
Modern Application Development
Mr. Aamod Sane

FLAME University and Persistent Computing Institute
Indian Institute of Technology - Madras

Lecture – 26

Introduction to Modern Application Development

(Refer Slide Time: 00:11)

(Refer Slide Time: 00:17)

JSP which has a form:

So, here what we are going to do is something slightly different, we will load jspforms.war

(Refer Slide Time: 00:56)

So, when we load jspforms as a war, context path that is taken is actually jspforms itself. So,

what should happen when we click on jspforms, so far for example, in web.xml of hello jsp, this

URL pattern, the first one you visit corresponds to the servlet, which corresponds to this servlet

class.

So, jspforms/ is the opening URL and that will go to a servlet but as we have seen it is actually, a

servlet underneath even though, it looks like a standard jsp to us, this is identified by using the

jsp file tag rather than the servlet class tag.

(Refer Slide Time: 02:32)

(Refer Slide Time: 03:38)

In principle ​jsp which is the general purpose template language​, we can also use other

languages. So we start with a form and it is the form that then goes to the second page, jsp show

and it is jsp which takes us to the jspforms class. We first visit jsp page which is kind of like the

html page.

(Refer Slide Time: 05:45)

And just as the html page sends to the cgi bin script, here the jsp sends to a jsp show, which turns

out to be a servlet class.

(Refer Slide Time: 06:03)

Consider the above form, it has 2 buttons, JSTL and JSP, is very similar to our desired app’s

GUI (with a text filled and with 3 buttons)

Words are defaults and in practice, upon updating either of the 2 buttons will take us to the back

end. There is a form action as usual and an input ID, whose name is my field and here the name

is jstl button and jsp button.

(Refer Slide Time: 07:43)

Jsp Forms class:

There is a request attribute as usual because we are going to use it elsewhere and when that form

is clicked, it invokes this class, the post method and a post method in this case actually is no

different from get, so it internally sends to the get method.

Need for request dispatcher

Previously in hello JSP, we generated a request dispatcher, which took us from the servlet class

to a jsp, here we have arrived from a jsp via a post to this get and for this request, we are going to

generate a request dispatcher later and here are the 2 things we do:

1. Check if there is a parameter called jstl button, if so then do jstl processing.

2. Else do jsp processing.

The string arrives via the request parameter (which is the name that we gave), so key value pairs

arrive at the servlet and value is the one depending on which button is pressed.

ID of a tag is used on the client side, whereas the name is something which is sent to the server

side.

There is a button that submits a form and it sends this value to the back end, when that happens,

having determined whether it was jstl or whether it was jsp by using the parameter, two cases

arise. In one path, we set the title to jsp and our request dispatcher this time invokes either jspenv

.jsp or jsptagenv.jsp, so that is the distinction.

So, we came from the jsp to a servlet class and from a servlet class, we are going again to a jsp,

this time there are 2 jsp’s.

(Refer Slide Time: 11:33)

This behavior is similar to fair share when one clicks submit, something gets generated by the

back end, okay, in this case, it is just generating whatever you send it and it comes back, if this

were html, then we would see it as html but the point is you go from a form to a cgi bin which

generates another potential html and that is what is going on here. So, from 1 jsp, you come to

this class, from this class, you go to one of these 2 jsp’s and what does jspenv look like, let us

take a look, so jspenv.

(Refer Slide Time: 12:28)

Job of jspenv is to tell all the parameters of the request and all the attributes of the request​.

(Refer Slide Time: 12:52)

When jsp is clicked, we get the parameters table as shown above, which says that there was a

my field and there was a jsp button. So parameter is my field ​and value in this case is whatever

we entered and jsp button is the one whose value happens to be jsp. Now, as far as the attributes

are concerned, some are internal and others are entered which are titled jsp.

(Refer Slide Time: 14:06)

So, what is happening is it is generating 2 tables and in each table, it is generating 2 different

rows.

(Refer Slide Time: 14:50)

Java code is similar to before, it gets the request object, get parameter names, etc.

(Refer Slide Time: 16:35)

(Refer Slide Time: 17:02)

(Refer Slide Time: 18:01)

Since the previous code is added to the context of a full servlet, terms like request carry the same

meaning that they did for the servlet.

SUMMARY: Starting with web.xml which points out that entry point which is this URL for

jspforms takes us to the jsp file which contains an action which calls jspforms and in turn

invokes jspenv.jsp, inside the class by binding and that choice in turn is based on the button.

(Refer Slide Time: 20:29)

In the JSP file definition, you can straight away include code or you can include a value as

shown above.

(Refer Slide Time: 20:41)

Consider the above figure, writing using out.write ourselves does not make sense when the

example is complicated. Instead of that with the code on the left window, which are called

scriplets​ (little pieces of Java code) can make it more readable and elegant.

(Refer Slide Time: 21:38)

So for anything beyond simple inclusion, it is better to use Java code.

(Refer Slide Time: 21:49)

Tag library.

Tag libraries are a way of simplifying loops, decision making etc., that arise while designing

systems. One goal behind things like tag libraries was that since the front end i.e. forms and

layouts are done by designers who are not necessarily programmers, we want a much simpler

language over there which is easier for designers to understand. It is lot more like html.

(Refer Slide Time: 22:50)

The second scenario : JSTL

While we learnt about implementing using jsp through the jsp button which involves these things

called scriplets, tag libraries are a simplified version but achieves the same.

(Refer Slide Time: 23:09)

Tag origin: Need to include the first two lines in the above figure which specifies that tag library

will be used.

(Refer Slide Time: 23:37)

tr, td is used in a loop to generate a row and column respectively. ​$param refers to the

parameters of the request is an implicit object for jstl.

(Refer Slide Time: 24:40)

The generated code for the jstl contains predefined variables. Param is a java map which is a key

and a value pair.

(Refer Slide Time: 25:12)

(Refer Slide Time: 26:30)

Proprietary evaluate corresponds to the entry of the map, which is p.key where the runtime is

actually evaluating these things in the page context.​(Refer Slide Time: 27:05)

Just as param is a built-in or an implicit object, http headers are also available as implicit objects

and the loop over those is equally straightforward but the loop over attributes is a bit funky, this

time the tag library alone does not do the job, instead we have to use old style jsp code and in

this object something called page context, you have to actually get all the attributes and set it

over here.

(Refer Slide Time: 27:46)

In short implicit objects of jsp are also available within jstl but jstl is a more elaborated version

of jsp and so what we have is you have to actually generate one of these attributes which then

becomes available as a variable.

So, somewhere in that generated code, this param variable is also created in the same style but it

is implicit in the code rather than we have in to do it. Now, all of these complexities you will

become more familiar with them in time, I do not expect that this 1 lecture is going to; you

should not worry too much, if you do not understand all the nuances, see the template idea begin

small, simple jsp is look nice and when jstl’s and all come in all sorts of new things start

happening but it is just a layered extension of these ideas.

And by the way to get started doing something like this is perfectly fine. Once you get used to it,

then you can decide whether something like a tag library is this what you need, now as we will

see these kinds of complicated server side creations are not necessarily that common nowadays,

there are other alternatives but in practice you will encounter a lot of code like this, if you go to

work in industry and happen to work in a Java shop, furthermore these are not limited to Java as

we will see later.

Bottom line for now, all you have to remember is this, there is a simple way to do for loops,

instead of doing it through code, for some types of maps over, which you can do, they are

already built in, for other types of maps, you will have to create them yourselves and the same is

true if you have user generated maps in which case also you can use these kind of objects in

order to set, create your own map and then you can use the for loop to go over it.

(Refer Slide Time: 30:56)

That is why I showed you all these variations and so with the tag library, you can generate these

tables very easily, whereas with JSP generating those tables with the sufficient pain that I just

stop after parameters and attributes and did not really bother to do the JSTL style tables with http

and all that but I could have use the same kind of code as should be obvious to you, okay, now

let us consolidate a little bit.

(Refer Slide Time: 31:40)

So, what we have now is key ideas instead of code generating text, code exists within text, this

works okay but you get these problems where you have for anything more than beyond simple

inclusion in the Java code and instead you use tag libraries to have simpler methods and then the

tag themselves get compiled into servlets, the most important thing is this is simple automation

of what could I have been done by hand, but would have been erroneous or error prone in

tedious.

(Refer Slide Time: 32:17)

And as we saw applications or a mixture of servlets in JSP’s, the entry point can; the very first

thing is can is often in JSP but after that you might go into a servlet which dispatches off to other

JSP’s. so, we have 2 JSP’s, there is the entry point JSP and a JSP which is generated by servlet

for our simple application.

(Refer Slide Time: 32:44)

And as far as this JSP is concerned you have either code inclusion or values or the complicated

version which is tag libraries which happened to involve syntax like C colon etc., whereby the

way to remind you again, the C part at least was our choice where we said we are going to use

this prefix for all the things like for each and all which are built-in into the JSTL library. Now,

the exact syntax and all the details people have written in books on these things, the core idea I

just want you to keep in mind is this is basic string jugglery, no more no less.

But you need access to some data and so you have to work with Java objects in order to get that

access. What happens then is certain objects become implicitly available such as request out

sessions and for the JSTL, there are implicit objects.

(Refer Slide Time: 33:49)

So, ​JSTL implicit objects are params, headers​, which is the collection of objects available in

JSTL. Jasper is a JSP compiler and the compiled version is cached by putting it into the work

directory.

Summary: We know how to make forms using JSP and smartly achieve the same using JSTL.

(Refer Slide Time: 34:54)

(Refer Slide Time: 36:39)

(Refer Slide Time: 37:16)

NOTE: If you observe the above error, go to Tomcat logs, it says very clearly that jsp/jspform

must start with the slash.

(Refer Slide Time: 43:22)

(Refer Slide Time: 43:31)

JSP TAKEAWAY:

There is basic JSP and there are tag libraries and both of them are essentially ways of generating

web pages which are dominated by mark up.

But by and large for most of the sleek consumer sites you avoid heavy weight html server

generation, back end these kinds of things were generated on servers, one reason was that

browsers was were still evolving and kind of flaky and it took time for people to update these

things but for about the last decade or more may be the last 12, 13 years browsers have become

self-updating, they are updated very, very quickly and reliably.

And so we say these are evergreen browsers and so most of them when they acquire a capability,

all of them copy each other and acquire the capability very, very fast. So, as a result you can

reliably use front and JavaScript based mark up and on the server side, what you do is you shift

data often as JSON and on the browser, so JSON is this data format which comes with

JavaScript.

(Refer Slide Time: 45:50)

TO DO:

Finished server side programming, templates and forms, state with cookies, database

connections, logging.

1. Testing using embedded Tomcat

2. Assemble all the above into a complete App.

(Refer Slide Time: 46:16)

The important thing to remember is, these problems are universal to web applications, they are

not Java specific, so all the ultra-modern things like Go, and Elixir and even so not the

ultra-modern things like NodeJs and Php, Ruby, Python etc., all of them have URL Routing with

libraries and configuration, state management with sessions and cookies, template libraries,

forms and other kinds of input, database connectivity and so on.

A good way to learn all these things is basically to take previous sample apps especially, hello

with servlets to hello with jsp and jspforms and implement them in each of these technologies,

we will find out that things and that different actually, there is no clear cut superiority over Java

except perhaps Java tends to verbose and others are often perceived or actually are friendlier.

One important difference between the Java technologies and some of the other ones like Ruby

especially, Ruby on the rails and some of its what shall we say; cousins in the Java world, like

Spring Boot etc., is that they remove a lot of the complexity of detailed configuration of the kind

we saw in web xml etc., by means of what is called convention over configuration. So, if you

agree to design your app in a way that is prescribed by the designer of the framework, then you

get a lot of these configuration type things for free.

And in practice it means a great deal, so there is real value in following the prescriptions of a

framework, some of the further developments along these lines are newer systems that try to do

even more wrapping and what this wrapping means we will eventually discussed in a lecture

where we will talk about what is called the rest architecture of the web or representational state

transfer.

And at that point, we will be able to see a much higher level view of the web, right now we are in

the weeds with all the details and the tag libraries and so on and so forth but by and large, once

you get used to it and once you are familiar with one set of these things, it is not really that hard,

just tedious and annoying and you have to keep track of or great many details.

(Refer Slide Time: 49:08)

Important difference between the JSP versus the JSTL:

Tere is just the JSP syntax with percentages versus the jsptagenv which mentions tag library.

Now, JSP is in some sense built into Tomcat in the sense that the JSP processing is for free.

For the tag lib, we need to import certain libraries which are there in the examples that come

with tomcat (look up in the examples directory) but these are the tag library, so this is called

taglibs,impl and taglibs spec, these libraries you have to move into the lib’s directory over here,

WEB-INF.

(Refer Slide Time: 50:42)

And when you create the war file here, WEB-INF also contains the lib, so lib only shows up in

this case if you compare with any of the earlier ones such as here as you will see, lib is empty

and this is why we have lib for the few cases where a certain standard jar files must be included,

so in order to get this kind of code working, you will need to include the tag lib’s in the lib

directory.

(Refer Slide Time: 51:36)

(Refer Slide Time: 52:19)

And in their source, they have also shown how the cart itself is implemented with for loops in a

different style explicitly, they do not use JSTL, it is JSP only but it is still interesting to see how

these things are put together.

(Refer Slide Time: 52:45)

Here is another example of JSP servlet JSP where they show how the JSP page can call the

servlet and how the servlet can call JSP in turn using a different method, this one we will revisit

later but I wanted to point out that here are some examples that you should take a look at.

(Refer Slide Time: 53:13)

Similarly, there is for each and there is chose a bunch of other things, so here they show another

way, where you use page contexts set attribute kind of the same way we did and you can loop

over for loops like this, so those are some of the other examples about simple JSP things that you

can find.

(Refer Slide Time: 53:39)

Here is another one where some decision making is going on and so we have C colon if just like

we have C colon for and there is syntax for testing things and so on, we may find these useful as

we go ahead in the application.

