Introduction to Modern Application Development
Prof. Aamod Sane
FLAME University and Persistent Computing Institute
Abhijat Vichare
Persistent Computing Institute
Madhavan Mukund
Chennai Mathematical Institute

Lecture — 33
Week 11 — Part 2

Goal of the session: Navigation of application state problem and a solution.

This problem was introduced in the previous session during the discussion about caches

where the issue that view in the browser versus the state on the backend can get out of sync

was addressed. (Refer Slide Time: 00:42)

Y

Y

/j) Agenda G :;;5
et NPTEL
+ Understand the Navigable App State problem
+Understand the Post-Redirect-Get Solution
+ Understand the utility between GET and POST
requests to the same URL
+ Briefly discuss a different SPA/JS solution to the
problem.

* PS: Don't worry if this section needs more than one
review! The ideas involved are not as simple as
some of the others we have seen.

Introduction to Modern Application Development

So the agenda is:

e To understand the navigable app state problem: What happens when one wants to
make the application state visible via URL.

e Understand how post-redirect-get solves the problem.

e Understand the utility of having get and post requests made to the same URL. (You
can do this first of all which is one new thing and second of all that it is useful in
solving a particular literal key issue.

e There is a different solution to this application: the navigable app state problem which
is used in some applications that relay Javascript. They are called single page

applications, will be briefly discussed but they are not part of this course.

The discussion about the navigable app state problem is specific to the case of the web

because of the way the browser is a user interface which is separated from the back end.

Many of the things that we will see in the session will be something commonly experienced
on one website on another. So, one can relate some of the experiences such as not being able
to press the back button of the browser. Also one can understand what happens at the level of
a program when the back button is pressed multiple times.

(Refer Slide Time: 03:18)

Y

&
CP Navigable App State Problem i\%;
Persistent s

Computing Institute

NPTE!

=

+ Defining the problem: preconditions

+ Browser has a back button, however, certain forward
actions cannot be undone.

+ Users, on the other hand, like the freedom to say
“oops” and go back for most of their actions

+ Plus, the browser and the web server backend can get
desychronized due to network events and other issues

+ The problem: How to implement a smooth user
experience given all the above

+ Solution 1: Use Post-Redirect-Get
+ Solution 2: History APls and JS (not in this course)

Introduction to Modern Application Development

Problem definition: Navigable App state problem

Precondition for this problem : A browser which has a back button in the interface, but the
back button cannot undo the actions that we did when going forward (for example:
purchases). On the other hand, we as users like the freedom to say oops and go back and
maybe rethink and do take an alternative path and so on. The browser and the web server can

be de-synchronized because there may be network events or issues on the machine.

Given these preconditions, how does one implement a smooth user experience?

Two solutions:

1. Post redirect get style

2. Using history APIs in JavaScript
(Refer Slide Time: 04:22)

(App state creation: POST k)
Persistent

Computing Institute

+ Suppose we interact with the app as follows
1. Page 1: Visit the initial url localhost:8080/fairsharedb

2. Page 1: POST a new user, xyz1, using “Register”

+ Now the database contains a new user, and we
arrive at Page 2

3. Page 2: Shows current user, xyz1
4. Page 2: POST a new user, xyz2, using ‘Register’
5. Page 3: Shows current users, xyz1 and xyz2.

n Introduction to Modern Application Development

Look at the above figure. Let us do the following to understand the scenario.

1.
2.
3.

Let us interact with the app we have visited fairsharedb.

Visit the page first with a get request.

Create a new user xyzl and register. As expected, the method here is post. The user
xyz got registered and record his data back so post a new user we have arrived at page
2. The page two is not identified on the URL however, you can see that there are two
pages in the history.

And now we are going to create another user xyz2 and do a second post. So we got
xyz2 and we have a second post.

If we go back we will see the old page. Remember the database is not different. It
actually has 2 users but this page was never updated to that because the page itself
resides only on the browser and so you are just seeing whatever snapshot the browser
saw when it requested the page. This is what it means for the reality which is the
database to get desynchronized from the view.

If you go back still further, of course, there is nothing, this is the first page we have
visited.

We go forward so the state of the database at this point is the real state but 2 other
states are accepted or apparently accessible to us, but they are not really there. And
this is why in some sense it makes sense to cache.

It makes sense to disallow caching of the old pages because they are showing you
things that are not true. So this is our visible evidence that there is a

de-synchronization.

(Refer Slide Time: 07:19)

BHS 05

HOME INSERT DESIGN TRANSITIONS ~ ANIMATIONS SLIDESHOW REVIEW VIEW »
O © localhost 8080/ fairshared

b o#
€ BIUS A
Fase |, New . Drawing Edifing
¥ Side 57 “ =
ptod % Side
\your input here
Register Expens: Report ¢ f"‘
7~ . A7
y App state observation: GET \?@
Persistent e
« Now focus on the transition Pg1 -> Post xyz1 -> Pg2
* (I deleted xyz1 and xyz2 from the database)
* Pg2, we change the App so that we send & GET
request to our Web server
« The server will return the same database content,
since a GET does not change the DB
* Anew page, Pg2.1, would be available, which looks
B O hspecor B Consce O Deugger B} Networ {} Sty Edtor () Perkomance 3 1]+ the same as Pg2, except, itis retrieved by GET
] 11 Q@ [pesitlogs (ODisbleCahe N Tt + Since itis retrieved by GET, we can visit it an
number of times, whether by Forward or By Refresh!
Al HIML €SS JS XHR Fonts Images Medic WS Other
+Perfoma request or Relosd the pags to see detailed information about netwark activiy. B —y
5 Introduction to Modern Application
+Clickonthe (9 button to start performance analysis. &
i
O Noreguests '
"V

Suppose we had a way to just send a request which gets whatever is in the database at this
time. This can be done using ‘get’. The server will return the same database content because
gets do not change the database and a new page would be available. Let us call it page 2.1
which should look the same as the page on the screen because we have just retrieved the data
as it is. On the other hand because we know that this page was retrieved by get and it does not

change the database.

I could repeatedly make this request again and I still see the same thing. So it is not how you
reach a particular state that matters that you have reached the state of page 2 using the post.
Because the way we have written our get function it does not; it is not supposed to change the
dataset.

(Refer Slide Time: 10:50)

BEHS 0D [RT——— Tk
HOME INSERT DESIGN TRANSITIONS ~ANIMATIONS ~ SLIDESHOW REVIEW VIEW »
9 O localhost 2050/ fairsharedt/ s e Q0 =

o #
9 BIUS
fase |, New " Drawing Eding
¥ sider 57 A-Aa AA B
Ciptoad & Sldes for Piragagh A

four irput here:

158 E k 7
Regitr || e Bt fj) The trick here is g%")

Persistent
; NPTEL
Registered Users [owery s E—

« Ifthe user sees the “same” page via GET or via POST,

LN they don't care, it “looks the same

9 2020-04-23 15:23:57.0 xyzl

But the Br%wser knows that a page retrieved by GET can

2 200049121780 abed be revisite
35 2000418005320 abed e .

—— e, + Isthere a way to, as far as the user is concemed, get
3 0004180055250 abe the result the'user wants via a GET, but

+ After changing Pg1 via POST

« We never show the user Page2, only Page 2.1,
« We replace, in the back button history, Page 2.1 instead
of Page 2.

(O ispector D Conscle O Desugger T Hetwork () Sty Editor () Performance 3 (]
B v Il Q @ [JPersistLogs [IDissble Cache No Throtting ¢ H

Al HTML G55 S XHR Fonls Images Mediz WS Other

« Now the browser has no reason to complain!
O 21equests B.72KB/274KEtrensferred finish: 32ms DOMConlentLoaded: 21 ms load: 29ms.

[§ Headers Cookies Paams Response Timings - — — |
Request URL http://localhost 5086/ airsharedb/ n Introduction to Modern Application [|
Request Methodt PosT

Remote Address: (::1):9080
Status Code: @ 0k @
Vesson: HTTP/1.1 3

The trick we are after is, if the users sees the same page whether via a get or via post, the user
does not care if it looks the same but the browser knows the difference that one was visited
by post. And so it will cause a change in the back end if you resubmit it. The other was via

get and so it does not matter what you get.

So the solution will be this way: Find a way as far as the user is concerned, to achieve the

request that the user wants via a get method.

(Refer Slide Time: 12:50)

BEHS 0F+« week1nas prg gt -Powerfoin: TE-0X
HOME INSERT DESIGN ~ TRANSITIONS ~ ANIMATIONS ~ SLIDESHOW REVIEW VIEW »
9 © localhostaos(/firsharedt/ o @0 9 :

ISIRE]
€ B U Sk
faste |, New _ 3 Dranig Ediing
¥ side- 57 AAar A A -
Qptoud & Sides fon Puagaph A

lyour irput here:

Register Expense Repott 7
‘d) Redirects: a new kind of interaction {%’)
Registered Users. o - — MEXEE

wid ctme wmame « So far, we have seen POST and GET interactions

between Browser and Server

96 2020-04-23 15:23:57.0 xvzl

— . — + Another common interaction is called ‘redirects”
a2 2020-04-19 12:17:48.0 abed

o sl * Redirect means
35 2000418005320 abed

« Ifyou are visiting URL U1, then the web server says

3 2020-04-18 00:55:25.0 abe2 to the browser, “Instead of coming to U1, please go to
another URL U2
G O specor D Consde O Desugger 1) Network {} Sty Edtor () Perlormance 3] +» + This s implemented using the "Location” header on
B v Il @ @ [Pesiilogs [DissbeCache No Thotting# Hi the HTTP Response

Al HIML G55 JS XHR fonts Images Medic WS Other * Thebrﬁwsermen fﬂr%etsabﬂm U1 and replaces its

POST of GET action by going to U2 instead

O 2iequess B72KB/27AK6 tensferred | Finsh:32ms | DOMContentLoaded: 21 s load: 29ms

[Headers Cookies Params Response Timings - = =]
Request URL: http://localhost: 8080/ fairsharedb/ 7 Introduction to Modern Application [/,
Request Methodt POST \
Remots Address [::1]:8080
status Code: @ K @
Version: HTTP/1.1

Redirect is a new kind of interaction and the meaning of redirect is, if you are visiting URL
Ul, then the server tells the browser instead of coming to location Ul, please go to another

location U2. This is implemented as a header called location in the https response. In that

case, the browsers forget about Ul and replaces its post or get action by going to U2

instead.(Refer Slide Time: 13:41)

BEHS-0F- week11-nas-prg.ppt - PowerPoint T E -0X%
HOME INSERT DESIGN TRANSITIONS ANIMATIONS SLIDE SHOW REVIEW VIEW »

A i

[6ll © @ localhostB080/fairsharedb/

L5 BT US sl
R y Drawing Editing

Side~- & A ~Aa- A A
lipboard T Slides Font Paragraph ~
lyour input here :
X
Register Expense Report E F A
(Redirect with changed method &
Persistent
Registered Users Computing Insitute - NPTEL
usrid ctime oname + Oddly enough, a browser can also change the method it uses!
593) = This is really strange: it is as if a POST, that is, a Write (or
_ 25 AUBbkTt el char(\ﬁe to the backend) can instead be seen as a GET (a
42 2020-04-19 12:17:48.0 abed Read)!
i 35) 1020_&4_|3 0@5:32.0) abe3) + Butwhat really happens is as follows
1 2020-04-18 00:55:25.0 abc? + Post changes Url content from C1 to C2
A subsequent Get will of course get C2, not the old C1,
® O Inspector Console ([Debugger T Network {} Style Editor () Performance D [J] because the old C1 has been overwritten by the POST
W ¥rilte Il @ @ [Jrersistlogs [JDisableCache No Throttling ¢ H = Thus, the “strange” behavior make sense

+ What we are really saying is: Overwrite this URL, forget about

i HIML 55 5 XHR. Fonos: Ckteges:: Moka VB Citier the oid content, and blithely return the new content in its place

6 2requests 23.72 KB / 2.74 KB transferred Finish: 32 ms = DOMContentloaded: 21 ms load: 29 ms

[E Headers Cookies Params Response Timings = — v
Request URL: http://localhost: 8080/ fairsharedb/ n Introduction to Modern Application [A

Request Method: POST
Remote Address: [::1]:8080
Status Code: oK @
Version: HTTP/1.1

—

Key observations about post-redirect:

1. It might sound like redirect should merely change the URL but a browser can also
change the method it uses to visit U2.

2. Post changes the content of a URL from content 1 to content 2.

3. Whether content 2 is available via a different URL or whether it is available via the
original URL does not matter much in this case. You can in fact send a subsequent get
and the only content you could receive is C2 because, after all this is a database and if

you said you change a particular record and then it goes ahead and changes.

So once you are inserted xyzl that is it, whether it is retrieved by get or by some other means
like a post etc should not matter and so the strange behavior sort of make sense because what
you are saying in a redirect from post to get is : Override this URL with the post body that [

sent, forget about the old contents and just peacefully return new contents in place of the old.

(Refer Slide Time: 16:41)

BEHOS OF- et tnasprgpp - Powerfon 2E_-0%
FOME | INSERT DESIGN TRANSITIONS ANIMATONS SUDESHOW REVIEW VIEW)

O @ localhost:8080/fairshared;

b #
€% BIUS
Faste |, New S Draning Editing
Slide N " *
ko s g
rput her
Register Expense Repott H gsf—
& - . g 23
f’ URL redirection \%}
Persistent
Registered Users o = s
wsrid ctime name + Why was redirection invented?
96 20000423 1523570 xyzl A + Temporary redirect: web site being changed
2 2000419 1217480 abed + Permanent redirect: url moved
35 2000418005520 abd + Preserve search engine ‘importance”
3 2020.04-18 00:55:25.0 abc2 + Browser behavior: resubmit a request

+ 302 changes metheod to Get,
+ 307/308 preserve the method

(O ispector D conscle O Desugger N Hetwork () Sty Editor () Performance Y (]

i) Il Q @ [JpersistLogs [IDissble Cache NoThrotting ¢ Hf

+ HTTP Location: header
Al HTM. €55 JS XHR fonts Images Mediz WS Other

* Return code
O 2wequss 2372K/274Kbtenslered | fnist 32ms | DOMConfentLoaded: 21 s load: 29ms
[Headers Cookies Params Response Timings J
Request URL: http://localhost 5080/ airshredb/ Introduction to Modern Application [
Request Method: POST

Why was redirection invented?

1.

Suppose you visit a URL but the site is undergoing some maintenance then you could
tell the user to temporarily go to some other site where maybe old copies are there
with the warning that this is an old copy and if you want the latest, to come back
sometime later.

There was a site at a domain d1 which the owner wants to move to a domain d2. This
means permanent redirect which says all the URLs that used to come to domain d1
should now go to domain d2. Search engines try to preserve the ranking of their page
in a search engine rank and when you do a permanent redirect the search engine will
transfer ranking the URL from the old domain to new one. So, the domains become
very valuable in search once they acquire this ranking because of repeated visits. And

so how you distinguish between all these is that you send a request.

You get an error code back which says 302, 307 or 308. In the case of 302, the method

changes from post to get. 307 and 308 preserve the method, there is the location header which

tends to the new URL and the return code which tells whether you should change the method

or not change the method.

(Refer Slide Time: 18:34)

O @ localhost8080/fairsharedk/

B #
B € BIUS
faste |, New . Draing Editing
¥ Side- A Ei i
dptond = Sldes fon Paragrgh S
(your irput here 2
Regiter Expense Repott 4
: d) Replacing History with Redirect @
Registered Users b Resbduesh NPTEL
i ctime uname 7= « Redirects have the effect of replacing one page with
9%6 20000423 1523570 xvzl g another in the back button history
2 200004-19 12:17:480 abed WE + When we start with a POST, then redirect to another
- Y i i page with a GET, we achieve the effect we want.

o T o 7 « First, let us see a demo of visiting the result of a

POST vs the result of a GET.

R O wspecor D Corsce O Deougger Y Networ {} sty itor N pedomance 3]+,
WV Il Q @ [JPesistlogs (IDissbleCache NoTratting ¢ H ;¢

Al HIML CS5 05 XHR fonls Images Mediz WS Other 16

O 2wequss 272K8/274Kbtenslered | fnist 32ms | DOMConfentLoeded: 21 s load: 29ms

[Headwrs Cokes Params Resporse Timings 1% - ;

Request URL: http://localhost: 8080/fairsharedb/ 19 Introduction to Modern Application

Request Method: POST %

Remots Address [::1]:9080

Status Code: @D 0k @ 21 ‘
Version: HTTP/1.1 2 3

As we will see, such a redirect has the effect we want, which is of replacing one URL with
another in the history of the page. We will start with the post, redirect with get the post is

forgotten and the get is remembered.

Let us first look at a demo where we look at the distinction the browser makes, between

visiting via get versus via post. So we are going to look at our old non cacheable version.

So, here what we have is the non cacheable version and we visited it with a get of course that
is as expected we see a get method. Now, I am going to register a user xyzl by the way each
time I am doing this I am going and cleaning the database so that we can show this behaviour
again and again.

(Refer Slide Time: 19:40)

CEECEE week11nas iy -Powcroi: [
HOME INSERT ~ DESIGN TRANSITIONS ~ ANIMATIONS ~ SUDESHOW REVIEW VIEW »
O © localhost 8080 fairsharenc/ ne - @0
b #
. © BIUS
S oNew Drawing Editing
Side- 57 A-Aa- AA -
i Puagragh N
xyzt 2
Register Expense Report 4 <
5 ~ A7
J) Forms that POST vs GET {%)
6 Persistent NPTEL
(1= « DEMO
IE « localhost:8080/fairsharenc is visited using GET
RE . IoLa\host:BOBO/Iai,rsh ne after pressing Register
=] is via POST
Tk « Forrefresh, browser will ask on its own
5 p s
« Foruncached, we have “Try again
Wi
R O inspecor @ conscle O Desugger N Network () Stylz Editor (D) Pertormance 3 [] « But: Forms with GET are ok!
15
W v Il @ @ [JPeisistLogs [JDisable Cache V\uh'ullhnq:H‘b
Al HML €55 JS XHR Fonls Images Media WS Other "
Method Doméin File Cause Type Transfered 18- [———
(K 8 localhostB0s0 /farsharenc/ document bl 1S6KB |0 Introduction to Modern Application |
for lolhostal) faiconico ig xion cched
20
21 .
s
O 2iquess 243K8/156KEtenslrred | Finihu 30ms | DOMConlenfLoaded: 12 load 21 ms 2 3
I

So, we first visited fair share and see what we get. Now, we register a user and do that via
post, this time remember that the post will look at, has a cache-control. So it has no cache, no
storage etc. Attempting to revisit this page, the page we are looking at is not going to work
but the previous page was retrieved with a get, so we can go back. The browser has no

problem whatsoever in going back, but if we go to the cache page, the document is expired.

So for an un-cached you have to explicitly refresh it but you can go back and get this
particular form which we retrieved, the get retrieved form with no fuss. And even if you ask
to be refreshed, it refreshes it. We can still go ahead and find out that the next page is not
visible. The point is that because gets are known to be idempotent because they can be

repeated the browser is happy to repeat the gets whenever you ask.

We can even shift reload these things safely again for the same reason that nothing is
supposed to change so it is always safe to get it again.

(Refer Slide Time: 21:21)

LERE

‘weet11-nas prg.pptx - Powerfoin: 2@ -0X%

HOME

INSERT DESIGN TRANSITIONS ~ ANIMATIONS SUDESHOW REVIEW VIEW)

rollt

Drawing Ediing

Iyour nput here 2

Register Report 4

f G
: J) Post/Get and browser behavior i\%)

6 Persistent NPTEL

Bipense

3= + When a user tries fo refresh a screen, browser asks
e user for permissi

10 « Butnotif the form is from a get action
il « Why?

2E « Because GET is supposed to be ‘idempotent”
- « Thatis, it can read the resource named by the
G O iecor @ Concle O Desugger 1y Moo () Sy Edtor (D perbmance %] [URL (Uniform “resource” locator)
8 10§ | ity ks "”'"d“”’“”:; « But, itwil not change the resource

Al HTML CS5 S XHR fonls Images Medic WS Other

Method
foer

cer

Domin Fie
8 localhostB0s0 ffairsharenc/

8 loalnosta00 faviconico

Ceuse Type Tarslered

himl 156K8

img wion 213518

« So safe to resubmit

n Introduction to Modern Application [,

O 2vequess 243K8/2291 KB tenfered | Firih 34ms | DOMContentLcaded: 22ms | load: 27 ms 2
"—

When a user tries to refresh the screen the browser will ask the user for permission but not if
the form is from get action because get is idempotent submission is always safe. And this is
the basic idea behind PRG.
(Refer Slide Time: 21:37)

BEHS-0F- week11-nas-prg.pptx - PowerPoint 7?7 EH - 0O X

HOME INSERT DESIGN TRANSITIONS ANIMATIONS SLIDE SHOW REVIEW VIEW)

© @ localhost:8080/fairsharenc/ new e ©

g, X | =) B % - Brlm
L py . ! o =3 *
Paste |, MNew __ Drawing Editing
¥ Side - -
Clipboard = Slides Font Paragraph »
1
‘your input here | 2=
3
Reglster Expense Report 4
\P PRG pattern: redirects i)
" ;
Bttt NPTEL
e —
8 & « We now have the idea behind PRG
9 - We havepseen the Demo of browser behavior,
nE + Now let us study the redirects in greater detail
"
12 =
130
—_— 14
Y {jlnspedor () console O Debugger T Network {} Style Editor (2 Performance 3) e
15
WV Filter URLs Il Q @ [rersistiogs Clisable Cache NoThrotting 2 Y
Al HTML (S5 JS XHR Fonts Images Media WS Other 17
Method Domain File Cause Type Transferred 349
fGer @ localhostB080 /fairsharenc/ document html 156 KB 19 Introduction to Modern Apg
§ Ger & localhost8080 faviconico img xicon 2135K8 {0
2
@ 2requests 2243KB/ 2291 KBtransferred Finish: 34 ms | DOMContentioaded: 22ms | load: 27 ms 22[=

So now that we have seen a demo of how the browser behaves for the two kinds of forms let

us look at some pictorial version of what is going on.
(Refer Slide Time: 22:08)

BEHS-O0 - week11-nas-pra.pptx - PowerPoint 2@ - 0O X
HOME INSERT DESIGN TRANSITIONS ANIMATIONS SLUIDESHOW REVIEW VIEW |»

L % | :5_ " 28 n ik
B: € 8

Drawing Editing

U @ localhostB080/fairsharenc/

Clipboard = Slides Font Paragraph A
1

your input here | 2=

Register Expense Report 4
2 CP Post issue {%})

6L Persistent

Gomputing Invtitute

M= Your order i © Sendconfrmation

was
swccesshul,

e — 1
Yy Glnspedor () Console [Debugger T Metwork {} Style Editor (D Performance 3y ﬂ .

@ W Filter URLs Il Q@ @ [JPersistLogs []Disable Cache NoThrottling % H

Al HTML €55 JS XHR Fonts Images Media WS Other

Method Domain File Cause Type Transferred §4g
[Keiag @ localhost:8080 ffairsharenc/ document html 156 KB

 Keap @ localhost8080 faviconico img xicon 2135K8B

o 2requests 2243KB /2291 KBtransferred Finish: 34 ms DOMContentLoaded: 22 ms | load: 27 ms 222
L T T T

The first case: User fills up form, clicks submit, does a post. Insert order into the database and

send a confirmation page. This is what we have been doing when we did, do post redirect and

get. Now if you hit refresh it resubmits the post.
(Refer Slide Time: 22:35)

0P ‘week -nas-pig potx - Fowedoist 7EH-0X
HOME INSERT DESIGN TRANSITIONS ~ANIMATICNS SUDESHOW REVIEW WVIEW ADC-INS Signi
Layout * AR |)) Shape Fill thrnd
16y . ©TReset ape Outine - 2 Replace ~
Paste , New 1USah A Shapes Amange Qick N
o ¥ i~ DSection” o ¢ Select
lpbesrd Sldes fort argragh g Eiing
T]
= &
your n . & %
He- (- >
What redirect does k¢
Register | 3 = Persistent NPTEL

ComputingInstitte

R O ispecor [Corsde O Desuggl 1 ==
Al HIML €SS JS XHR fonts Images

Methoo Doméin Fie From

foer 8 localhostg0s0 /farshareng s Wikipedia
e B loalostgoso faiconico| A
"y d
— 15 Introduction to Modern Application Develof t :
O 2uequess 243k8/2291 KB tanered VSE i
—_— g

Instead what we would like to happen is this, user fills out a form, clicks submit, post, insert
order into the database. Then its ends with what is called 302 redirect. We will see an
example shortly. At this point the users machine remembers this one, originates a new request
that is the get, then you send the confirmation page you are told your order is successful and

refresh it otherwise request it you get the same thing back. (Refer Slide Time: 23:08)

.. R [E—— 7H-0X
HOME INSERT DESIGN TRANSITIONS ~ ANIMATICNS ~ SUDESHOW REVIEW VIEW ADC-INS Signi

g X Leyout * AR) hape il #end
By) Reset ‘ 2 ape Ouline * 34 Replace =
Paf!e o s’hvj: & BIUSaA A Sh.l';esim.l'nge‘ -
6 = S
your nf 5\%‘
: Addressable URLs ¢
Register | NPTEL

« We could literally request the same URL,
0 localhost:8080/fairsharedb via either GET or POST

= + But remember, we are not just trying to solve the
T back-forward problem

+ We are also trying to make it possible to bookmark or

e mail a URL to others, and be able to distinguish
s between getting content via POST or via GET.
Blgkie Pl e « So, GET localhost:8080/fairsharedb/ -> Pg1 -> Post ->
LA s Pg2 is one possible sequence
R + And, since we want to “send” Pg2 to other people, we
e Y create a new url localhost:8080/fairsharedb/use
[Kz @ localhosts0s0 faviconien |15~ o .

0 18 Introduction to Modern Applicati
O 2iequess 243K8/2291 KBlansered |
—_——» -

What URL should the get ask to retrieve?

It does not say after the 3xx redirect what URL you are supposed to retrieve just say
redirection to any URL is possible. And we could literally request the same URL using the
method get versus the method post. But nearly requesting the URL in two different ways is

not our only goal remember.

Our other goal is to deal with creation of addressable URLSs.

We are not trying to solve just back and forward problem. We are also trying to make it
possible to bookmark or mail a URL to others and to be able to distinguish between getting

the content via post versus via get.

Let us begin by visiting fair share URL with the get.

We are following the first page get localhost fair share URL.

We arrived at PGl and now we are going to post a new user lets say uvwl and we will
register this user.

.But one difference you will notice, the URL has changed to say to add a new URI or a new
URI component called users.

First time when we press the register button, we actually did it with a post. So the post is a
familiar thing by now. We have Post and if we do the edit resend you can see the body this is
the post body Imn1 and register.

Header has the new location, should be fair share URL dot user.

This is how the server tells the browser that it should redirect and at that point the browser
automatically issued a get request. And this get request looks like a normal get request. But if
you look at the history here, you have only two pages the post in the middle is missing and if
we go back and if we go forward you see a get and you see a Imn1 and the only call that was

made was to this. You know favicon which itself was retrieved via a cache.

So our history became only two components even though there were 3 requests and we are
able to see the same content as before this Imnl but via a different URL. And in fact there is
more than that I can take this I can take the user’s URL I have taken the user’s URL and I
have a fresh browser instance which is different from the one I normally use, I hit this and I
can see the same data again. So from 2 completely different browsers I am able to retrieve the

same data.

And this way the new application state, the one which contains the user Imnl which is the
latest application state, has become visible through a new URL. It says here, let us kill this.
The get localhost PG etcetera was one possible sequence and now we have created a new

URL and this URL can be used anywhere, you can send it, you can retrieve it whatever you

want to do. It has enough information via these added users to be able to show us the page

with registered users.

(Refer Slide Time: 28:50)

'SINE

faste New ; **" Draning Ediing

your input here: A
; Demo Addressable URL i%@
Regiter T Resott . lemo ressable S
NPTEL
S « After creating a new user “xyz2” via
Regstre Uses " + GET localhost:8080/fairsharedb/ -> Pg1 -> Post ->
10 sz
wsrid ctime uname i] Ny
5 Gy b We will able to see the same page on a different
_ MBS0l L browser via localhost:3080/fairsharedb/users
., WERISAND | ael B « Therefore, we can say that Pg2 is now “Addressable”
2 2020-04-19 12:17:48.0 abed " with GET
35 2020-04-18 abe3 150
3 2000180055250 a2 16

2000041800520 abel e

8= []
® Introduction to Modern Appllnallor’\‘

As recorded in the slide here, the demo showed us that after creating the new user, I have
created a user called Imnl via get fairshare URL I was able to visit that same page on a
different browser via a new URL. And so we can say that pg2 is now addressable with get.
That is what addressable URLs mean.

(Refer Slide Time: 29:25)

LR e — T m_0x
HOME INSERT ~DESIGN ~ TRANSITIONS ~ANIMATIONS SUDE SHOW REVIEW VIED
' b A
0 B I US ke

fase | New _ . Draving Eding

. Side~ 5° 2

Ciptoad & Sides fon Puragragh

2
your input here J

= | ®

Register Exense Report . Separate GET and POST &)

NPTEL
1 —

s « To apply this to our app
Registered Uses : + Introduce URLS that allow us to GET the new page

wsrid ctime uname « GET method merely retrieves the state we need

98 20200423 15:59:10.0 Imnl e « POST method makes changes, handles erars, and
can also refrieve the slate

+ The end resultis that the pages look the same

97 2000421548000 xyzl "

2 0091XIT80 abed e
5 e o « Resubmitting a url does not change the page.
3 abe2 1
2 2020-04-18 00:55: abel i

=] 7
9 Introduction to Modern Applicatior '

How do we apply this to our app as a whole?

Let us take a look at the code for fair share URL. Here we are, let us look at this code and
compare it with the code for fairshare DB, here is the code for fair share URL and the code

for fairshare DB.

We first introduce URLs that allow us to get the new page and this is true not only for the
user URL right it is also true for Imn1 111.

If I say expense you will see the same sequence there is post there is get and there is a
expenses URL and indeed I can copy it, go to a different browser hit return and be able to see
the same page here again.

(Refer Slide Time: 31:13)

P it ¢ it] BEO 0F: [——— T7®8-0X%
1 % B OME INSERT \ iov
DEE @9 8B HOME INSERT DESIGN TRANSITIONS ~ ANIMATIONS SUIDESHOW REVIEW VIED

Backage nptel; - B #
% BIUS

import java.io.IOException; Faste New Drawing Editing
import java.io.Printhriter; Slde~ B N N
import java.util.ResourceBundle; R side
import java.util.Map;

import java.util.HashMap; 2
import java.util.List;
import java.util.Arraylist;

fmport javax. servlet.ServletException; 3 ,f) {%
imjort javax.servlet.http.HttpServlet; Q Separate GET and POST .
import javax.servlet.http.HttpServletRequest; Persistent NTEL
import javax.servlet.http.HtcpServletfesponse; pr —
import javax.servlet.RequestDispatcher;

« To apply this to our app

« Introduce URLS that allow us to GET the new page

import javax.sql.DataScurce; 95

import java.sql.Connection; « GET method meJe\y retrieves the state we need

imoort java.sql.Driver¥anager; "

imoort java.sql.Preparedstatement;
import java.sql.ResultSet;

import java.sql.ResultSetMetaData;
import java.sql.SQLException;

« POST method makes changes, handles errors, and
can also retrieve the state

« The end result is that the pages look the same

import java.sql.Statement; . + Resubmitting a url does not change the page.
import javax.naning. Context; [
import javax.naning. InitialContext; B
import javax.naming.NamingExceotion; 4
18E Y
pudlic class FairSharelr] extends HttpServlet { W Introduction to Moder Applicatiory \
private static final long serialVersionUID = 1L; 2

nrivate ctasic £inal Strins irl = “ighemysal //Incathost 3308
-\--- FairSharelrl.java Top L1 (Java//1 Abbrev) <V:

We were able to introduce new URLs for each state even for report and the same sequence
post redirect get and a new URL.

And as usual there is a location header which says where the post should be redirected to and
the get which get this URL.

To implement it, you have to have URLs like report, user etc which generate the same page
by getting the same data, but they do not take input which they are going to apply to the
database.

The context path is part and the extension is this report URL and it checks that URI is either
this or this users expenses report. This business of looking at the shape of the URL and
transmitting it into different places, whether it is done in the code like this or whether that is
done in for example methods like web in WEB.XML. So, you can do this kind of mapping
either in an XML file like that or you can do it directly in the code differently. So, the web
dot xml for fair share URL is not different, look at fair share URL webinf, web dot xml here
what it does is, you take all these URL pattern slash report user expenses and channel them

all into the single app.

App itself receives all the things and starts analysing it. In production code there are different

reasons to put this thing in different places, but for sure we can rely on simple routing
methods as shown in the code. And here what we are doing is if it is either the none URL,
users URL or expenses URL etc what we do is, if it is users then we get all registered users. If
it is expenses all expenses, if it is expense report etc. And we are returning actually the same

JSP filled in the same way with the same data but no content in the input field.

In some cases you can give prefilled input fields etc for our application we do not need it so
we have not done that. Let us take a look at the difference between the post methods in these
two cases. So, here is post from fair share URL and here is post from fair share DB. As
before we analyse buttons the analysis of the buttons is no difference in the two cases. This
code has some cache-control stuff, but it does not really matter at this moment I really ignore

that just focus on the part that matters.

In fact I will for the purpose of this comparison I just deleted it, the comparison and there we
are and here we go and so try connect etc. The distinction is that in the case of fair share DB
we had no gets there we had posts. So we just register the user and get all registered users.
Instead here we do something different. We say register the user and if you are successful

then you send the redirect.

Now we are not directly calling all registered users or anything post in the success case. In
the success case we go back to the browser, the browser sends the request to the app we are
looking at again and then it is processed as a get request. One question is why not do it in the
browser and save the round trip. Well, we can analyse this further but for you, let us just say
that for whatever reason the protocol has turned out this way that doing it via 2 requests like

this makes more sense compared to the other alternatives.

What happened though is that the post is completed and its result is thrown away in the
browser. That is why there is no point in getting all the data even if you add it the way things
stand. You could have designed a different protocol other than http in which we could have
saved the round trip but that is the protocol that we have. Therefore in this protocol all the
post does is change the database send to redirect and then the effect of the post is retrieved

via get, this is important.

The effect of the post is retrieved via get, let us, important part, effect of post is retrieved via

get that is the flow that we have done which gives you smoothness in the browser interaction.
What should we do in the failure case? Now in the failure case in our app what we are done
is? We followed the old way that is just show the error, right and show the data and the
reason we can do this is because even if you have duplicate submit because of user being here

nothing will change.

We will still get; our database would not be harmed in any case. So, let us see what that looks
like. I am going to try to register a user like this Imnl as expected. I see this button here and
we have not done a redirect, this is just a straightforward post. Now if you put in a proper
registration, then in the next request has a post get with the post getting for the button. As for
the history i1s concerned there were these 2 URLs, one which has failed and if you try to go
back to the URL, you are simply able to go back because even if you submit something

nothing will go wrong.

So, at least that is the design of this app, actually the thing is that let us see what happens if
we hit expense. If we hit expense, we get an exception because the way we have done that
validation job is incomplete in our toy application. Here 2 things were expected, only one
thing happened. And so we are ok that our database does not actually change. So, hardly
enough in this app this kind of half hearted thing, where we get these failures is tolerable but

that is a very unusual thing.

And in a real app, these cases will not make any sense. In real app we would do something
about going back. We might say that for example we might turn this button un submittable or
have a warning that says look you are looking at old state or whatever makes sense for
business logic of your application that is what matters. And the pattern here that is redirects

in the case of success and return as usual in the previous case.

You could do It differently, you could send these cache invalidation headers and then the
page would not show up just show up. That is ok to again up to you for your particular app
what you do. And thus we have created shareable URLs and we have taken care of

application state sharing.

(Refer Slide Time: 41:20)

e BE5 05

fle gt Opions bars Tl Ja Hep
DB x H 9% Ej E] m HOME INSERT DESIGN TRANSITIONS ~ANIMATIONS ~ SLIDE SHOW REVIEW VIED
i i #
boolean register = req.getParameter("otnRegister”) != null; © BIUS &
boolean expense = req.getParameter("btnExpense") != null; P o New Drawing Eding
boolean report = req.getParameter("btnReport”) != null; Slide M
fptod 1 Side fon Puagaph A
try {
2
connectDB();
if (register) { 4 —
ispatcher rd = req.get cher("/jspireg? | =
ister.jsp"); Demo W
§ Persistent NPTEL
boolean success = registerUser(req, out); selSS S —
if (success) { = + For our pages, we have urls /users, /expenses, /report
) resp.sendRedirect (req.getContextPath() + "/users"); 9= + In the implementation
10 0=
else { + GET methods show the form and retrieve data
// Can send cache headers here;[] 1t
// design question uhether to or not! i + POST methods make changes to the db
sliRegiateredlars(res, out); 5 « Deal with the failure case
rd.include(req, resp);
} 1 + In the success case, redirect to GET
else if (expense) { 15
ispatcher rd = req.get cher("/jspiexpr |16
ense.jsp"); s
boolean success = addExpense(req, out); LS ,.',
1 o 19 Introduction to Modern Apnll:ilicn‘
if (success) { 2
resp.sendRadirect (req.getContextPath() + "/expenses")? |, .
; v)
-\--- FairSharelUrl.java 28% L131 (Java//1 Abbrev) <V> [‘2 3
Mark set

So a summary of our demo is that for our pages we have URL user expenses report. In the
implementation we have get methods which show just the form and retrieve the data. Post
method make changes, deal with the failure case in the success redirect.

(Refer Slide Time: 41:47)

Gw Bt Oplons Buffrs Tools Jova Help BH6- 0D+ WeEkT1-1s- 050t - et 2@ -0 X
DE E x EQ AINE m @ HOME INSERT DESIGN TRANSITIONS ~ ANIMATIONS ~ SLIDESHOW REVIEW VIEM
o P .
: . . b b #
boolean ragister = req.getParzmeter("btnRegister") I= null; ©] B US e
boolean expense = req.getParaneter("btnExpense”) = null; P o New p Drawing Editng
boolean raport = req.gatParameter ("btaReport”) != null; Slde - M
Qitoud 5 Sides Puagagh s
try {
2
connectDB();
if (register) { 4 .
ispatcher rd = req.get ispatcher("/jsp/rege | 5 ,j)
ister.jsp'); PRG and some edge cases HE
Yaiid NPTEL
boolean success = registerUser(req, out); == —
if (success) { L « What should happen if the previous form had an error?
resp.sendRedirect (ridq. getContextPath() + "/users"); 9 . Ecommeros carts wil even prasarve errors.
10
else { « The ecommerce vendor needs you more than you
// Can send cache headers here; n need them!

// design question uhether to o not! s
allRegisteredUsers(reg, out);
rd.include(req, resp);

+ Banks elc. may force you to re-login.
« You need the bank more than the bank needs you!

} . .
i + What happens if the GET fails?
- 1
else if (expense) { + We have a rare case of non-resubmittable form
ispatcher rd = req.get cher("/jspiexpr |16
ense. jsp"); .
boolean success = addExpense(req, out); 18 ~|
LIS 20 Introduction to Moder Applicatior’ *
if (success) { 20
resp.sendRedirect (req. getContextPath() + "/experses’)» |, !
s FairShareUrl.java 28% 1128 (Java//1 Abbrev) <V> [12 :

There are few cases one which we looked at, is what to do if there is an error. If it is an
ecommerce cart you will actually find it is useful to preserve the error that the user goes back
and change it. For that we cannot rely on the local cached form. We actually have to make
sure that the form with the error is stored in the database and retrieved from there. So, we
might make the form uncacheable even with a post redirect in spite of errors such that when

the browser goes back it can retrieve from the database.

This is because the E-Commerce vendor needs you more than you need that you can always

go to some other vendor. But the bank will force you to re login. It is sometimes for the case
of security at other times because you need the bank more than need you. One other failure
case which we did not look at is the case where in this redirect the post goes through

successfully but it is actually the get which fails.

If that happens we are now stuck in strange state and that would be would consider it
reasonably rare. So, will have to figure out how to deal with that for example we may have
rare case of non resubmittable stuck state in which you tried the get but the get did not work.
And so you encounter an ordinary browser failure of being unable to retrieve a page. In
which case you can let the user submit again actually so not non resubmittable is a type of; it
is a rare case of resubmittable form which because it is retrieved by get can be re-fetched. So
that is the overall flow of the post redirect get.

(Refer Slide Time: 43:55)

e £t Opions Buffers Tool ; [EECEE e 0PI - PowerRont r@E-0x%
D& E x@I9I¥®m m @ HOME ~ INSERT DESIGN TRANSITIONS ~ ANIMATIONS ~ SLIDESHOW REVIEW VIEY
- .
: - USIRE]
boolean register = req.getParmeter("stnRegister) I= null; @ BIUS
boolean expense = req.getParaneter(btnExpense”) != null; R, New rasing Eding

boolean raport = req.getParameter("btReport”) l= null;
try {
connectDB();

if (register) {
o ispatcher rd = req.get

cher("/jspireg? | 5 f)

ister.jsp’);

The SPA/Javascript Solution i}g

NPTEL

boolean success = registerUser(req, out);
if (success) {
resp.sendRedirect (ridq. getContextPath() + "/users");

else {
// Can send cache headers here;
// design question uhether to or not!
allRegisteredUsers(req, out);

Persistent

+ The PRG patter solves the Navigable App State problem
in cases where new App slate results in a complefely new
9@ page fetched from the browser.

W « Many recent web apps instead use partial pagie updates
and directly change the DOM using Javascrip

U ol lhe% “synthesize” a pa%e in this fashion, they can also
N s “Hsy;n esize” the URL and the Browser Back button
istory.

rd.include(req, resp); « The user gets the “full pa%e” behavior they are used to,
} 1 but at much greater speed.

o 15 « Such apps are called ‘Single PafgeA?ps"‘ becauss the:

else if (expense) { do not fetch the complete page from the server, but only
e ispatcher rd = req.get bits and pieces as neede

cher("/jspiexp? |16

ense. sp"); i
boolean success = addExpense(req, out); 18~
U 8 pil Introduction to Modern Applicatior, \
if (success) { 2
resp.sendRedirect (req. getContextPath() + “/experses”)® | 1
= FairShareUrl.java 28% 1128 (Java//1 Abbrev) <V> [122 :

One last thing before we are done with this session, just a few words of about a different
solution for this state synchronization problem or the application state problem. This
navigable app state problem in cases where the new app state that gives your completely
fresh page we use the post redirect get pattern. But many recent web apps instead use partial
page updates. So instead of changing the whole page when you have changed, say, suppose

you add a new user.

Then you just want to add in this case if I add a new user Imnl my entire page should not
change I should just add a new row over here that would actually be ideal from efficiency and

responsiveness perspective. So you can do partial page updates and directly change the

DOM. DOM is this one right you remember from before so which is documentary. So you
can directly edit the documentary using JavaScript and just insert one row by fetching the

content from the database.

So such an app; if the app synthesizes a page in this fashion, then in order to make such
addressable URLs and their behaviour look the same as a full page refresh. They can also
synthesize the URL and the history and in fact search history API is actually available in
JavaScript these days. So, the user gets something like a full page behaviour, but at much

greater speed and such apps will be called single page apps.

But as far as the user experience is concerned they will try to preserve as much of this
addressability is necessary for their application. So, with that we have done one of the more
perhaps the trickiest parts of the new kind of design that the web requires. And next session
we will add cookies and session and talk about one thing which we have not seen before is

form resubmission by users.

Resubmit tokens, separating users using cookies and so far so forth. First we will deal with

separating the users using cookies and then go on to the form resubmission issue.

