
Introduction to Modern Application Development
Prof. Aamod Sane

FLAME University and Persistent Computing Institute
Indian Institute of Technology – Madras

Lecture – 28

Week 09 – Session 2

Hello. Welcome to the Session 2 of Week9.

Section 1: Review of the lecture

We have looked at:

● how MySQL is set up

● Set up of tables in a database using MySQL

● Querying in MySQL.

Aim of the lecture:

1. Use Java to extract data from MySQL. (We have done this once before, but we

explore this in more detail.)

2. Implementing the same, but by using servlets.

3. Get data from a database and show it on a webpage using jsp.

Upon doing these, we will have brought together jsp and databases.

Upcoming lectures: Use cookies for implementing the logic of the application. This will

complete the implementation of the entire web application.

(Refer Slide Time: 01:28)

Review of this lecture:

● Access MySQL from java.

● Learn about database drivers and database connections.

● ResultSet object which contains information about the result of the statement from the

database, how to access it and convert it into html.

SECTION 2: OVERALL PICTURE OF TOMCAT, SERVLETS AND
DATABASE

(Refer Slide Time: 01:52)

1. Tomcat is the server.

2. There are servlets (classes which can be loaded when you configure them in the

manager).

3. Servlet will communicate with the database using a database driver which, in turn,

creates a database connection.

4. Literally, the database connection represents the TCP connection between the Tomcat

process and the MySQL process. But figuratively, it also represents other data

properties.

The process of how MySQL CLI interacts with the database is also similar. The CLI also

opens a connection and it is through the connection that we communicate with MySQL.

However, unlike CLI, the arrangement of all this software is that the servlet is in tomcat’s

webapps. Tomcat layout has xampp which has tomcat. Tomcat directory has webapps which

contain all the web applications that we are going to use. This is where the webapps are

stored. There is a lib directory in tomcat directory which contains all the libraries.These are

loaded by the tomcat server on the fly whenever it needs some facility.

Example of libraries in lib directory :

● tomcat-api.jar: We will see how to use it in embedded Tomcat.

● servlet-api.jar: It is used to compile the servlets and then used when we are loading

them. This library is not Tomcat specific, it is a java standard and so there are other

non-Tomcat java server sets that also implement this. ​(Video Ends: 04:43)

(Refer Slide Time: 04:44)

MySQL forked into MariaDB which is the open source version. So the servlet is in tomcat

webapps, driver is in /tomcat/lib/mariadb-java-client-2.6.0.jar. Interesting properties of

transactions are managed on a per connection basis and not having too many connections to

the database is also important.

SECTION 3: How to establish a connection between driver and
servlet?

To demonstrate this, consider the simple example where we retrieve a bunch of information

from the database and show it on the webpage.

(Refer Slide Time: 05:39)

● Test using a simple file: Code in this simple file is in the first step after some

configuration that a servlet needs for different purposes. So next step will be servlet

configuration.

The same code that we use in our testing app can be used in a servlet, but there are limitations

to that code. For that reason we use JNDI resources. JNDI resource is basically a way of

talking about databases without forcing ourselves to specialize to a specific database driver.

Implementation in three stages:

1. Write a simple program.

2. Put it in a servlet

3. Configure the servlet into a Tomcat friendly form.

Implement a simple class: readdatabase.java

REMEMBER:

1. The nptel database has 2 tables(​expenses and ​users​) which we created in the last

lecture.

2. Users table has 3 attributes (​ctime​, ​usrID​, ​uname​).

3. If we do​ ​select * from users​, we see the 3 users we added in the last lecture.

4. Today's goal is just to retrieve resulting rows of ​select * from users and display it

on a webpage. We will also see how to get updates and whatever we need for our

actual application.

STEP1:Simple code for retrieving information from this database using a programming

language.

Create a test ​class​ called ​readdb​.

● ​url field in ​readdb​: ​“jdbc:mysql://localhost:3306/nptel” is used by another

standard called ​jdbc​ which is a way of connecting to any database (here, MySQL).

● Url is written the following way: Protocol jdbc, followed by MySQL(database

software), followed by varied runs and the last thing is the name of the database that

you want to connect.

● Second thing this connection needs is the ​user​ and ​password.

● Finally the driver class itself (​DBDriverClass field) which we have already put in

lib ​as we have seen before.

● connection ​is the actual database connection class, ​statement ​is the class the

statement you want to send to the database should be of, and the value of the

statement comes back as type ​resultSet​.

● In the main method: We ask to identify the class which loads ​DBDriver​.

DriverManager is defined in one of the imported packages (i.e. it is a part of

java.sql.*). Load the ​DriverManager, establish a connection ​conn​, create a

statement using ​stmt=conn.createStatement()​, to execute a specific query on the

database, write the statement in ​rs=stmt.executeQuery(“select * from users”)​.

The result set is an object with an attribute ​next​. ResultSet has a list of rows, with one

row accessible at a time. The types of ctime and usrID is bigint which are 64 bit types.

So in Java, they are represented as Long and therefore we get that information using

getLong()​. We can name each field in resultSet as well.

● The result set, the statement, and the connection need to be closed using ​rs.close() ,

stmt.close(), conn.close(); when we are done with the actual job. In the test

program of course, it does not matter much if something goes wrong, we will print the

stack trace and we will print a message.

compile this program with ​javac readdb.java​, start MySQL, ​java readdb​. This outputs

the rows of the users table as expected.

How to do the same from the servlet and what does the output look like?

Copy the earlier created dbforms to apps/nptel/. This time, however, we will communicate

with the nptel database.

So let us take a look at src/nptel/dbforms.

DbForms.java vs readdb.java

● Import the same packages.

● Instead of just having readdb class, we use an extension of HttpServlet.

● Member variables of the classes are the same.

● DbForms has request.setAttribute(), i.e. initialisation to the html page to be printed by

the web application.

● There is a driver manager and connection, createStatement, etc. that we have seen in

readdb.java. The only difference is now we are going to decorate the output with

html.

Execute​ jar cvf dbforms.war jsp WEB-INF.

So, it adds jspenv, WEB-INF which have classes/nptel/DbForms.class. Open

web.xml<dbforms>​. When you visit dbform itself, we will just go to / and then when it is

clicked again you open dbforms just like we did with jspforms the last time.

Deploy it as usual. Go to the manager app in Tomcat and we see dbForms.

The code associated with the layout.

Type the following in the textbox:

Output:

User table showed up here,it ignored the the information in the textbox and executed the

query “ select * from users ” as that was the only stmt in the connection, so the information in

the textbox, which is on the servlet side of the database connection never reaches the

database.

In the next step then is just to wrap all this up in jsp much the same way that we did for our

earlier jsp forms program as well. To create the forms program this time with jsp, just take

the dbforms program and copy it into this and this time we are going to make two changes.

First of all, instead of printing manually, we are going to use jsptagenv as we did last time.

DbJsp vs DbForms:

1. The first change we make is instead of explicitly loading the driver class directly, we

are going to do it indirectly through the JNDI name. In part, it is to avoid having any

knowledge like MariaDB, etc., embedded in this code and instead move it into a

config file.

2. As a consequence, we do not use the standard driver methods such as driver manager,

getConnection, url, etc. Instead, we first get a context, execute ctx.lookup (as shown

in figure above in the left file near the cursor). This is the naming convention and its

understanding involves knowledge of JNDI and context, etc., which we do not need

for this case.

3. We created the statement and we arranged to get the resultSet similar to DbForms.

The difference is there is no string because we are going to use jsp. Here is the jsp

which we are going to use, it is called user table dbjsp/jsp/user table. So, this is our

user table jsp and remember when we were first fiddling around with JspForms, we

had this code which looked like this, where what you have to do is see get something

called a request dispatcher from the request itself and then tell it to get access to the

jsp which then you end up calling the request dispatcher with the same request

response that we had before after putting these kinds of things into the request object

and this user table again. Similar to jsp from last time, it has get attribute.

We were getting all these tables of attributes and parameters and so on and the general idea is

that we had this kind of for loop. So, the same type of for loop exists here in user table and it

is the user data that we are going to populate in this statement. Once populated, you extract

all these tidbits using these types of names which are specific to the way jsp tag libraries

work okay. So, you get the request dispatcher and then this is what we do, we include the title

much like we included the title in this jsp form.

So, we had to remember the request.setAttribute(title), and the next attribute we set it to users

data. Users data is populated from the function which sets resultSet to a list of maps. So, we

are getting the set of rows. We model the row with a map, key-value pairs and we stick all the

maps into a list, i.e. the list of rows that we got.

Forward it to the request dispatcher which will do the job of running ,user table .jsp. Both the

users data are the same thing at this point.Value of $users data is list of maps.We took

dbforms and instead of dbforms direct driver, we get it through the context object and then

instead of just pumping out html, we do what we did for our jspforms and send it to a

particular jsp, either jsp with env, with ordinary jsp or using jsp tags.

The only real novelty we have not seen so far is two things: one is how did all this context

and all this thing get set up and what is this function doing?

The function is very simple. From the resultSet, get metadata object which tells us how many

columns are there in the result set and we will be using that information below.Create a list

which is an ArrayList loop over rs.next. For every row, create a new HashMap which has the

same number of columns as we obtained and for each of these columns, start putting

getColumnName(i) and rs.getObject(i), etc.

So at the end of this, we have a database object corresponding to every row, we have the

name of the column and the actual object and we add that to the list, return the value, put this

value in to setAttribute, then extract it in the user table library.

So the forEach is done in jsp rather than doing it in code. Notice that unlike the usual Java

loop which goes over 0 to i<columns, in order to keep interacting properly with this metadata

object, we have to look from 1 to the end of the column.

The context gets set up in a new directory called META_INF which has context.xml file. It is

describing to Tomcat what the particular data connection looks like. It says that it has all

things like max active, max idle, etc.

It is mostly around managing the number of connections and you have username and

password, driver class name, etc., etc. All of this because it is in the context.xml library is

accessible to our class and therefore we are able to run this thing, initial context and data

source. So, this is the general idea in code like this. You get information from the database.

You convert that into a data structure, you send that data structure back into a JSP library.

The database itself becomes known through code like this which talks about resources.

But as far as the servlet is concerned, it does not need to know too much about the details of

MySQL versus Postgres or whatever other database oracle, etc that you are going to use and

you write the loop. For every field in the database, you can have an output that looks like in

the above case. As we saw last time,there is a work directory, which converts all jsp files into

Java code at runtime and loads it. Here we have, for example, usertable_jsp .java.

It is kind of painfully difficult to read, but you can get some of the basic ideas of what is

going on.

Eventually you are going to get all these out.write statements from the code above. Load it

into the manager app.

During the conversion from database to Java can only be detected at runtime which is one of

the more unfortunate aspects of this type of programming and to fix that what we will have to

do is to see that this cannot be uid but it has to be user ID and then we go back and go to

dbjsp, use the jar file which mentions META-INF in JSP. We only changed the config file.

There is no simple way to verify these kinds of things, although it does mean that somewhat

tedious testing needs to be done every time. But using embedded tomcat testing can be done

easily. We will see this in some upcoming sessions.

(Refer Slide Time: 38:23)

We learnt to successfully communicate to the database to show the users table. We will use

this technique to execute complex statements in subsequent sessions.

