
Introduction to Modern Application Development
Persistent Computer Institute

Lecture 7

Command Line _ Practice Questions - Part 1

(Refer Slide Time: 00:11)

Hello everyone, welcome to the question session of the second week. This is the first question

session in which we will look at a few questions based on the first lecture of this week. Here are

few questions:

1. List about 5 different commands (command-line program) that are installed on your

desktop operating system. We are a bit categoric here, please you look at your desktop

operating systems in contrast do not look at your mobile operating system, for instance.

For each of the command line programs that you see on your operating system list out the

advantages and disadvantages if they are designed as interactive programs. This question

is about interactivity.

2. The second question is again on the same curve as the first question except that it

considers the issue of non interactivity. If those same commands that you have used

and have listed in question 1 are non-interactive, or suppose they behave non-

interactively, then what would be the advantages or disadvantages of this. These

questions are meant to get you thinking about aspects of program design.

Hint: Consider the interesting ways in which a user would use the program. Take file copy

program as an example (note that the file copy program must not be a part of your list of

5 programs). Your operating system be it windows GNU/Linux, Mac OS… etc., will

typically have a command line version of a file copy program.

Consider the scenario when a user has to, say, copy a huge number of files, say 1000,

would an interactive version of file copy program be an advantage or a disadvantage? In

what case will a non-interactive version of this problem would be a challenge.

3. The third question gets you learning about using the standard input, output and error

devices of your system. The default devices are keyboard monitor and monitor

respectively for input standard output and standard error. What other devices can be

used instead of these default ones? Try to find that out for your operating system.

4. The sample command line program used in the video lecture is a correctly working

program; it is correct in the sense that it performs the necessary calculations correctly. It

works in the sense when the user gives the correct user commands, it performs a correct

operation corresponding to that command. However, it is not yet a software product. This

question asks you to list at least three distinct improvements in the command line

version of the program that will make it a software product. Note that the program

must remain a command line program.

So, an improvement which says convert this program into a graphical one is not something

what we are looking for in your answer. Your program will remain a command line

program but nevertheless becomes a software product, which it is not right now.

5. Develop a detailed proof of correctness of our method used in the fair share

program. Try to ensure that each step has one and only one clear change from the

previous step. For each step be sure to note the reason behind the change that you did.

From our experience we know that you may have to repeat this exercise a few times to

get it right. The idea of this exercise is to have a step by step reasoning about the

correctness of our program. Usually when we think about things like this we very quickly

jump to conclusions. This exercise is meant to take us step by step with every step justified

by some reason. It might be slow and you may realize that you have forgotten some steps

in the version that you wrote, so you may have to rewrite it again.

6. The command line program we have used in the video lectures illustrates an important

principle of design of user interaction. The information must be displayed consistently

with any required conversions between internal and displayed information. Recall that

when we displayed a report when a roommate actually owed some money then we said

that that particular roommate the amount owed is minus some number. We also remarked

that negative values are our internal understanding that they represent the money to be

paid. But when you display that money to be paid as a negative number, and moreover

saying that this is the amount owed, a typical user would be very confused. It is very

important to be consistent in the way the information is displayed. This is the principle

that we did not do well in our program. This question asks you to list out few other

such principles that you may recall from your studies.

7. The fair share program can be written in procedural style as well as object-oriented style.

We suggest that you write the program in both the styles, that way you will understand

the differences and the advantages between the two styles. Therefore, this question asks

you to write in the other style than the one that you have written. If we have written

in an object-oriented style then this question asks you to rewrite the program in a

procedural style. If we have written it in a procedural style then this program asks you

this question asks you to rewrite the program in the other one.

8. The arrays in our program are indexed using numbers, for example the moneySpent

[getIndex(“Abhijat”)] = 200, where getIndex(“Abhijat”) returns

the against which the money spent by Abhijat is stored.

It would be nice if we could index them directly using the names of the roommates. So,

instead of saying money spent by get indexed directly it would be great if we could

write it as moneySpent [“Abhijat”] = 200. This exercise just asks you to

suggest an algorithm in Java how this could be done. Of course, if Java has any

facilities which support this already then you may not use them; you have to write the

algorithm independent of Java approach.

9. Our program used a certain invariant to ensure that it will be correct irrespective of the

number of roommates, can you adapt these ideas to design the core calculations of

an accounting software. You should of course identify the invariant for accounting and

demonstrate that your calculations will work irrespective of the number of accounts and

their interactions.

In this question we try to take our understanding of the invariant and correctness ideas

for the fair share application and apply it to an accounting problem. There are many

ways this can be discussed. We hope that you actually use the forums to discuss

questions like these in detail. This question requires you to think about how to use

the ideas from one problem that you have solved and applying them to another

problem.

(Refer Slide Time: 11:45)

10. Our implementation has made a simplifying assumption only one roommate pays for a

given event. Suppose, we now discard this assumption and allow more than one and

possibly all roommates to share the expense for an event. Note that the sharing may not

be equal but will always add up to the expense of that event. So, if more than one

roommate share then they do not have to share equally, one roommate may spend a little

more than and the other roommate.

In this new scenario, how will our invariant change, if it does change? How will our

calculations, especially of the per head share, change? How has our invariant helped

us to guarantee the correctness of our calculations?

Apart from programming exercise we suggest that you also try to answer these questions for

yourself. Of course, you are welcome to discuss them on forums, at various points we will give

hints of the solutions, thank you.

