Modern Application Development
Mr. Aamod Sane
FLAME University and Persistent Computing Institute
Indian Institute of Technology - Madras

Lecture — 26
Introduction to Modern Application Development

(Refer Slide Time: 00:11)

L]
bl -3 L] r = L 5 C =
=) i 1S5- 88591 NPTEL
. —— E - = mn] [
L= Foquaidl petALDFiBta
- a L -
o g L P
1 i, gut
Ll
LA = — L3 -
Lp uF P
e L
L ot L LA
vy Loellk Lans] E # L BEE
el
LR s e
ot e)
LA IG
wery Lot map iy
v Lod - mum— veri et - nane
at e & | - patters
o r 1#T wg i
-l - g
1% bl le. jap All LS IR Wisss wlb. smll Jegfora /WED-INFF A11 L16 (mEML Walid)l v

B copyollectdocs -~ Shaw all

(Refer Slide Time: 00:17)

OBl:@ s inbB B o
o page d: appa/nptel Jspforns et NITEL
% total uied In directory 2 availatle 212370048

draxruarey 1 Aumod Same None @ 83-18 18:M ..
y dnarvares | Awmod Sane None @ 93-28 21:27
chead drararx | Aamod Sane None 8 03-28 17:09 Jlasses
ctitler (% request getattributel"title’) © ¢/titled dramanac 3 Aamod Sane None @ 03-20 18:55 Lk
o » sraeruerue | Asmod Same None 672 83-28 1544
. rerweres | Ansod Sane None B76 03-28 71527 web ol

ks requast. getAttribute] dedy”) B
ifoadyd

i
oo Mllogip MILLS (eb) 0 WG MR INCgspforay ALL LS (Dired by nase) <B fI

JSP which has a form:

So, here what we are going to do is something slightly different, we will load jspforms.war
(Refer Slide Time: 00:56)

Tl

<] BT

_‘M‘lﬂﬁ u J
ming:x 081/ 0% Schema- instance” L
o [Fay Varsion | Display Name Runal - ome"http! /[1ava. tun, contsml/ne/ avase htep: //fave, sun.c ¥

Som/un] ns/ Jovaee/web-agp_3 0. xad” versions®3 8%

N I"]'I';L|

1
javere

Mong speciied Walcome o Tomcal
cdisplay-namertiptel 359 Forme/display-namer
1 <descriptionsbigte] Hello 5P Forme/description

oy Mone speciied Tomeat Donumentaton L |

caervlets
| | || coerviet-namerjupformuc/ serviot -namey
«jup-Filus/Jup/ Japlorm. japc/ Jup-filer
(aToles Mone speciied Serviel ard JIP Examples e aervlet) *

| <iervlety

conrylot-names{apshout/ ber Lot nase
(el ot speched Notel JSP VA caerviet-classsnptel. Jspfornse/serviet-class]

1 tlserlety

(st anag | Nose spectied | Tomeat Hoit Manager Appleation | i <oervlet-sapplngs
carylet-nanes jspforasc/serviet -numes
1 T <url-pattern/</url-patterns
e ot 139 From e Cservietmapping
I 1 | tserylet-mpping
cerviet-naner]spsnowi/ serviet- nase)

g0 Mone ypectied | Tomeat Manager Apgicaton Al ye)-patterny/Jepihoec/ur] -pattarny
| tiserviet-mapping?
o/wabappr
Daploy directory of WAR fle located on server | "
i | ¥
I T (e wabomlegapformsMEIN AL LS (0 Valld) l‘
Rark get
u

So, when we load jspforms as a war, context path that is taken is actually jspforms itself. So,
what should happen when we click on jspforms, so far for example, in web.xml of hello jsp, this
URL pattern, the first one you visit corresponds to the servlet, which corresponds to this servlet

class.

So, jspforms/ is the opening URL and that will go to a servlet but as we have seen it is actually, a
servlet underneath even though, it looks like a standard jsp to us, this is identified by using the
jsp file tag rather than the servlet class tag.

(Refer Slide Time: 02:32)

Index of / —

.ﬂ applications bl 2020.02:13 14:41 15K

(8 pimami s 0200213 1443 177
[0000222 1828
(2 dasblound ooy 1

himl 2000.02-24 00:10 31K

020 ETIIK

2020-03-02 00:38 13K

s favicon Ko 2000-02-13 14:43 30K
e 20200213 14:43
(Qwebalizer W01507-16 15:12
£ v 0200213 14:43

Apache 24 41 (Wintd) OpenSSL/11,1c PHP7.4.2 Server af localhost Port 80

- |
|
1 ——— n

(Refer Slide Time: 03:38)

» I5PForms basics of
o</ display-nomer
P Form</descriptions

| UL
“wards words Bpe/ Jup-file
« “btal”® *stlbta “subai . HISTL .
btal '~h'.l fubalt Jap" s8Ry
L #rolet-nase)

Formsc/servlet-classy

serylet.name)
#R)

erelet-nase)
Fl-patterny

s\ess Jupform. Jipinptals ALl (13 (Web) V3 fows AL L6 (el Valid) o ﬂ
Mark st

In principle jsp which is the general purpose template language, we can also use other

languages. So we start with a form and it is the form that then goes to the second page, jsp show

and it is jsp which takes us to the jspforms class. We first visit jsp page which is kind of like the

html page.

(Refer Slide Time: 05:45)

ST EX IR B8 l(
el coe. 15 NITEL

™
This is the wed version of the FalrShare application

@
CFORN ACTIONs" postiats, ih e/ display-names
5P Forme/description
CLABEL fore arelngut k porvlet namey
o fairiharsfora™s Bpe/fap-file
Enter your comsand vequence terminated by “end®

o/ LABELY
forma"fal

CTEXTARER {dw"F erviet-nase)

Formsi/ servlet-classy

serviet -namer
|

B
<INPyT
<INRYT t rlet nase)

/PO rl-pattern

W

«/divd

body?

il »

s{Umin)ees falrahare-post.htal Bot LITE (WTWLs) o> Jiws ALl L6 (mow Valid) v m

And just as the html page sends to the cgi bin script, here the jsp sends to a jsp show, which turns

out to be a servlet class.

(Refer Slide Time: 06:03)

» JSPfores basics ¢

I “hees Jopform.epinptel> ALl L19 (Wed) O I m

Consider the above form, it has 2 buttons, JSTL and JSP, is very similar to our desired app’s

GUI (with a text filled and with 3 buttons)

Words are defaults and in practice, upon updating either of the 2 buttons will take us to the back
end. There is a form action as usual and an input ID, whose name is my field and here the name

is jstl button and jsp button.

(Refer Slide Time: 07:43)

|
D@8 4
N page

[* A
-
g
m
-
o
=

NPTEL

» JSPFores basics </) response. setContentType(text/htal™);
tWrite » response. gethriter();

“post” request . setAttribute("title”, "info via J5P°);

"subs tring pval » request.getParameter(”jstlbtn”);

jspbtn® *submi if (pval e 1) { stl
request. setAttribute(title™, “Tag(J5TL)%);
rd = request. getRequestDispatcher(” jsp/jsptagenv.isp”);
}.]
elie k. p
request. setAttribute(title”, "J5P7);
rd = request gﬂhiuntf}uuatchrf' sp/ispenv.isp”);
)

rd.include(request, response);

publi id doPost(Mtt

ws [0Exception, Se

{
)
Jspform. Jspenptel> ALY L13 (Web) > s\sss JspForms.java 35X (50 (Java//l Abbrev) <>

doGet(request, response);

Jsp Forms class:
There is a request attribute as usual because we are going to use it elsewhere and when that form
is clicked, it invokes this class, the post method and a post method in this case actually is no

different from get, so it internally sends to the get method.

Need for request dispatcher
Previously in hello JSP, we generated a request dispatcher, which took us from the servlet class
to a jsp, here we have arrived from a jsp via a post to this get and for this request, we are going to
generate a request dispatcher later and here are the 2 things we do:

1. Check if there is a parameter called jstl button, if so then do jstl processing.

2. Else do jsp processing.
The string arrives via the request parameter (which is the name that we gave), so key value pairs

arrive at the servlet and value is the one depending on which button is pressed.

ID of a tag is used on the client side, whereas the name is something which is sent to the server

side.

There is a button that submits a form and it sends this value to the back end, when that happens,
having determined whether it was jstl or whether it was jsp by using the parameter, two cases
arise. In one path, we set the title to jsp and our request dispatcher this time invokes either jspenv

.Jsp or jsptagenv.jsp, so that is the distinction.

So, we came from the jsp to a servlet class and from a servlet class, we are going again to a jsp,
this time there are 2 jsp’s.

(Refer Slide Time: 11:33)

This behavior is similar to fair share when one clicks submit, something gets generated by the
back end, okay, in this case, it is just generating whatever you send it and it comes back, if this
were html, then we would see it as html but the point is you go from a form to a cgi bin which
generates another potential html and that is what is going on here. So, from 1 jsp, you come to
this class, from this class, you go to one of these 2 jsp’s and what does jspenv look like, let us

take a look, so jspenv.

(Refer Slide Time: 12:28)

3 Attributes ¢/n)> ("text/htal");
enter™) pnse, getiriter();
»ehDAttribute Tablec/n ¢ . Ritle”, “info via 159°);

CUnAteributed/th)
ctmvalue

/ getParamster(” jstibtn”);

]

EnumerationcString) attributeNases = request getittributeNames(); Re(“title®, “Tag(3STL)");

guestDispatcher(" Jsp/ Jsptagenv. Jsp°);
while (attributeNases hashoreElements())

sttriame = sttributeNames. nextflesent(); Re(“title", “358°);
QuestDispatcher(”Jsp/ Jspenv. J5p°);

out write(“ctm®);

out.write(“<td)* + attrName ¢ T H

out.write("ctd)" o request.gethttribute(attriane) ¢ “¢/tdr"); sponse) ;

out.write("c/te)”

Teee fopenviisp ot L6d (Web) <V) (ava//) Abbrev) oV

Job of jspenv is to tell all the parameters of the request and all the attributes of the request.

(Refer Slide Time: 12:52)

Parameters NFPTEL

Parameters
Table

& “fornid

Parameter Value : st

words words™)>

myfield abe dip “submit” Jst1®r3STL »

Jopben il “"btn2" *Jspbtn” “submit” “Jspl > 35P«

Attributes

Attribute Table

Attribute Value
javax.servietinclade.request un | /jsplorms/jsp/jspenv. jsp
javax.servietinclude. context_path /jspforms

javax servietinclade serviet_path | /jspjspenv.jsp

title ISP 1 m

When jsp is clicked, we get the parameters table as shown above, which says that there was a

my field and there was a jsp button. So parameter is my field and value in this case is whatever
we entered and jsp button is the one whose value happens to be jsp. Now, as far as the attributes
are concerned, some are internal and others are entered which are titled jsp.

(Refer Slide Time: 14:06)

e 10 gt e o Wb Aol P R
Def«@ sy xnb B
M page Nm[

“

3]
Mal
- ¢
Al 298 Al
haal ¢ ’
[y JSPForms basies ¢/title

AD harmetats (AN 3
v alige .* { »
Vahla brders®1® el igubling*1" «f */{spforas/{spshow” met “post”

aptionshdshurmmetars Tabloc/ND ¢/ oaphlon “ « 4 . =
o orald oranase” set post™y
IR — ¢ o’
CthoWalond/th e
iy ¢ 1npl myfleld” pla words words™)
g b Al L .(.-Au‘.q [' otal” “Jatibta” “subait” JstIfsTLe
bl b/ N
i

*btn2" *spbtn” "subait® "{sp™y380¢/0 0
Button

AD AL Lbwtas URN
div alige"cuntar” il
Labla bordere®1" onllpatiing " M

LSOOI (3 Tab LM gt i 4

AL Lbated/ R <)

Wota i/ 1N
"

v, Irven. inela, reqean sl e/ udneads/Jugterm/ oy

Libla
aiy

So, what is happening is it is generating 2 tables and in each table, it is generating 2 different

TOWS.

(Refer Slide Time: 14:50)
' rest NPT

Parameters ¢ > e request.gethttribute("title’) © ¢/title

¢/heady

<h1> Parameters ¢/n1)

Parameters
[“center™)
Table gty
¢ s¢hlParameters Table</hive/ »
<try
Parameler Value CthyParameterd/th)
cehyValued/t
myfield abedip ey e]
&
b jp !
Enumeration<String> parameteriames « request.getParimeterNames()?
Attributes [’
while (parameterNames. hastorellesents()) {
tring parasiame » parameteriames. nextilesent();
Attribute Table
out write("ctr®);
. out . write("<td>" + parasiame + “¢/td");
Attribute Value out.write("ctd>" + request.getParaneter(paraniane) + “¢/td)"s
It
javaxservletinclude.request uni /jsplomas/jspjspeny.jsp out.write("¢/tr"); N
Javax servietinchade.context path | /jspforms)
! o
Javaxservletinclude. serviet path | /jspjspenv.jsp ¢/tabley
1 ¢/)
litle Isp |
L o——— ees Jopenv. Jup 1819 (web) B

Java code is similar to before, it gets the request object, get parameter names, etc.

(Refer Slide Time: 16:35)

A— 4_4-7 - " Ny_ﬁ
< y
Parameters
hly Attributes </nd
iy 2 “center”>
Parameters ot ey 5
coptionchoattribute Tablec/n¢/caption
Table an
cthoattributed/thy
. cthoValuee/thy
Parameler Value ey
41
myfield abedfp i
numerationcString> attributeNases s request getittributeNsses()
b g ¥ be
Altributes while (attributeNames hasMoreflesents()) (
String attriame » attributeNames.nextllesent();
out.write("ctro]);
Attribute Table on.mtu(”ml + attriame + “(/th");
out.write("(td>" + request. getAttribute(attriame) + “¢/td)")»
"
Attribute Value out.write("/try");
Jwvaxservletinclode.request un | /jspfomns/jspspeny s)
!
Javaxservletinclude.context path | jspfoms v
1 Yt (1]
Javaxservietinclde.serviet path | jspspenvjsp filv
{/htal)

title ISP

(Refer Slide Time: 17:02)

0 © tocahost 540 pighsmm/ ssbom s

T

=Nef*@8 s xab8

out write("\te/t
Parameters out write(NPTEL
out write(" /htm
} cateh (Java { B
if (1(t instanceof rvlet. jsp. SkipPagelxception)){
Parameters oot = _fspu_out;
t 1e null 88 out.getBuffersi: LR)
Table HIE?\.(out getBuffersize())
if (response. isCommitted()) (
" out, Flush{)
Parameter Value } alse { ‘M
myfield abedfp) i nd ! L
} cateh (java.io, 10Exce e {}
ppbin jsp if (_Jspx_page_context 1s null) _jspx_page_contert.handlePagetuceptis | ,
son(t);
Attributes .’ else throw new Servietixception(t);
} finally
_JspxFactory.rel easePageContext(_jspx_page_context);
Attribute Table)
1 {
Attribute Value
Javax servietinclde request un | /jsploms/jspspenv jsg
{
javax.servietinclade.context_path /jspfomms
javax.servietinclade serviet path /jspjspenv.jsp
title Isp |

e Spen_gspdeve Bot LISK (Jwal/) Mbbrey) Vb

(Refer Slide Time: 18:01)

F
(]

De@~8 /v X
N page

.
B§
Mpage

» (% request.getittribute("title") % ¢/

€1 Parameters </
center®)
1 5>
yehrParameters Table</r >

cthyParameterd/thy
<thValue/thy

o
]
Inumeration<Strings parameterNames = request, get
while (paremeterNemes. hasMorellements()) {

tring parashame s parameterNames nextllesen

ot write(“tr®);

out. write("ctd>" + parasase + “¢/td>");
out.write("<td>" + request.getParameter(para
out.write("¢/tr7);

}
¥

1\-- Jspenv.jsp Top L27

(Web) >

LY BN REREY 1)
{)
pub id Jepinit() (
}
pub Jspbestroy() {
}

id _JspService(fimal javax.serviet hitp.Metp

final ja

Javex
firal
fimal fav

try {

response, setContent Type(“text/htal; char 150-8859-1°);

pagecontext = _jepefactory. getPageContext(this, request, response,
11, true, 8192, true);

_Jspx_page_context = pageContest;

application = pageContext.getServietContext();
config = pageContext, getServietConfig();
session = pageContext getSession();

out = pagelontext, getOut();

Jepx_out = out;

meaning that they did for the servlet.

SUMMARY: Starting with web.xml which points out that entry point which is this URL for
Jjspforms takes us to the jsp file which contains an action which calls jspforms and in turn

invokes jspenv.jsp, inside the class by binding and that choice in turn is based on the button.

(Refer Slide Time: 20:29)

¥

Peruistont

®

NPFTEL

JSP Terminology

JSP Flle definition

» <% code inclusion "

+ <%= immediate value %>
JSP Implicit Objects

*+ request, oul, session
Jasper: JSP Compiler

JSP Caching

v The “work™ directory

Intreduction to Modem Application Development

.- % NPTEL

|

In the JSP file definition, you can straight away include code or you can include a value as

shown above.

C\ees gepeny_fsp.Java 325 L8 (Java//l Abbrev) <V»
Mark set m

Since the previous code is added to the context of a full servlet, terms like request carry the same

(Refer Slide Time: 20:41)

|

L W

De@=@ s xab @

» Attributes </hi>
] center”™>
"1" i 5>

sAttribute Table</

<

>
*Attribute</
<thsValue</thy
>

7,
%

out.write{ ctd>"
out . write(“</tr>%);

+ request.getattribute(attn

-

-1 KN RR

config = pageContext.getServietConfig();
session = pagelontext.getSession();

out = pagel
Jepx_out =

out.write(”
out write(”

out. write("<ID
out . write("«

out . write(”

out. write(\toti

out . print(

Erumeration<String> attributeNames = request.get :::::::E $.‘::;1’:)

while (attributeNemes. hasMorellements()) { :::::::: 4 n.]," Parameters </h¥>\r\n");
tring attriese = sttributeNemes. nextilement :::::::: «\"center\">\r\n");
out.urite("ctry"); vt write("\t <AI>Parametors Toblac/has</coptionArin®);
out . write("ctd>" + attrieme + “¢/td>"); wliurlh(' a ¥

out. . write"\t\t«
out. write(“\t\tct
out. write("\t

-y
inbh's .
NPTEL
ontext getOut();

out;

r\n");

request . getAttribute(“title™));

} out. write("\t
%
": 4 nuseration<String? parameteriiames » request.getParameterhames()?
<f > f
while (parameterNames.hasMoreflesents()) {
tring parasiame = paraseteriames.nextilement(); I
“\ess Jspenv_jsp.jave 495 L78 (Java//1 Abbrev) <V»

A\===__Jpem.J9. ot 152 (W) sV |S~lt:h to buffer (default web.xml<jspforms/WEB-INF3):

Consider the above figure, writing using out.write ourselves does not make sense when the
example is complicated. Instead of that with the code on the left window, which are called
scriplets (little pieces of Java code) can make it more readable and elegant.

(Refer Slide Time: 21:38)

7

Persistent

JSP Scriplets and Tag library (*)

NPTEL

+ For anything beyond simple inclusion, we will need
Java code

+ Instead, have a simpler language for basic decision
making and looping

* JSTL tag library
* Compiling tags into Servlets

* NOTE: This is all simple automation of what could
be done by hand, but is tedious and error prone.

- Introduction to Modern Application Development | ﬂ

So for anything beyond simple inclusion, it is better to use Java code.

(Refer Slide Time: 21:49)

vy

De@«a s xab8 d

ol % e ‘NPTEL
» (%= request.getAttribute(“title”) © ¢/

i el 3ts and Tag library @

"tenter™> NPTEL
| 5
»¢hsParameters Tablec/hix¢/ s

<thoParameter</thy
<thoValue</thy

al | simple inclusion, we will need
L]

EnumerationcStrings parassterianes « request. getbaranetertunes(); Dler language for basic decision
while (paraseterhames hasMorellements()) {

String parashame = paraseteriames nextflesent();
Serviets
out.write("tr");

out.write("<td>" + parashiome + “¢/td>"); mple automation of what could
out.write("ctd>® + request. getParameter(parasiame) + “</td"); |t is tedious and error prone.
out.write("¢/trm");

X

Jern Application Development |
- Jspenvigsp 1R L2 (Web) V> ,]
ke :
Tag library.

Tag libraries are a way of simplifying loops, decision making etc., that arise while designing

o~

systems. One goal behind things like tag libraries was that since the front end i.e. forms and
layouts are done by designers who are not necessarily programmers, we want a much simpler

language over there which is easier for designers to understand. It is lot more like html.

(Refer Slide Time: 22:50)
io" seogy e B s o B B

De@ @Y xuB8 ‘_;au-uaa‘rr.u

public void doGet(MttpServlethequest request

» (%a request. getittribute("title”) ¥ ¢/

; e response. setContent Type(“text /htal®);
> Parameters Printiriter out = response. gethriter();
: il — request setAtteibute("title", “info via J58°);
y¢h2>Parameters Tablec/h2)

<thyParameter</thy

thyValuet/thy ing pval = request.petParameter("jstlbtn");
< ve</

“ if (pval 1s null) { jstl
< request. setAttribute("titley”, “Tag(3STL)");
EnumerationcStrings parameteriones = request. get } rd » request. getRequestDispatcher("jsp/ Jsptageny. Jsp°);

else { // §wp
request. setAttribute(“title”, “)5P%);
rd = request.getRequestDispatcher(”jsp/jspenv. jsp®);
}

while (parameterNames hasMorellements()) {
tring parashase s paraseterfames next(|esen

out. write("ctrs*);
out.write("(td>" + parashame + “¢/td");

rd.include(request, response);

out.urite("(td>" + request.getParaseter(para }
out.urite("¢/tr)"); public void doPost{NttpServietRequest request,
5 (

dolet(request, response);
}

|
A‘.\'k” Jspenv.gsp 1IN LI (Web) <V ‘H"\‘_'k':.e'm'm WL (Jeva//1 Abbrev)
et e

The second scenario : JSTL
While we learnt about implementing using jsp through the jsp button which involves these things
called scriplets, tag libraries are a simplified version but achieves the same.

(Refer Slide Time: 23:09)

Fie G Cytors e Ba Vbriiede i - @ ‘
De@«8 » 6B F NPTEL
W page b ket Salanss k
> i T e)
«Napage L 3 %o
1<% teglib ' % lon,
ntentType(“text/htal”);
% = response.getiriter();
< >
« > <%= request.getittribute(1:?‘.9'1\.- </ » ribute("title’ info via J$P")
itle®, “info SP*);

»

-

> Parameters ¢/

. . request , getParameter("istibtn");
< center »

0] < 1 5"

reh2rParemeters Teble</hix</ ! RAttribute("title®, "Tag(JSTL)");

Bt.getRequestOispatcher(” {sp/{sptagenv. 5p");
(thaParameter/
<thyValuec/thy

5 P - - gAttribute(“title”, “J58");
<c:forlach p” it ${param}” »

g Bt.getRequestDispatcher(”jsp/jspenv. jsp®);
dtrd <td> ${p.key} </tdr<td> ${p
¢/c:forlachy
</ >

West, response);

> Attributes ¢/ ,(‘ o)
.ffﬁltl'-') £ :
e fon,
sAttribute Table</ response);
sAttributed/tn> i
cthavalued/thy ;
5% LM Java//l Abbrev) <V>
Aeee Jeptagenv.isp Top L4 (Meb) > l R -

Mark set

Tag origin: Need to include the first two lines in the above figure which specifies that tag library
will be used.
(Refer Slide Time: 23:37)

P B Ol Bofesy T Wl Minle ey

OCe@<8 s xabh 8 “—

- == NPTEL
ctitled> % request.getAttribute(“title™) %> «/title>

'Y 1

1

¢hi> Parameters </n)»

<d “center™>»
< o “£=>
< t p¢h2xParameters Table</h2x</capt »
<t >
esryParameterd/thy
cthoValued/thy
<fs >
<X

Inumeration<String> perameteriames = reguest.getParameterNames()

while (parameteriiames.hasMoreflements()) {
I String parssiame = parameterisses.nextElement();

out.write(“<tr>");

out. write("<td>" + parasMeme + “</td>");

out. write("<td>" + request.getParaseter(parasName) + “¢/td>»™e
)i

out.write(“</tr>");

"

</ »
|
! I\=== Jspenv.jsp 12% 132 (Web) «<V> .
Mark set

tr, td is used in a loop to generate a row and column respectively. $param refers to the

parameters of the request is an implicit object for jstl.

(Refer Slide Time: 24:40)

[SRS |
0

Def8 s xabh'®
% page

Nepage ’ t "%
' % taglib)

<h1> Parameters </hi>»

hi> Attributes </h1»
<) “center”>
<table dera®1" cellpadding"8">
Ccaptiond<hiraAttribute Tabled/hix¢/capt >
¢4y
cthAttributed/thy
cthavalue</thy

“\ee- Jsptagenv.isp Top LIB (Web) <V»

ctitler <%= request.getattribute("title”) % ¢t

e b Optors Balless Bk lows Sulp

|Jb.lﬂ s iab' 8
}

peblic woid _JspInit() (

) A
public void _jspDestroy() {

}

public ¢ _jepService(final
pt, final jevax.servlet.http.ht
throws java.io

Jhttp MttpServietRequest requese
ponse response)
J0Exception, javax.serviet.Servietix

n {

final
1OVaxK,s
final

Sperite

" jspx_out
viet.sp.PageContext

jspx_page_context = null;

try {
response. setContent Type(“text/html; charset=150-8859-1%);
pageContext » _jspxfactory.getPageContext(this, request, response,
mull, true, B192, true);
Jepx_page_context = pageContext;
application = pageContext.getServietContext();
config « pageContext, getServietConfig();
session = pageContext.getSession();
out = pageContext.getOut();
Jepx_out = out;

it

‘ " “tenter™>
0 <table ¢ er«"1" cellpadd “$%»
€ L s¢hiParameters Tablec/rise/capt
iry
tthoParameter</thy
<thaValued/thy
<ftry
cc:forlach vara®p®™ itess"${paraa}” » |
try <td> ${p.key} </tdrctd> ${p.value} ¢/td
«/c: forlachy
</tabled
fdivy

The generated code for the jstl contains predefined variables. Param is a java map which is a key

and a value pair.

(Refer Slide Time: 25:12)

Parameters

Parameters
Table

Parameter Value
sl
myfield abedfp

Attributes

Attribute Table

| Attribute

javax serviet include.request uni | /jspforms/jspjsptageny.jf
1
javax servietinclude context_path | fjspforms

out .write((java. lang. String 1
1 --u-wl wwrlmrymlum($p. key java,lan '3 Lservier
javax servietinclude servlet path | jsp/jsptagen jsp ageContert)_fspx_page_ i , null, false)); |
- out.write(” «/tdctd °);
e — Soptugen_pdove MR LIBT wal/1 Mbbrer) <>

th_c_o0sffor EL
P ag.r Tog) uﬂjm ”9
Fftagool lt!f(.iﬂvln(h 0926_005 fvar | mmm get{org.apache. tagli

4.t .core FortachTag.class);
Jspx_th_c_005Ffortach 00570 revsed = false;

try
Jopx_th_c_005FforLach 00570, setPageContext(_jspx_page_context);
Jepx_th_c_00%fforlach_005f0. setParent(ml

I Isp/jsptagenv. Jsp(20,5) name = var type « lang.String reqlises

§ = false required = false frageent « false deferredvalue = false expectedTypr
pellane » null deferreddethod = false methodSignature = null

Jopr_th_c_o05fforfach 0050, setvVar("p");

/1 1isp/jsptagenv.sp(20,5) name « items type = javax.el.Valuelxpressid
fon reqlise « true required = false frageent « false deferredvalie « true exph
bectedTypeName » java.lang.Object deferrecMethod » false methodSignature » nu
m

Jopn m ¢ 005Fforlach 0959, mxl—-(m org.apache. jasper.el, Jspvalu®
/39/{sptageny. Jsp(20,5) ‘${param)'", fsp_gettrpressionfactory(s
§).createvaluebxpression(_fspx_page_context.getfiContext(), “${param), Java. 1ot
g Object. class)). getvalue(hp: page_context. getELContext()));

int[) _jspx_push_body_count_c_8dSffortach 00570 » new int[) { 0);

int _jspx_eval ¢
-surm.(),
(_Jepx_eval_c_00Sfforfach 005F0 ls javar.servl
;m_mv) {

005fforfach 0050 = _juepx_th_c_00Sfforlach_0050.dov

agext.Tag.$¢

\n*);
\tete <t %),

(Refer Slide Time: 26:30)

11 EN IEREY T

tley (% request,getattribute("title™) %o ¢/tit

yehlsParameters Tabled/n i</ captior

thyParameterd/th

{try (tdy j{;:.-q,]- ftdritdy ${p.value} ¢/t

niy Atteibutes </h)>

-n-.»lurlbuu Table</nire/caption

CthoAttributed/thy

| e b Optoss Bl Bk o bl

L'dbl AR XEBhS
on reqlise = true required = false fragment » false deferredvalue = true EL
sectedTypeName « java.lang.Object deferredMethod = false methodSignature = nw
’l
Jspx_th_c_00SfforLach_005f0. setItems(new org.apache, jasper.el, Jspvalue +
selxpression(™/isp/isptagenv. jsp(20,5) "${paramn}'", jsp_getExpressionfactory(*
8).createValuelxpression(_jspx_page_context, getflContext(), " ${paran)”, fava. 1o
sng.Ooject.class)). getValue(_jspx_page_context.getfiContext()));
| int[] _jspx_push_body count_c_00Sfforlach 0050 » new int[) { @ };
1 try {
| int _jspx_eval_c_005fforlach 00570 « _Jspx_th_c_005fforlach_005f0.do*
sstartTog();
if (_Jspx_eval_c_00Sfforfach 00560 |s javax.serviet.jsp.tagent, Tog. S0
sKIp_B0OY) {
do {

out . write("\r\n");

out.write("\t\tctry ad> °);
| out.write{(jova. lang.5tring) org.apache. jasper.runtime PageConter
F:tlml.rﬂriﬂﬂ!ﬂlﬂt“ p.key)", java.lang.Steing.class, (jovax.serviest)
ot. j5p.PageContext) _Jspx_page_context, null, false));

out.write(” «/tdyctdr 7);
{ out.write((java.lang.String) org.spache. jasper.runtime.PageConter |
sxtlmpl.proprietarylvaluste(“${p.value}", java.lang String.class, (Jovax,serve
Slet. jsp. PageContext)_jspx_pege_context, null, false));
‘ ovt.write(" «/tdr</tra\rin®);

out. write("\t “);
| int evaloafterfiody » _jspx_th_c_005fforfach B05f0. doafterBody()e
k.

g if (evalDoAfterBody s javax,serviet,jsp.tagext.BodyTag.EVAL_BOD
*¥_AGAIN)
break;

‘ } while (true);

}

if (_{spx_th ¢ 00SFfortach 00570, dotndTag() == favar, serviet, sk
}-J.-_--_ Joptagenv_jsp.Jave 45X L1BS (Java//1 Abbrev) V> :
Mark set

Proprietary evaluate corresponds to the entry of the map, which is p.key where the runtime is

actually evaluating these things in the page context.(Refer Slide Time: 27:05)

File G0 Cypssors Buiers Tooks Wanl-biade Helg |
-1 EN R RE'Y -1 ~RC i
i
< > Attributes </ » |
< Tcenter” »
¢ 1" -5"> :
< >4 »Attribute Tablec/ i
<
rattributec/ |
sValwey »
<) >
L 1 ontextfsetattrivute(“raters”,
quest .getAttributeNames()); % 1
<c:Forbach "a" “${rattrs)}” 3
od < > ${a} </rdr< » ${reguest pelal} </ »<fery |
<fc: forfach)> (]
< >
i
« >
]
< > Wttp Meaders <« l
< ‘center®>
A" L o]
< >4 seader Tablec/ » f » |
]
< 1
sresderc) 1
sWaluec/]
<
<c forlach . “${header) |
£ »¢ » ${h.key)} </ »< > ${h.value) <J »€) >
< fc: Fortach>
'Y, >
]
- |
=\=== Jsptagenv.isp Bot LIS (Web) <> '

| ST J
Just as param is a built-in or an implicit object, http headers are also available as implicit objects
and the loop over those is equally straightforward but the loop over attributes is a bit funky, this
time the tag library alone does not do the job, instead we have to use old style jsp code and in
this object something called page context, you have to actually get all the attributes and set it

over here.
(Refer Slide Time: 27:46)

Fie i Cptor Bl

IB@ @y

3 :
— NPTEL
“center™)

ot L,
<hi>Parenaters Teble</his¢/ b
k.
SHniuS—y hoattribute Table/h2¢
<thValvec

tributec/tn>
Juec/thy

n<Strings attributeNemes = request.getittributeNames()r

<n)> Attributes ¢/

e ributeNames hasMorellements()) {
center™)

1 5% 1
attriame = attributeNames nextflement();
yhrattribate Table/hi>e/ 0
dte("ctr>");
Bte("ctd>" + attriame + "</td>");
Ate("ctd>” + request, getattribute(attriame) + "¢/t)»

cthoattributed/tn &
ethovaluee

% pageContext. setAttribute(rattrs”,

request. getttributetames()); %> gl
<e: forlach 0 ${rattrs)” >
> ${a) </rarce> ${requestscopela]} «
forlachy
<hl> Wtp Meaders </h1> ‘
« center™s
oy g MY LN (Web) V> ’lu L8 (Web) <>

In short implicit objects of jsp are also available within jstl but jstl is a more elaborated version
of jsp and so what we have is you have to actually generate one of these attributes which then

becomes available as a variable.

So, somewhere in that generated code, this param variable is also created in the same style but it
is implicit in the code rather than we have in to do it. Now, all of these complexities you will
become more familiar with them in time, I do not expect that this 1 lecture is going to; you
should not worry too much, if you do not understand all the nuances, see the template idea begin
small, simple jsp is look nice and when jstI’s and all come in all sorts of new things start

happening but it is just a layered extension of these ideas.

And by the way to get started doing something like this is perfectly fine. Once you get used to it,
then you can decide whether something like a tag library is this what you need, now as we will
see these kinds of complicated server side creations are not necessarily that common nowadays,
there are other alternatives but in practice you will encounter a lot of code like this, if you go to
work in industry and happen to work in a Java shop, furthermore these are not limited to Java as

we will see later.

Bottom line for now, all you have to remember is this, there is a simple way to do for loops,
instead of doing it through code, for some types of maps over, which you can do, they are
already built in, for other types of maps, you will have to create them yourselves and the same is
true if you have user generated maps in which case also you can use these kind of objects in

order to set, create your own map and then you can use the for loop to go over it.

(Refer Slide Time: 30:56)

javan servistinchude serviet path Jp jsptapenvjsp NPTEL
titke TaglISTL)
Hitp Headers | St
. Ible
Header Table
Healer Valwe
|butehames = request. getAttributeNames()*
" contens length |

referer hitp: localhost-H080 jspforms [Rorellements()) {
sccept-lnguage S ey 08 fributeNanes. nextllesent(),
cockie ISESSIONID- ABMOADASSBRAOFE | ECIFASSTI4EA

Ftriese + “¢/vds®);
onign bt localbiost:- 8080 pousst getAttribute(attriess) & “o/td")e
(] localhos 8080
gl nsecure. |
ey
conten-fype apphication s-wws- form-utbencoded
coanection keepralive | .r

L) o 3
L Jg LN)i .
. [L EQey i

That is why I showed you all these variations and so with the tag library, you can generate these
tables very easily, whereas with JSP generating those tables with the sufficient pain that I just
stop after parameters and attributes and did not really bother to do the JSTL style tables with http
and all that but I could have use the same kind of code as should be obvious to you, okay, now
let us consolidate a little bit.

(Refer Slide Time: 31:40)

'P JSP Key ideas ("‘*)

Persistont NPTEL
* Instead of Code generaling Text
+ HelloServiet: explicit output
* HelloTem: replacing placeholders
* Have Code exist within text
+ The "View" part is made explicitly into a JSP file
+ JSPis HTML interspersed with Java Code
+ JSP's are compiled into Serviets
+ JSP’s can cooperate with Serviets

n Introduction to Modern Application Development iu

So, what we have now is key ideas instead of code generating text, code exists within text, this
works okay but you get these problems where you have for anything more than beyond simple

inclusion in the Java code and instead you use tag libraries to have simpler methods and then the

tag themselves get compiled into servlets, the most important thing is this is simple automation
of what could I have been done by hand, but would have been erroneous or error prone in

tedious.
(Refer Slide Time: 32:17)

_P JSTL applications (‘;‘)

Purnno.ntl NPTILL

+ Applications are a mixture of serviets and jsps.

+ The entry point is often a serviet which
dispatches to other serviels or jsps

Intreduction to Modern Application Development { ﬂ

And as we saw applications or a mixture of servlets in JSP’s, the entry point can; the very first
thing is can is often in JSP but after that you might go into a servlet which dispatches off to other
JSP’s. so, we have 2 JSP’s, there is the entry point JSP and a JSP which is generated by servlet
for our simple application.

(Refer Slide Time: 32:44)

_P JSP Terminology (:‘")

Persistant NPTEL

+ JSP File definition
+ <% code inclusion %> 1
+ <%= immediate value %>
+ JSP Implicit Objects
+ requesl, out, session
* Jasper. JSP Compiler
+ JSP Caching
+ The “work” directory

10 Introduction to Modern Application Development im

And as far as this JSP is concerned you have either code inclusion or values or the complicated
version which is tag libraries which happened to involve syntax like C colon etc., whereby the
way to remind you again, the C part at least was our choice where we said we are going to use
this prefix for all the things like for each and all which are built-in into the JSTL library. Now,
the exact syntax and all the details people have written in books on these things, the core idea I

just want you to keep in mind is this is basic string jugglery, no more no less.

But you need access to some data and so you have to work with Java objects in order to get that
access. What happens then is certain objects become implicitly available such as request out
sessions and for the JSTL, there are implicit objects.

(Refer Slide Time: 33:49)

P JSTL applications {‘_")

Persistont

* Applications are a mixture of serviets and jsps.

+ The entry point is often a serviet which
dispatches lo other serviels or jsps

* JSTL implicit objects are

« param, header

n Intreduction to Modern Application Development

So, JSTL implicit objects are params, headers, which is the collection of objects available in

JSTL. Jasper is a JSP compiler and the compiled version is cached by putting it into the work
directory.

Summary: We know how to make forms using JSP and smartly achieve the same using JSTL.

(Refer Slide Time: 34:54)

LAmies :"b:w Serviet and JSP Examples

Lo
el apociied Nplel J3P

st None
Moo | spechied

fsoloems Notel JSP From

mangos: speciied Tomcat Manager Applcation

Deploy directory of WAR fils located on server

Context Path (required)

Lol L Wrote d:/apps/nptel/ fspfon

(Refer Slide Time: 36:39)

Start Stop Reload

. Urdepioy
wamoles | Seniet and JSP Exsmples | rue 0
- specified
Expire sessions with ifle = 30
menses
Nome Undeploy
fut. 5 speciied Nptel JSP true 0
Expire sessions with ile 2 30
mrntes
St Stop Reload
Sost- Nore Tomcat Host! Manages - = Uridepicry
N — SObCatio -
— s Foeiaten Expire sessions with idle 2 30
mirnstes
Nome
A takae L2 Undepioy
m sesiled 0 Start Swop Relosd
Start Slop Relosd Undeploy
Nere
(manacer specih Tomcat Manager Applcation true | Bxp with idle 2 30

menitis
Deploy
Depiloy directory or WAR file located on server
Context Path (required)
XML Configuration file path

WAR of Diteciory path

(Refer Slide Time: 37:16)

0 O kahen

%
Tomcat Web Appli

Message ’

Manager

List Applications HTML Manager Help

Applications

Path Version Display Name R
'l“:fw Welcome 1o Tormcat

gocs :::M Tomeat Documentason

< Jepragenv.ysp 10p Li8 (WED) <V

NOTE: If you observe the above error, go to Tomcat logs, it says very clearly that jsp/jspform

must start with the slash.

(Refer Slide Time: 43:22)

- i mmmezmmeee i e

" >
I Server Side vs Client Side templates (9

Persistent NPTEL

Nowadays, we can avoid heavyweight server side HTML
generation

+ Browsers are "evergreen” - they update all the time
+ Sothere is no ‘lowest common denominator” for long

+ As aresult, we can reliably use front end Javascript based
creation of complex markup

+ Server side we will ship data, often as JSON

+ On the browser, we can render that data in a device-
appropriate manner

+ This is often done using Browser side (Client side) Javascript
templates and other similar ideas.

+ Browsers can maintain “always on” connections and provide
rapid updates using Websockets, XMLHttpRequest and other
such ideas for dynamic page updates

n Introduction to Modern Application Development ﬂ

(Refer Slide Time: 43:31)

:P JSTL applications {f*f)

Persistent NPTEL

+ Applications are a mixture of servlets and jsps.

+ The entry point is often a servlet which
dispatches to other servlets or jsps

+ JSTL implicit objects are
+ param, header

n Introduction to Modern Application Development ﬂ

JSP TAKEAWAY:

There is basic JSP and there are tag libraries and both of them are essentially ways of generating
web pages which are dominated by mark up.

But by and large for most of the sleek consumer sites you avoid heavy weight html server
generation, back end these kinds of things were generated on servers, one reason was that
browsers was were still evolving and kind of flaky and it took time for people to update these
things but for about the last decade or more may be the last 12, 13 years browsers have become

self-updating, they are updated very, very quickly and reliably.

And so we say these are evergreen browsers and so most of them when they acquire a capability,
all of them copy each other and acquire the capability very, very fast. So, as a result you can
reliably use front and JavaScript based mark up and on the server side, what you do is you shift
data often as JSON and on the browser, so JSON is this data format which comes with

JavaScript.

(Refer Slide Time: 45:50)

P Here are the pieces to assemble {#)

Perslstent NPTEL

+ Berver side programming
+ Templates and Forms

+ State with cookies

+ Database connection

+ Logging

+ Testing

+ Next week we will assemble these into a
complete App

o
Introduction to Modern Application Development a

TO DO:
Finished server side programming, templates and forms, state with cookies, database
connections, logging.
1. Testing using embedded Tomcat
2. Assemble all the above into a complete App.
(Refer Slide Time: 46:16)

P Not specific to Java! {*)

Persistont NPTEL

+ All web related technologies have these pieces
* Go, Elixir, NodeJs, Php, Ruby, Python all have
* Ur Routing with libraries and configurations
+ State management with sessions and cookies
+ Template libraries
+ Form and other kinds of inputs
+ Database connecfjvity

+ A |glaod way fo learn all these technologies is to do
all the steps of our sample app in each of these

+ You will discover that they are mostly the same...

5
n Intreduction to Modern Application Development ﬂ

The important thing to remember is, these problems are universal to web applications, they are

not Java specific, so all the ultra-modern things like Go, and Elixir and even so not the

ultra-modern things like NodeJs and Php, Ruby, Python etc., all of them have URL Routing with

libraries and configuration, state management with sessions and cookies, template libraries,

forms and other kinds of input, database connectivity and so on.

A good way to learn all these things is basically to take previous sample apps especially, hello
with servlets to hello with jsp and jspforms and implement them in each of these technologies,
we will find out that things and that different actually, there is no clear cut superiority over Java

except perhaps Java tends to verbose and others are often perceived or actually are friendlier.

One important difference between the Java technologies and some of the other ones like Ruby
especially, Ruby on the rails and some of its what shall we say; cousins in the Java world, like
Spring Boot etc., is that they remove a lot of the complexity of detailed configuration of the kind
we saw in web xml etc., by means of what is called convention over configuration. So, if you
agree to design your app in a way that is prescribed by the designer of the framework, then you

get a lot of these configuration type things for free.

And in practice it means a great deal, so there is real value in following the prescriptions of a
framework, some of the further developments along these lines are newer systems that try to do
even more wrapping and what this wrapping means we will eventually discussed in a lecture
where we will talk about what is called the rest architecture of the web or representational state

transfer.

And at that point, we will be able to see a much higher level view of the web, right now we are in
the weeds with all the details and the tag libraries and so on and so forth but by and large, once
you get used to it and once you are familiar with one set of these things, it is not really that hard,
just tedious and annoying and you have to keep track of or great many details.

(Refer Slide Time: 49:08)

None 206430 03-20 18:55 taglibs-standard-impl-1.2.5.jar
jone 49153 03-20 18:55 taglibs-standard-spec-1.2.5. Jor

i
-
i

1AK% Lib<spforms/MED-INF> ALL L7 (Dired by name)

|
Important difference between the JSP versus the JSTL:

Tere is just the JSP syntax with percentages versus the jsptagenv which mentions tag library.

Now, JSP is in some sense built into Tomcat in the sense that the JSP processing is for free.

For the tag lib, we need to import certain libraries which are there in the examples that come
with tomcat (look up in the examples directory) but these are the tag library, so this is called
taglibs,impl and taglibs spec, these libraries you have to move into the lib’s directory over here,
WEB-INF.

(Refer Slide Time: 50:42)

And when you create the war file here, WEB-INF also contains the lib, so lib only shows up in
this case if you compare with any of the earlier ones such as here as you will see, lib is empty
and this is why we have lib for the few cases where a certain standard jar files must be included,
so in order to get this kind of code working, you will need to include the tag lib’s in the lib
directory.

(Refer Slide Time: 51:36)

—
JSP Configuration ﬁ Execute , Source
4SF L2 Examples
Numbcrgucss ‘ Execute ’ Source
Date b Execute ,' Source
Snoop ‘ Execute P Source
ErroePage ‘ Execute , Source
Cans o g P Source
Checkbox ‘ Exevute ’\-ulu:
Color ‘ Execute ,\--uu
Calendar ‘ Execute , Source
Include Mg Execuic P Source
Forward h Execute / Source
Plugin ‘ Exesute , Sosiree
JSP-Serviet-JSP oy Execute P Source
Custom tag example ‘ Execute , Source
XML syntax example 5 Execute " Source
Jae Plugins

(Refer Slide Time: 52:19)

e P e P

xt Page 1o Cwmc @

stoct A

e et

And in their source, they have also shown how the cart itself is implemented with for loops in a
different style explicitly, they do not use JSTL, it is JSP only but it is still interesting to see how
these things are put together.

(Refer Slide Time: 52:45)

Here is another example of JSP servlet JSP where they show how the JSP page can call the
servlet and how the servlet can call JSP in turn using a different method, this one we will revisit

later but [wanted to point out that here are some examples that you should take a look at.

(Refer Slide Time: 53:13)

Similarly, there is for each and there is chose a bunch of other things, so here they show another
way, where you use page contexts set attribute kind of the same way we did and you can loop
over for loops like this, so those are some of the other examples about simple JSP things that you
can find.

(Refer Slide Time: 53:39)

Here is another one where some decision making is going on and so we have C colon if just like
we have C colon for and there is syntax for testing things and so on, we may find these useful as

we go ahead in the application.

