that we spoke for finding those key points is the Harris Corner Detector. We

said that in the Harris Corner Detector, we build something called the autocorrelation matrix

216

and then take eigen decomposition of the autocorrelation matrix. And then we said that when

one and , which are the two eigenvalues of your autocorrelation matrix a, are small,λ1 λ2

then it means that the region is flat, there is no change.

When one of the eigenvalues is much greater than the other, we say it is an edge and when

both the eigenvalues are large, it corresponds that that particular patch has a lot of changes in

multiple directions and we call such a point a corner. And that is what is our methodology for

coming up with the Harris Corner Detector.

(Refer Slide Time: 2:59)

But some observations that we made towards the end is that the Harris Corner Detector is

rotation invariant.

217

(Refer Slide Time: 3:09)

But the Harris Corner Detector is not necessarily scale invariant. Which means, what is a

corner in one image need not be a corner in another image which is zoomed in where it could

seem just like an edge.

(Refer Slide Time: 3:28)

So, we are ideally looking for a setting where we can analyze both these image artifacts in

different scales and be able to match them at the right scale and that is the way we would

make the Harris Corner Detector scale invariant.

218

(Refer Slide Time: 3:45)

Before we go there, let us try to ask how we can independently select interest points in each

image, such that the detections are repeatable across different scales. So, which means, there

are two images at different scales. When we say scales, they are zoomed in differently, one of

them is zoomed in a lot, one of them is say zoomed out. We ideally want to be able to detect

a key point in both these images. Remember that if you take the patch size to be the same in

both these cases, in one of those images which is zoomed in, a key point may just look like an

edge when you zoom in a lot. How do we counter this?

A simple approach could be that we extract features at a variety of scales by using say,

multiple resolutions in a pyramid and then we match features at the same level. That could be

one of the simplest things that we can do.

219

(Refer Slide Time: 4:44)

Where do you think this will actually work? If you thought carefully, you would find that as

long as you match features at the same level, the properties of the Harris Corner Detector will

only be compared at the same scale, but to be scale invariant, we ideally need to compare the

Harris Cornerness measure, recall the Harris Cornerness measure. At a different scale in one

image and the Harris Cornerness measure at a different scale in the next image. So, how do

we do that?

(Refer Slide Time: 5:24)

So, what we try to do now is to extract features that are stable in both location and scale and

we are going to try to describe how we are going to do that over the next few minutes.

220

(Refer Slide Time: 5:39)

So, if you have two images, notice again that we have two images now, which definitely

differ in scale. In one of them, this inside artifact are paintings and one of them this insight

artifact is quite small and then we are zooming into that artifact on the right image. We now

ideally want to find a corner, which is indicated by the yellow cross there. We want to find

the same corner in both these images irrespective of the scale differences. How do we go

ahead and do that? So, we want to find a function f which gives you a maximum at both x

and sigma, the sigma is denoted as the scale of the image in this context.

(Refer Slide Time: 6:28)

221

And the way we are going to go about doing it is, we compute your scale signature, in this

case, it could be the Harris Cornerness measure. At that particular point for a particular scale

and let us say that particular point has a particular Harris Cornerness measure, which is

plotted on a graph.

(Refer Slide Time: 6:50)

We then change the scale. In our case, a simple way to change the scale is simply to take a

larger patch for your autocorrelation window. So, if you take a larger patch for your

autocorrelation window and now take your Harris Cornerness measure, you are going to get a

slightly different value for the Harris Cornerness measure. So, remember in the x axis, we are

measuring scale, so we have changed the scale, which is the size of your autocorrelation

window and we now get a different Cornerness measure.

222

(Refer Slide Time: 7:23)

And you do this for different scales. So, which means you again take a different patch size,

compute the Cornerness measure for that patch size. Remember again, that from a definition

of our Harris Cornerness measure, the autocorrelation matrix would change if the size of your

patch changes. Remember again, that we did a summation with all the pixels and that will

change now when the size of your patch changes.

(Refer Slide Time: 7:50)

So, we do this for more scales, more scales, and you see that you will get such a graph when

you do this for multiple scales. So, the takeaway from this graph is that we seem to be getting

the maximum Cornerness measure or the maximum Cornerness response at a particular scale,

223

which is going to be important to us. At that particular scale is when the Cornerness measure

is the highest for that particular key point in that given image. So, how do we take this

forward?

(Refer Slide Time: 8:27)

We now take another image. So, in this case, as I said, that is the maximum, that is what we

are showing in this particular slide.

(Refer Slide Time: 8:34)

Now, we take another image, which is the one on the right which is zoomed in version and

perhaps there is a slight rotation of the first image. And now again at the first scale, compute

224

the Cornerness measure. At the second scale, compute the Cornerness measure and we repeat

this process for all the different scale that we considered for the first image.

(Refer Slide Time: 9:02)

And as we keep doing this, we are going to get another graph for the second image where the

peak now is at a different scale.

(Refer Slide Time: 9:15)

The peak now is at a different scale which is denoted by that particular value. So which

means now we have made some progress. We have been able to find what would be the

Cornerness measure, the maximum Cornerness measure for a particular point, both in

225

location and scale. So, location would be the coordinate of that center of that patch and scale

would be the scale at which we got the maximum cornerness measure. One question that we

ask ourselves now is, is there a better way to implement this?

(Refer Slide Time: 9:51)

The answer to that is to use what are known as image pyramids. Instead of changing your

patch size in each of your images, you fix your patch size across any images you may

encounter, but change your image size by doing a Gaussian pyramid, recall our discussion of

Gaussian pyramids when we spoke about interpolation and frequencies. Remember a

Gaussian pyramid is constructed by taking an image, Gaussian smoothing the image, then sub

sampling the image and repeating this process again and again.

So, we do the same thing now and keep the patch size the same and construct a Gaussian

pyramid. Keep in mind, that when you construct your Gaussian pyramid, it need not always

be reduced by half each time, you can also reduce your sizes by say three fourth or by any

other faction by using interpolation methods.

226

(Refer Slide Time: 10:54)

When we consider an image pyramid, there are several kinds of pyramids that you can

construct and use in practice. So, the Gaussian pyramid is what we have seen before, which is

what the top part of this diagram shows, which is about taking the original image, let us call it

G1. Then you smooth the image and then down sample it and then get a G2. Then you again

smooth G2, down sample it, get a G3 and you keep repeating this process.

There is also another way of getting another kind of a pyramid called Laplacian pyramid,

which is obtained by, you take G1, which is your original image. Once you get your G2,

which is your smoothened and down sample image you again up sample G2 and again

smoothen it. Now, when you compute G1 minus G2, that gives you a quantity called L1. The

reason why we call L1 a Laplacian pyramid is because Laplacian can be written as a

difference of two Gaussians. Why so? Let us try to see it a little illustratively at this time.

So, recall the Laplacian filter that we discussed in the last lecture. A Laplacian filter could be

drawn as something like this. This was one way of drawing it. Remember, we could also have

drawn it the other way, where you have it as something like this. So, both are Laplacian

pyramids depending on whether your central value is negative or positive. If you see purely

from a graph perspective, this is a 1D Laplacian. If you will purely see from a graph

perspective.

Such Laplacian can be written as the difference of one Gaussian, which is say wide, let us

call that Laplacian some cursive g1 and say another Gaussian, which is narrow, let us call it

227

Gaussian G2. When you subtract G2 from G1, you will actually get a shape, which is similar

to the Laplacian.

Clearly you will have to choose the variance for G1 and G2 appropriately to get the kind of

Laplacian that you are looking for. And because in this particular example, G1 minus the

smoothed up sample version of G2 turns out to be a difference of Gaussians, it effectively

was done out to be some kind of a Laplacian which is why we call it a Laplacian pyramid.

And you repeat the Laplacian for every successive lower resolution representation in your

Gaussian pyramid and get multiple L2s and L3s so on and so forth, to also get a Laplacian

pyramid. For different applications, you may want to use a Gaussian pyramid or a Laplacian

pyramid.

(Refer Slide Time: 14:02)

But where do you use image pyramids in practice, in multiple applications? You could use it

for compression because you may want to just transmit a low-resolution version of the

original image and send some other information through other means and be able to

reconstruct a high resolution from the low-resolution image.

228

(Refer Slide Time: 14:21)

You could use an image pyramid for object detection. How and why? You could use it by

doing a scale search and then doing some features. What we mean here is, you could look for

an object firstly in a low resolution part of the pyramid and once you find the region of the

image, where you get the object, then you go into the next high resolution, search in that

region a bit more carefully, find where the object is and then, you can repeating this in high

resolutions.

(Refer Slide Time: 14:55)

You can also use an image pyramid for stable interest points, which is what we have been

discussing so far.

229

(Refer Slide Time: 15:02)

Another application of image pyramids could be registration. In registration, is the process of

aligning key points from two different images. How do you use image pyramids in

registration? You can do what is known as coarse to fine image registration, where you start

by constructing a pyramid for each image that you have.

So, you have a coarse level, a medium level and a fine level. And you first compute this

Gaussian pyramid and then align features at the coarse pyramid level, just at this level to start

with. Once you do that, you then continue successively aligning with final pyramids by only

searching smaller ranges for that final match.

(Refer Slide Time: 15:59)

230

Moving on from the image pyramid, we will go to the third topic that we are covering in this

lecture, which is the notion of textures, which is closely connected and built upon the other

concepts that we are covering. What are textures to start with? Textures are regular or

stochastic patterns that are caused by bumps, grooves and or markings, the way we literally

call them textures.

(Refer Slide Time: 16:32)

So, these textures give us some information about the spatial arrangement of colors or

intensities in an image. On the right side, you will see that textures can give you an idea of

materials, textures can give you an idea of the orientation. Textures can also give you an idea

of the scale that you are dealing with. So, textures contain significant information to be able

to make higher level decisions or predictions from images.

231

(Refer Slide Time: 17:02)

It is also important to keep in mind that even if you had a single image. Let us say you

obtained a high-level statistic, such as the histogram of an image containing 50 percent white

pixels and 50 percent black pixels. In this scenario, we could have images of multiple kinds,

three samples of what you see on the slide. You could have the image to be something like

this. You could have the image to be something like this, or you could have the image to be

something like this.

In all these three cases, the histogram contains 50 percent white and 50 percent black, but the

textures are vastly different. So, it is not only important to get global statistics, it is also

important to get local texture information to be able to understand what is in images.

232

(Refer Slide Time: 17:59)

So, how do we actually represent textures? Let me let you think for a moment. So far, we

have seen edges, we have seen corners, we have seen corners at different scales. How do we

represent textures? The answer is you put together whatever you have seen so far. And how

do we put them together?

(Refer Slide Time: 18:26)

We compute responses of blobs and edges at different orientations and scales and that is one

way of getting textures. So, the way we process an image is we record simple statistics, such

as mean and standard deviation of absolute filter responses of an image. And then we could

take the vectors of filtered responses at each pixel and cluster them to be able to represent

233

your textures. There are multiple ways of doing this, but that could be the general process of

capturing the textures and images. We will see a couple of examples of how texture can be

captured in an image.

(Refer Slide Time: 19:11)

A simple way to do this is by what is known as filter banks. Filter banks are as the word says,

a bank of filters. We are not going to use just a Sobel filter or a Harris Corner Detector or

Laplacian to compute blobs, we are going to use a set of different filters, a bank of different

filters. And what do each of these filters do?

Each of these filters can be viewed as what are known as band-pass filters. This goes back to

our discussion on extracting low-frequency components and high-frequency components in

images. Band-pass filters are filters that allow a certain band of frequencies to pass through

and get as output when you convolve a filter with the image.

So, remember we have seen examples of filters that extract high-frequency components, edge

detection. We can also be opposite to get low-frequency components by doing Gaussian

smoothing. At this point, with band-pass filters, we are saying that we want only certain set

of frequencies to pass through, and we are going to use a bank of such filters to be able to

separate the input signal into multiple components, each one carrying a certain sub band of

your original signal image, and that can be used to represent the texture in your image.

234

(Refer Slide Time: 20:40)

Here is a visual illustration. So, you process an image with different filters. So, you see here

eight different filters that you can come up with. This is your input image. So, you convolve

each filter on the image with the image and these are the responses that you get when you

convolve each of those filters with the input image. As you can see, each of these outputs

capture different aspects of the texture or the content in that butterfly, and they all put

together give you a sense of what is the texture in the image.

(Refer Slide Time: 21:23)

We will talk about a more concrete example, which are known as Gabor filters. Gabor filters

are a very popular set of band-pass filters. At a certain level, they are known to mimic or

235

mimic how the human visual system works. But they allow a certain band of frequencies and

reject the others.

(Refer Slide Time: 21:46)

The way Gabor filters work is intuitively, they can be seen as a combination of a Gaussian

filter and a sinusoidal filter. So, here is an example of a sinusoidal filter for certain

orientation. Here is an example of a Gaussian filter. If you convolve a Gaussian filter and a

sinusoidal filter, you would get something like this. Imagine superimposing your sinusoid on

your Gaussian, you would get something like this.

(Refer Slide Time: 22:20)

236

Mathematically speaking, a 2D Gabor filter can be written as you have an x, y, you have a , λ

, , and , we will talk about each of them in a moment. And it is given byθ ψ σ γ

(x, , , , , ,) e e g y λ θ ψ σ γ = −()
2 σ2

x +γ y′2 2 ′2 i(2π +ψ)λ
x′

We will talk about each of those quantities, we are not going to derive this in this particular

course, that may be outside the scope.

But in this particular formula, , we will talk about what theta is. is the cos(θ) sin(θ)x′ = x + y θ

orientation of the normal to the parallel stripes of the Gabor. We saw that the sinusoid could

be oriented in a particular direction and that is given by theta. So, , cos(θ) sin(θ)x′ = x + y

− sin(θ) cos(θ)y′ = x + y

(Refer Slide Time: 23:24)

is the wavelength of your sinusoidal component. Remember your sinusoid has aλ

wavelength and a frequency. So, your wavelength, is the phase offset of your sinusoidal λ ψ

function. Once again, recall our discussion on Mitch frequencies earlier. is the standard σ

deviation of your Gaussian envelope.

And is a spatial aspect ratio and specifies the electricity of the support of your Gabor γ

function. So, if you want to elongate it, all of them can be controlled in this particular

context. Instead of having a circular Gaussian, you can use the gamma parameter to be able to

control the elliptical nature of your Gabor response function.

237

(Refer Slide Time: 24:15)

So, this is a 2D Gabor filter. As you can see, it gives you an idea of certain textures. So, here

is a filter bank of Gabor filters. So, this has 16 Gabor filters at an orientation of 11.25, which

means, if your first filter has an orientation of 0, your next filter will be 11.25, the next filter

will be 22.5, so on and so forth. And you can see the Gabor filter being rotated and you now

have an entire bank of Gabor filters.

(Refer Slide Time: 24:48)

You can now take an image and convolve each of these filters with the image and you will

get 16 different responses of the image to these 16 different filters. As you can see here, each

of these responses capture a certain aspect of your original image. In case of a circle, they

238

simply seems to highlight a different perspective to the circle, but when you have more

complex textures, each of these responses captures a certain dimension of that texture.

(Refer Slide Time: 25:24)

And putting these together gives us an overall response of the image to different set of

orientations and frequencies. There has also been another popular set of filter banks called

Steerable Filter Banks. Steerable filters are a class of oriented filters that can be expressed as

a linear combination of a set of basis filters.

For example, if you have an isotropic Gaussian filter, , you can define a Steerable e−(x +y)2 2

filter as you have , where is the first derivative of cos(θ) G sin(θ) G1
θ0

 = G1
θ0

 + 1
θ90

 G1
θ0

G at a certain angle . For example, if you have an original image, you can now consider G1 θ

along the y axis to be the derivative at a particular angle.

You can consider G1 of 15 degrees to be the derivative at a different angle and so on and so

forth. So, now you can construct combinations of these two, of these different images to

construct an overall response that you have. So, each of them is a Steerable filter where you

can control the angle at which you are getting your response.

So, this is another, Gabor filter banks was one example that could be used to extract textures

from images, Steerable filters banks are another example that could be used to extract

textures from images.

239

(Refer Slide Time: 27:07)

Here is an example, another illustration of Steerable filter banks, where you can take a

band-pass filter, B0. As you can see this band-pass filter allows a certain set of frequencies to

pass through. Another band-pass filter B1, B2, so on and so forth. You can have a low-pass

filter, so on and so forth.

Now, you can combine the responses of an image to all these kinds of filters and store some

statistics at each pixel. So remember, you are going to get a value at each pixel, you can store

the mean and standard deviation, you can cluster, you can do various things with those values

that you get at each pixel across the filter banks, responses to the ​filter banks and be able to

get a representation for your texture.

240

(Refer Slide Time: 27:53)

That concludes this lecture. Please do continue to read Chapter 2 in Szeliski’s book. Some

interesting questions for you to take away now, which you may not really answered, but it is

something for you to think about is; From the discussions we have had in this lecture, why is

a camouflage attire effective? Think about it. Obviously, it connects to our lecture, so think

carefully on what we discussed and how you can extend it to understanding how a

camouflage attire works.

Another question to ask here is, how is texture different from say a salt and pepper noise? A

salt and pepper noise could also look like a texture. So, how is a texture different from a salt

and pepper noise? Something for you to think about and read to understand. And a last

question is, will scale invariant filters be effective in matching pictures, containing

Matryoshka’s dolls or I think we also have equivalence in India. Nesting dolls, can scale

invariant filters be able to match pictures across these dolls? Think about these questions as

your exercise for this lecture.

241

