Introduction to Modern Application Development
Prof. Aamod Sane
FLAME University and Persistent Computing Institute
Indian Institute of Technology — Madras

Lecture — 31
Week 10 — Part 3

(Refer Slide Time: 00:11)

= = —
ANMATIONS SUCESHON REVIEH VEW ADOWM
b HEE i
]
ik | Wane specdled | Npial DB Form 1 Pt
| ‘I'JUAEEDEE.'\'.'N Tameat Decumentation i!
- P g OF
{Exampies flane spaciied | Serded and JSP Exampies 1 ot Nothll"lg 15 Slmple 1 LG
4 .ngsim:rlu NPTEL

mirsnargshow | Mane spacded | Npsel D Form ‘im i

. Register users

+ Have | registered before?

hellgisn | Mong spackfed | Mpiel JSP

s Enter expensas

i ions?

| host-rangosr | Mong specied | Tomeat Host Manager Application + How about making corrections?

« Gel report
fgalurms | Mone specifed | Hpel JSP Farm N 1 + More detailed reports?
|canager anpum Tarmcal Mareger Appicalion |
|my (i Intraduction ta Modern Applieation Developl .
| Daploy directary or WAR file located on sarvar 1.3

Gt P reqied i

So far, we have created a screen with an input field and 3 buttons for registering, expenses
and report. Register shows the registered users in the database. However these users were

registered using MySQL from the command prompt.

The next step is to try to register a user from the browser instead which is a reasonable
expectation for a user of the web application. Updating the database and dealing with user
input brings up several new issues, such as;
1. Every time a new user is requested to be registered, check if the username already
exists and they should choose a new username.
2. Enter expenses: If, by mistake, an extra or incorrect expense gets added to the expense
table, an extra functionality of being able to edit or delete a previously entered row

must be designed.

To achieve this, we are going to use a combination of database facilities and make certain

changes to the existing app.

Consider the following simple test program: insertdb.java, where we try to insert records into

the database.

import java.sql.Connection;

import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;

import java.sql.SQLException;
import java.sql.Statement;

public class insertdb

static String url = "jdbc:mysql://localhost:3306/nptel”;
static String user = "nptel_user";

static String password = "npuserpwd”;

static String DBDriverClass = "org.mariadb.jdbc.Driver”;

static private Connection conn = null;

static private Statement stmt = null;

static private ResultSet rs = null;

public static void main(String[] args) {

try {
Class.forName(DBDriverClass);

conn = DriverManager.getConnection(url, user, password);
stmt = conn.createStatement();
int rv = -1;
try {
rv = stmt.executeUpdate("insert into users2 values(®©,2,"'f1')");

catch (java.sql.SQLException e) {
e.printStackTrace();
System.out.println (“"Message:

+ e.getMessage ());

System.out.println (“"State: " + e.getSQLState ()):;
System.out.println (“MariaDB code: { rcod

Most of the statements are familiar.

We create a database connection using the database driver and statement has the
query to be executed on the database nptel specified in the url using jdbc standard.
The try block has rv=stmt.executeUpdate (“insert into users2
values (0,2,"£f1")");

Though this is a simple update query, the important difference from earlier scenarios
is errors might arise, since we are updating the database (unlike querying where we
only read from the database). We need to catch exceptions using the standard
SQLException object which has a lot of information.

SQLException object has a message, SQL state, error code and a cause field. SQL

state is a SQL language standard.

MySOL

MySQL Server MySQL Enterprise

oNqvV

E Documentation Home
MySQL Connector/J 5.1 Developer
Guide
Preface and Legal Notices
Overview of MySQL C)

Workbench

MySQL Connector/J 5 1 Developer Guide / Connector/J (JDBC) Reference / Mapping MySQL Emor Numbers fo JOBC SQL State

Codes

InnoDB Cluster

MysSaL Cluster Conne

s More

MYSQL.COM DOWNLOADS DOCUMENTATION DEVELOPER ZONE

5.12 Mapping MySQL Error Numbers to JDBC SQLState Codep

The table below provides a mapping of the MySQL error numbers to JOBC sgLstate values.

Table 5.4 Mapping of MySQL Error Numbers to SQLStates

v Connector/J Versions, and the MySQL MySQL Error MySQL Error Name Legacy (X/Open) SQL standard
and Java Versions They Require Number saLstate SQLState
v Connector/J Installation 1022 ER_DUP_KEY 23000 23000
1037 ER_OUTOFMEMORY S1001 HY001
) Reference 1038 ER_OUT_OF_SORTMEMORY $1001 HY001
Class Name 1040 ER_CON_COUNT_ERROR 08004 08004
 Connection URL Syniax e Slashisarsens o008, oesm
5 : — 7
0/4 EE L) | 1
@ . SMysL X - -
= @ @ |9 & https//dev.mysql.com/doc/connector-j/5.1/en/connector-j-reference-error-sqlste B8 - @? Q, sqLstate codes -)J J | 0 |-}
Cissiacat] Viaeoa: e L MySQL Error MySQL Error Name Legacy (X/Open) saL standara [+
and Java Versions They Require Number SQLState SQLState
v ConnectoriJ Installation 1022 ER_DUP_KEY 23000 23000
Conneclor/J Examples 1037 |ER_OUTOFMEMORY |s1001 THY001
n ConnectorlJ (JDBC) Reference 1038 |ER_OUT_OF_SORTMEMORY | s1001 [HY001
Ovivas Dk Gl Mo 1040 ER_CON_COUNT_ERROR 08004 08004
Gonnection URL Syntax 1042 |ER_BAD_HOST_ERROR | 08004 |08so01
Configuration Properties for 1043 | ER_HANDSHAKE_ERROR) | 08004 | 08501
Connector/J 1044 ER_DBACCESS_DENIED_ERROR 42000 42000
JDBC AP! Implementation Notes 1045 |ER_ACCESS_DENIED_ERROR | 28000 28000
Java, JDBC and MySQL Types 1046 |ER_NO_DB_ERROR |3D000 | 30000
Using Charactsr Sets and Unicode 1047 ER_UNKNOWN_COM_ERROR 08501 08501
Connecting Securely Using SSL 1048 :E‘V_%D_VNUH;_E‘RER iZSUW :23000
Gonnecting Using Unix Domain 1049 |ER_BAD_DB_ERROR | 42000 | 42000
Sockets 1050 ER_TABLE_EXISTS_ERROR 42501 42501
Connecting Using Named Pipes 1061 | ER_BAD_TABLE_ERRQR | 42502 | 42502
Connecting Using PAM 1052 |ER_NON_UNIQ_ERRO| | 23000 | 23000
Authentication 1053 |ER_SERVER_SHUTDOWN {08801 |08s01
Using Master/Slave Replication with 1054 | ER_BAD_FIELD_ERROR |s0022 | =2
ReplicationConnection - it e~ ——
10558 ER_WRONG_FIELD_WITH_GROUP $1009 42000
t:’rgg'g ml:mﬁré“o'd::mu“ 1056 |ER_WRONG_GROUP_FIELD |'s1000 | 42000
1057 ER_WRONG_SUM_SELECT $1009 42000
v JDBC Concepts + 4 4
1058 ER_WRONG_VALUE_COUNT 21501 21501
Connction Foolnn Wb Conecedt) 1068 TER_TOO_LONG_IDENT $1009 142000
y: MU Hout Comneotions 1060 ER_DUP_FIELDNAME |s1009 42521
g;‘ﬁe‘:‘“ Gonnectorl. interceptor 1081 ER_DUP_KEYNAME 51009 tazooc
: : 1082 ER_DUP_ENTRY S1009 23000
Using Logging Frameworks with — 1 T
SLF4) 1063 ER_WRONG_FIELD_SPEC 51009 42000
1064 |ER_PARSE_ERROR |42000

Using Connector/J with Tomcat

2 [~ v Highlight &l

Match Case Whole Words 1 of 4 matches

| 42000

In the MySQL web page, we can find mapping of MySQL error numbers to SQL state

code.

We will

encounter

ER BAD TABLE ERROR.

42502

in

We print out the message and close the database.

the webapp

created

and execute using java insertdb. We get this error message:

till

now, which

This is just a test program. Compile the insertdb.java file using javac insertdb.java

=] Command Prompt

The error message: Table ‘nptel.users2’ doesn’t exist.
This is because we have not created it yet. This reason to run it before creating was to

demonstrate the description of the error.

et}

The highlighted text has a message field of SQLException object. The state is a standard
from SQL, value is 42S02 as predicted. MariaDB’s MySQL also has status codes that explain

the type of error, in this case its value is 1146.

To fix the error, create a table users2.

Now run insertdb using java insertdb, it outputs rv=1. This is the number of rows in

users2. This means insertion query in the insertdb.java was successful.

The left command prompt executes insertdb after table users2 is created, the updated table is

displayed on the right command prompt as output for the query select * from users2.

To ensure that one cannot enter the same username is using unique constraint, justlike

primary keys are required to be unique, we can also ensure that the user name is unique.

raint unique key(uname);

| PRI | NULL
| NULL
UNI | NULL

Now if we attempt to insert the same row, there is an exception which is that the duplicate
key fl is entered for uname and this time the status code changes to 23,000 and the mariadb

code is 1062. 23000 is the standard error code for ER DUP_ENTRY.

The usual way to fix errors is to look up the status code (here, ER DUP ENTRY which

means that a duplicate entry has been made).

TIP:

When we use websites, almost all of them require users to register and identify themselves
since name, city, etc., is not necessarily unique or it can also be the case that somebody might
easily impersonate you knowing your details. So instead, we create a new identity or you use
an identity which is already known to be unique such as Yahoo email address where some
third party like Yahoo or Google have taken care that the email ids are unique to finally reach

a stable notion of user identity for your app.

In the previous code, we created a table without a unique constraint and then added it by
altering it. The alternative is to use this unique declaration right in the schema of the table as

shown below.

use nptel;

create table users3 (

usrid bigint auto_increment primary key,
ctime bigint not null,
uname varchar(255) not null unique

);\

So for example if you want to see how this uniqueness is achieved use show indexes from

usersz;

y_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type

Register page of the website needs to have the functionality of displaying errors. We instead

create a new screen with a different url for displaying queries which lead to an error.

FairShareShow

filey/f/Dfapps/nptel/fairshareshow/jsp/register-error.html

The right place to return an error like this is a matter of Ul design.

In the register page itself, we have the input field which corresponds to the input field shown
here, but in the register error page we add another row(highlighted in the above figure)

besides the input field.

A designer might prefer the error message to be centered or aligned to the left hand side of
the input field. All these effects can be achieved, but it is ugly to achieve just with tables.

CSS is better but it needs a lot more knowledge of CSS than what we have learnt.

FairShareShow

tel/fairshareshow/jsp/register-align-error.hitml [CECR » =
Yy U Inspector &) Console [Debugger »» m e ﬁ
o o
<IDOCTYPE html> J

<html>

v i

itle
vords words button { padding: @.25%em; margin-top: 1.4em; width: bem;

margin-left: lem; margin-right: lem; } body { margin: @;
padding: @; min-height: 18évh; } * { outline: 1px solid
blue; }

k style

[| | [ommn | | [

\Error Message Here

<|--register.jsp--»
w <div style="padding-top: 28vh;™>
¥ <form id="Formid" action="<%= request getRequestURL({) %>"
method="post" name="formname"> - </form>
</div>
Thadus

htmil b i

The error page with an extra style called outline:1px solid blue. This is done to show

how the first row has a table with 2 rows, so there is a table inside a table.

As we know the primary part of the structure is a row of buttons, a row with the input field,
but then this input field in turn actually consists of a table which itself contains the input field

and the second row has the error message text. Doing this and sizing them can be tedious.

CSS does make it a lot easier to create applications which work for mobiles, tablets as well as

normal websites.

User interface gets affected based on the input to the input field. The user interface becomes
more dynamic as the app has to detect the presence or absence of errors and output different

html files.

We want to see the following output when an already created user abc2 is registered again:

Error: user name ‘abe2’ already exists, see list below [N

Register Expense Report

Registered Users

ctime
2020-04-18 00:36:58.0

2020-04-18 00:36:31.0

case, you nead to spacify tho

We are going to add two things to the FairShareDb.java file:

e Edit Opmions Buffers Tools Java Help

IBE-B s XxmB B

resp.setContentType(“text/html™);
PrintWriter out = resp.getWriter();

req.setAttribute(~title”, “info via db");

lean register = req.getParameter("btnRegister™) != null;
an expense = req.getParameter(”“btnExpense”) != null;

ean report = req.getParameter(“btnReport™) != null;

try {
connectDB();
RequestDispatcher rd = req.getRequestDispatcher(“jsp/register.jsp”);
registerUser(req, out);
Pllregisterfdusers(req);

rd.include(req, resp).

else if (expense) {

RequestDispatcher rd = reqvgetﬂequestbispatcher(")tp!expenﬁe,sz');
String qr = “select * from expenses”™ ;
ist<HashMap<String,Object>> gdata = doQuery(qry);

req.setAttribute(“ExpenseData”, qdata);
rd.include(req, resp);

else if (report) {

RequestDispatcher rd = req.getRequestDispatcher("jsp/report.jsp™);
String reportQry =
“select < +
“frcm_unxxtxre(ectime} as attime, " +»

“uname, " +

\--- FairShareDb.java 28% L75 (Java//1 Abbrev) <V>

e The update part is done in a function called registerUser (reg,out) which
takes the request and the output. This output is the PrintWriter which we get from the
response object.

e Get all the registered users in the query part and this is included in the template as we

have seen before.

File Edit Opsions Buffers Sooks lava Help

De@x@ s xmbh B &3 o

private void registerUser(HttpServletRequest req, PrintWriter out) throws SQLExceptionMNPTEL

Statement upd = conn.createStatement();

st

ring userName = req.getParameter(“thefield™);

try { I
if (userName != null) {

String ugqry =
“insert into users (ctime, uname) values (unix_timestamp().
+ userName

s SR F
int howmany = upd.executeUpdate(uqry);
}
catch (SQLException e)
String State = e.getSQLState();
final String SQLSTATEDUP = "23000"; // from the SQL Standard

if (sqlState.equals(SQLSTATEDUP)) {
req.setAttribute(“dupuser”,“yes™);
req.setAttribute(“inputuser”™ ,userName) ;

}
else {
sqlExceptionDump(e, out);

}
finally {
upd.close();

}

~\==- FairShareDb.java 5&% L123 (Java//1 Abbrev) <V>

The unix timestamp gets evaluated on the server side, this is a SQL function:
unix_timestamp(). howmany field stores the number of affected rows from the previously

executed register query.

When there is an exception, SQL state is checked for duplicate entry using
sglState.equals (SQLSTATEDUP). We are going to set the attribute in the request that
says “yes”, there is a duplicate user and we are also going to send the username that is
attempted to be duplicated, so that the error message can contain what user exactly was

duplicated.

If the SQL state code is something else, we are simply going to dump the SQL exception and

then close the statement. We are going to take action with duplicate entry error types.

Execute the query and result is a list of maps, set the user data attribute and go to the
register.jsp function. One novelty in here is that this template does 2 different things based on
whether there was a duplicate user or not. As we saw, the goal is to add a row containing the
error message only if there is a duplicate user and if there is such a user, then you should

mention what this is.

| <!-- register.jsp -->
<d tyle="padding-top:20vh;">
<f ti "¢X%= request.getRequestURL() X>" i="post"™
“formid" «="formname™ >

<tat f "e" ng="5">
<] "3" i "center">

<input “inpl® na “thefield” "your input here”
»="height: 2em; width: 70%;">

'

<c:if te "${dupuuvrl== ‘'yes'}" >

| <t - i “tdError™>
Error: user name];{.';-' ser}’ already exists, see list below

<button id="btnl"
name="btnRegister™ type="submit"”
value="Register">Register</button>
<ftd>
<td>
<button id="btn2"
name="btnExpense™ type="submit”
value="Expense”>Expense</button>

S—
<td>

cc 2 Vo i

You might have noticed that the error was printed in red colored text using CSS class:

tdError.

body { margin: @; padding: ©; min-height: 100vh; }
-thTopBot {
border-bottom: 1px solid black;
border-top: 1px solid black;
}
tdBottom {
ext-align: center;
1px solid black;
}
.tdError {
olor:red;||
for tyle: italic;
font-size: larger;
ext-align: center;
)
</ b
-\=-- register.jsp 17% L27 (Web) <V>
< t >

tdError class: Color should be red, font style is italic, font size is larger i.e. just larger than
default font, align to the center. The above two CSS classes were used to get the table layout

from last time.

Validation starts becoming very important when updations are made. To demonstrate, click
register user with no input entered in the input field. Since username !=null is present in the
code, if there is no username, there is a new row in the table with a blank name though the

expected behavior as an end user of the website might be to not add any row to the table.

There is much more to user validation than the simple example. To demonstrate this, we first

make a change to reject the empty string if the username is empty.

We need to ensure nothing fails when the table is empty, but our website displays an error.

The testing of a database should be automated but it is a characteristic feature of modern web

development where most of them are tested in some version.

In our case, we could use embedded tomcat but there are many ways to automate. Once
changing, entering and checking the details starts becoming the feature of your application,
life does get considerably harder. Even adding a single quote(‘) to the input throws an

exception which our app cannot handle, it just dumps the stack trace. So just a bad input is

hard to handle.

We use the concept of prepared statements to achieve better testing. Under certain
circumstances they can be more efficient as well, especially when used in loops. It specifies
the database which part of the statement is specified by developer and which part is coming
as input from the users, so that the database will treat it not as something that whose syntax
the database has to understand, it will clean the isolate user input and then store it separately

without letting it affect the rest of the statement.

In our example, nothing is irretrievably broken, only the request gets affected . So we can

reload the page to erase the previous execution.

ivate Uﬁidl(ﬂttpstf'\flttntql.I!St req, PrintWriter out) throws 'SQ!.xttptiﬂﬂ

pr

String uqry =
“insel-t into users (ctime, uname) values (unix_timestamp(), ?);7;

PreparedStatement upd = conn.prepareStatmnt'.nqry);

String userName = req.getParameter(“thefield™);

Instead of creating just a statement, we are going to create a prepared statement where at the
same place the query is also supplied. The prepared statement will contact the database,
compile the prepared statement, this is another reason because of pre-compilation that
prepared statements can be more efficient and in the prepared statement we are going to leave
a hole, a parameter where the user value will be plugged in. The usual way to do that is to
have a ? to say that this is where we are going to plug in a value. The rest remains the same as

before.

ipd = conn.prepareStatement(uqry);

ame = req.getParameter({“thefield™);
try {
if (userName != null && !userName.equals(™")) {

‘String ugry =
“insert into users (ctime, uname) values unix timestamp(
+ userName
i i ;

int howmany = upd.executelUpdate(uqry).

upd.setString(l, userName);

howmany = upd.execuleUpdate();
}

catch (SQLException e)
String sqlState = e.getSQLState();
final String SQLSTATEDUP = "23000"; // from the SQL Standard

if (sqlState.equals(SQLSTATEDUP)) {
req.setAttribute(“dupuser”, “yes"”);
req.setAttribute(“inputuser” ,userName);

v uE
So you get the userName as before, complete your validation, and then say upd.
setString (1, username);and because the query is already known all you have to do
is execute the update as shown above.
The idea is you do not specify a bad input looks like, you only specify what a good input is,
So even if the database, the standard SQL might not approve when written down in a string

syntax,

You can use the same idea for example for expenses. At this point we will actually have
nearly a full database app in which the only thing that is different is that different users

cannot access the system at the same time just yet.

So at this point we you have a reasonably complete app.

We however do not have delete operations such as removing a user but it is no different from
what we have done so far. Just as we did register, create another button called unregister

which makes the system delete the row from the database with the provided user name.

Once we add login and cookies, our app will essentially be complete and you will have seen
all the pieces including various debugging scenarios that show up when a web app has to be

developed.

