
Introduction to Modern Application Development
Prof. Aamod Sane

FLAME University and Persistent Computing Institute
Indian Institute of Technology – Madras

Lecture – 31

Week 10 – Part 3

(Refer Slide Time: 00:11)

So far, we have created a screen with an input field and 3 buttons for registering, expenses

and report. Register shows the registered users in the database. However these users were

registered using MySQL from the command prompt.

The next step is to try to register a user from the browser instead which is a reasonable

expectation for a user of the web application. Updating the database and dealing with user

input brings up several new issues, such as;

1. Every time a new user is requested to be registered, check if the username already

exists and they should choose a new username.

2. Enter expenses: If, by mistake, an extra or incorrect expense gets added to the expense

table, an extra functionality of being able to edit or delete a previously entered row

must be designed.

To achieve this, we are going to use a combination of database facilities and make certain

changes to the existing app.

Consider the following simple test program: insertdb.java, where we try to insert records into

the database.

Most of the statements are familiar.

● We create a database connection using the database driver and statement has the

query to be executed on the database nptel specified in the url using jdbc standard.

● The try block has ​rv=stmt.executeUpdate(“insert into users2

values(0,2,’f1’)”);

● Though this is a simple update query, the important difference from earlier scenarios

is errors might arise, since we are updating the database (unlike querying where we

only read from the database). We need to catch exceptions using the standard

SQLException object which has a lot of information.

● SQLException object has a message, SQL state, error code and a cause field. SQL

state is a SQL language standard.

● In the MySQL web page, we can find mapping of MySQL error numbers to SQL state

code.

● We will encounter 42S02 in the webapp created till now, which

ER_BAD_TABLE_ERROR.

● We print out the message and close the database.

This is just a test program. Compile the insertdb.java file using javac insertdb.java

and execute using ​java insertdb ​. We get this error message:

The error message: ​Table ‘nptel.users2’ doesn’t exist ​.

This is because we have not created it yet. This reason to run it before creating was to

demonstrate the description of the error.

The highlighted text has a message field of SQLException object. The state is a standard

from SQL, value is 42S02 as predicted. MariaDB’s MySQL also has status codes that explain

the type of error, in this case its value is 1146.

To fix the error, create a table users2.

Now run insertdb using java insertdb​, it outputs rv=1. This is the number of rows in

users2. This means insertion query in the insertdb.java was successful.

The left command prompt executes insertdb after table users2 is created, the updated table is

displayed on the right command prompt as output for the query ​select * from users2 ​.

To ensure that one cannot enter the same username is using ​unique constraint ​, just like

primary keys are required to be unique, we can also ensure that the user name is unique.

Now if we attempt to insert the same row, there is an exception which is that the duplicate

key f1 is entered for uname and this time the status code changes to 23,000 and the mariadb

code is 1062. 23000 is the standard error code for ER_DUP_ENTRY.

The usual way to fix errors is to look up the status code (here, ER_DUP_ENTRY which

means that a duplicate entry has been made).

TIP:

When we use websites, almost all of them require users to register and identify themselves

since name, city, etc., is not necessarily unique or it can also be the case that somebody might

easily impersonate you knowing your details. So instead, we create a new identity or you use

an identity which is already known to be unique such as Yahoo email address where some

third party like Yahoo or Google have taken care that the email ids are unique to finally reach

a stable notion of user identity for your app.

In the previous code, we created a table without a unique constraint and then added it by

altering it. The alternative is to use this unique declaration right in the schema of the table as

shown below.

So for example if you want to see how this uniqueness is achieved use show indexes from

users2​;

Register page of the website needs to have the functionality of displaying errors. We instead

create a new screen with a different url for displaying queries which lead to an error.

The right place to return an error like this is a matter of UI design.

In the register page itself, we have the input field which corresponds to the input field shown

here, but in the register error page we add another row(highlighted in the above figure)

besides the input field.

A designer might prefer the error message to be centered or aligned to the left hand side of

the input field. All these effects can be achieved, but it is ugly to achieve just with tables.

CSS is better but it needs a lot more knowledge of CSS than what we have learnt.

The error page with an extra style called outline:1px solid blue​. This is done to show

how the first row has a table with 2 rows, so there is a table inside a table.

As we know the primary part of the structure is a row of buttons, a row with the input field,

but then this input field in turn actually consists of a table which itself contains the input field

and the second row has the error message text. Doing this and sizing them can be tedious.

CSS does make it a lot easier to create applications which work for mobiles, tablets as well as

normal websites.

User interface gets affected based on the input to the input field. The user interface becomes

more dynamic as the app has to detect the presence or absence of errors and output different

html files.

We want to see the following output when an already created user abc2 is registered again:

We are going to add two things to the FairShareDb.java file:

● The update part is done in a function called registerUser(req,out) which

takes the request and the output. This output is the PrintWriter which we get from the

response object.

● Get all the registered users in the query part and this is included in the template as we

have seen before.

The unix timestamp gets evaluated on the server side, this is a SQL function:

unix_timestamp(). ​howmany field stores the number of affected rows from the previously

executed register query.

When there is an exception, SQL state is checked for duplicate entry using

sqlState.equals(SQLSTATEDUP) ​. We are going to set the attribute in the request that

says “yes”, there is a duplicate user and we are also going to send the username that is

attempted to be duplicated, so that the error message can contain what user exactly was

duplicated.

If the SQL state code is something else, we are simply going to dump the SQL exception and

then close the statement. We are going to take action with duplicate entry error types.

Execute the query and result is a list of maps, set the user data attribute and go to the

register.jsp function. One novelty in here is that this template does 2 different things based on

whether there was a duplicate user or not. As we saw, the goal is to add a row containing the

error message only if there is a duplicate user and if there is such a user, then you should

mention what this is.

You might have noticed that the error was printed in red colored text using CSS class:

tdError.

tdError class: Color should be red, font style is italic, font size is larger i.e. just larger than

default font, align to the center. The above two CSS classes were used to get the table layout

from last time.

Validation starts becoming very important when updations are made. To demonstrate, click

register user with no input entered in the input field. Since username !=null is present in the

code, if there is no username, there is a new row in the table with a blank name though the

expected behavior as an end user of the website might be to not add any row to the table.

There is much more to user validation than the simple example. To demonstrate this, we first

make a change to reject the empty string if the username is empty.

We need to ensure nothing fails when the table is empty, but our website displays an error.

The testing of a database should be automated but it is a characteristic feature of modern web

development where most of them are tested in some version.

In our case, we could use embedded tomcat but there are many ways to automate. Once

changing, entering and checking the details starts becoming the feature of your application,

life does get considerably harder. Even adding a single quote(‘) to the input throws an

exception which our app cannot handle, it just dumps the stack trace. So just a bad input is

hard to handle.

We use the concept of prepared statements to achieve better testing. Under certain

circumstances they can be more efficient as well, especially when used in loops. It specifies

the database which part of the statement is specified by developer and which part is coming

as input from the users, so that the database will treat it not as something that whose syntax

the database has to understand, it will clean the isolate user input and then store it separately

without letting it affect the rest of the statement.

In our example, nothing is irretrievably broken, only the request gets affected . So we can

reload the page to erase the previous execution.

Instead of creating just a statement, we are going to create a prepared statement where at the

same place the query is also supplied. The prepared statement will contact the database,

compile the prepared statement, this is another reason because of pre-compilation that

prepared statements can be more efficient and in the prepared statement we are going to leave

a hole, a parameter where the user value will be plugged in. The usual way to do that is to

have a ? to say that this is where we are going to plug in a value. The rest remains the same as

before.

So you get the ​userName as before, complete your validation, and then say ​upd.

setString(1, username); ​and because the query is already known all you have to do

is execute the update as shown above.

The idea is you do not specify a bad input looks like, you only specify what a good input is,

So even if the database, the standard SQL might not approve when written down in a string

syntax,

You can use the same idea for example for expenses. At this point we will actually have

nearly a full database app in which the only thing that is different is that different users

cannot access the system at the same time just yet.

So at this point we you have a reasonably complete app.

We however do not have delete operations such as removing a user but it is no different from

what we have done so far. Just as we did register, create another button called unregister

which makes the system delete the row from the database with the provided user name.

Once we add login and cookies, our app will essentially be complete and you will have seen

all the pieces including various debugging scenarios that show up when a web app has to be

developed.

