Modern Application Development
Prof. Aamod Sane
FLAME University and Persistent Computing Institute
Indian Institute of Technology — Madras

Lecture 25
Introduction to Modern Application Development

(Refer Slide Time: 00:28)

- 7
P Week 08 P2 Plan ¢ Q

Persistent NPTEL

Session Plan

» We have done our own servlets

« We will now motivate the need for templates and JSP
Demos

+ HelloTemplate: hand-made template

+ HelloJSP: Java Server Pages

« JSPforms: More complex JSPs adequate for our app

n Introduction to Modern Application Development

Hello, welcome to the second session of week 8. We have already done our own servlets.

e Remaining parts of JSP and servlets.
e Motivate the need for templates

e Java version of templates, which is Java Server Pages.

Demos:
e Hello world using templates

e Basic problem to be solved in templates, how Java Server Pages solve that.

e Use JSP to create a form application

(Refer Slide Time: 01:29)

P Review {&;*)

Persls!gn!_ NPTEL

+ Basic Servlet Layout
+ Tomcat management

Introduction to Modern Application Development

Let us take a look briefly at what we learnt last time.

(Refer Slide Time: 01:37)

ﬁ Servlet Layout {*’9

Persistent

NPTEL

+ Directory structure
4 SrC
+ WEB-INF
* classes
+ lib
+ web.xml
+ Web.xml and URL mapping

Introduction to Modern Application Development

e Basic server layout.

e Directory structure of the systems (as shown in Slide 1:37)

(Refer Slide Time: 02:35)

o

wtions“http://Java. sun, com/xml/ne/ Javarelhttp:// fave. win.c »
web-app_3_0.xsd" versione®d, 8%

<display-nameshptel Serviete/display-nase>
<descriptionsNptel Hello Servletc/descriptions

cserviets
o | csarviet-naserhelloserviet</serviet -naner
<servlet-classnptel HelloServiet</serviet-classy
C/serviety

<servlet-mapping
<serviet-nase il loserviet </serviet-naner
curl-pattern)/helloserviet htalc/url-pattern)
curlspatterny/</url-pattern)
</serviet-mapping>

«/web-app>

[

]

Uyeee webomlchello/MEB-INF> AL1 L15 (wowL Valid) o)

Web.xml, in the case of the Hello application:
e Description to the Tomcat server what the arrangement of servlets is like
e URL maps: So what we have here is that we created a servlet, which is implemented in
the class HelloServlet, whose name is HelloServlet and that name is available under

helloservlet.html and “/”

(Refer Slide Time: 03:20)

fnstance”
P/ Javasarhtep: /[Java.sun, c ¥

List Applications HTML Manager Help Manager Help Server Stafus
Path Varsion Display Nama Running Sessions. Commands
St Stop Reload Undegicy
Nore speciied Welcome fo Tomeal [[

MNone specifed Tomeat Documentation e [}

None specfied Serviet and JSP Examgies e 1

s

None spectied Notel Serviet ne

DO Mmans0 Mone speciied Tomeat Host Manager Appication

HelloTem. java is the java template, vs HelloServlet.java

(Refer Slide Time: 04:29)

response. setContent Typel "text /himl™);
t T = responie.getWriter]);
. = — ();
params.put(title™, “hallo vesplate title™); |
o params . put(“body”~, hello template serviet body™);
Wi gereratePageByTemplate(out, parass);
_____ 1d doGet(HtTpSe
. J id gererateFagelyTesplatel
» I |
{ eeplate o
response. setContentType(" text/himl™); s . ‘
t t = response.gethriter(); a8 titler Stitle -
4 y* Slsnidy Loy
out .println{“chiml>»"); ¢ fhem) |
out.printin(”chead>®); x
- e ! er{template);
e e -
{5t key: params keySet{)) {
. Ind* . - 1 i . t by = "3 » key;
out . p m'tln. l le + title & “crtitle b } = b.index0f (keyforn);
F - 4
:u: :(::]: e, II. i = 5 o weyfore. length();
W . ' 1
< 4 b.replace(s, =, parass get{key));
out . println] okl s title & "</ M1>"); ' td 2 E eyl v ‘
out . printin(” body };
: out.println("</htal>"); out.printinib); N ‘
- |
} " 1
: |
sh=== HelloTem.java 32X L33 Java/f1l Abbrev) V> .
HelloServiet.java 13% L32 (Java//]l Abbrev) <V - ()

The difference:
In HelloServlet.java:
1. As soon as we get the information in HelloServlet.java, we start printing it out in the
same style as in CGIL.

2. The line by line output (out.println lines) clutters and dominates the contents of the file.

This is resolved by HelloTem.java. In HelloTem.java:

1. Templates are written as string(line 33 in HelloTem. java in figure above),where the
string literals are written with “+” to concatenate them.

Note: We are writing String template in this style because Java does not have multi-line

string literals. In Python and in some of the other languages and I think some of the newer

versions of Java, you can write a single string that spans multiple lines and so we will be able to

write all of this without having to add little string literals.

2. These string literals are markup like <html>, <head>, <title>, etc.

[l & view-sourcehttpy/Aocahost 8080/ helioserviet/

<html>

<head>
<title>[TINLEISa i ct</title>
</head>

<body>
<hl>helloservlet</hl>
</body>

</html>

3. Figure above is the html printed in response, by HelloTem.java. The highlighted
“helloservlet” between <title> </title> and similarly between the markups
<h1> and </h1>) is the data part of the html file. These are not directly written in string

“Template” to be printed.
generatePageByTemplate(out, params),;

}
public void generatePageByTemplate(PrintWriter out,
Map<String, String> params) {
2Uring template =
"thtml>"™ +
"¢head> <title> $title </title> </head>"+
"<body> $body </body>" ¢ *
“</html>";
Cétrinaluildar h = Asu CtrinsRudildarltamn] atal

4. We divide the problem of printing into two; one is HTML markup and second is the
“data” part. The parts where we want to fill up the “data” within the HTML are identified
by giving names in a particular way. Look at the above figure. Between the markup
<title> and </title>, we just have $title and similarly for body , we are
naming the data to be filled between <body> and </body> as $body. $title and

$body are just placeholders for the data to be filled inside these tags.

Map<String, String> params = new HashMap<String, String>();
params.put(“title”, “hello template title");
params.put(“body”, “hello template servlet body”);
generatePageByTemplate(out, params);

}

public void generatePageByTemplate(Printlriter out,
Map<5tring, String> params) {
String template =
"rhtmlan® A

So how is the actual data printed?

5.

First, a hash map is to be created as shown in figure above, which is this Map<String,
String> params = new HashMap<String,String>, a hadnrnap andin,ﬂﬁsrnap,\we
insert key value pairs, (here, <title, “hello template title”> and <body,”hello
template servlet body”> are the two key-value pairs).

Call generatePageByTemplate (out,params) .

generatePageByTemplate (out, params) means generate a page by using the template.
Stringbuilder b in figure below, uses the template and using for to loop over keys of
param, attaches value of keys into the template. Eg: wherever $Stitle appears in
template string, replace the value of key “title” in the hashmap param.Use out to print

this “template substituted with values in place of $key” in the last line of code.

params.put(“body”, “hello template servlet body™);
generatePageByTemplate(out, params);

}

public void generatePageByTemplate(PrintWriter out,
Map«<String, String> params) {
String template =
"<html>" +
“"<head> <title> $title </title> </head>”+
"<body> $body </body>" +
“</html>"; k

StringBuilder b = new StringBuilder(template);
for (String key: params.keySet()) {

String keyform = “$" + key;

int 5 = b.indexOf(keyform);

int ¢ = s + keyform.length();

b.replace(s, e, params.get(key));

out.println(b);

In this example, we calculated the length of the value of $title. indexOf finds the first
character where this dollar title appears and then the end character, of course is the start index
plus the length of the key and so, from start to end, i.e. we replace $title with the value,
which means, we replace $title with “hello template title”, whatever it is and
similarly for body.

Note: Java string builder which is the standard way to manipulate strings efficiently

To summarize, we leave holes in the template and fill it up by sending the data to be filled in as

parameters to generate. So this is straightforward enough and now we can execute this as usual.

Let's do a few things: Go to hellotem directory

Compile HelloTem.java;

Assemble to a jar file using jar command:

ibbrev) <V:

Wroteg

In real life, people include these in the scripts, but we want to be clear about the entire working

and not use too many tools.

Deploy hellotem.war.

prsCSRE_NONC 5212 /DEACE96ADTERIS 1EB6A117
<41
sessions

|]' idle 2 minutes
Start Stop Reload Undeploy
fhelioserviel | None specified Nptel Serviet true 0
Expire sessions with idle = 30 minutes
Start Stop Reload Undeploy
Mhost-manager | None specified | Tomcat Host Manager Application true 0
Expire sessions with idle = 30 minutes
Start Stop Reload Undeploy
[manager None specified Tomcat Manager Application true 1
Expire sessions with idle = 30 minutes
I
|Deploy

Deploy directory or WAR file located on server
Context Path (required):
XML Configuration file path
WAR or Directory path:
Deploy
WAR file to deploy
Select WAR file to upload | Browse... | hellotem.war

Dec*ov

Open /hellotem in new tab.

| | start st

Idocs None specified | Tomcat Documentation true 0
Expire se
| Start | Stc

lexamples None specified | Serviet and JSP Examples true 1
| Expire se
| Start St

Melloservigt | None specified | Nptel Serviet true 0
Expire se
Start Sk

Mﬁ* None specified |Nptel Template true 0
| . Expire se
Start Stc

/host-manager |None specified Tomcat Host Manager Application true 0
Expire se

Output :

s hello tcmplaf serviet body

View the source of this html file:

Note that since String template in HelloTem.java didn’t have newline character, we see

that the html file is printed in a single line in above figure.

JSP makes the above process of creating html file to be printed using templates much

slicker than what we have done with this little handcrafted template.

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException

response . setContentType(“text/html”™);
PrintWriter out = response.getWriter();

Map<String, String> paransI- new HashMap<String, String>();
params.put(“title”, “hello template title");
params.put(“body”, “hello template servlet body”);
generatePageByTemplate(out, params);

}

public veid generatePageByTemplate(PrintWriter out,
Map<String, String> params) {
Itnﬂg template =
“<html>" +
“chead> <title> $title </title> </head>"+
"<body> $body </body>" +
"</html>";

StringBuilder b = new StringBuilder(template);
for (String key: params.keySet()) {

String keyform = "$" + key;

int s = b.indexOf(keyform);

int ¢ = s + keyform.length();

b.replace(s, e, params.get(key));

}
out.println(b);

To summarize: In Hellotem.java, the doGet (..) has a template and a hashmap and we fused

the two in b and printed it.

Java Servlet Pages
Go to nptel/hellojsp/src/nptel/HelloJSP. java. The template is nowhere to be

seen in this.

The template is in a new directory.

File Edit Options Bufers Tools Operate Mark Regexp Immediate Subde Help
rfOe@<x@/ s ¥xabh'®
Pat d:/apps/nptel/hellojsp:
' total used in directory 7 available 312742204
drwxrwxrwx 1 Aamod Sane None 4096 ©3-20 22:41 ..

3 drwxrwxrwx 1 Aamod Sane None © 03-20 15:51 .
-rw-rw-rW- 1 Aamod Sane None 2324 83-20 15:53 hellojsp.war
druxrwxrwx 1 Aamod Sane None @ 93-21 01:11 jsp
drwxrwxrux 1 Aamod Sane None ® 03-18 03:03 src¢ *
drwxrwxrwx 1 Aamod Sane None @ 83-20 15:50 WEB-INF

File Edit Option: BuMers Tools Operate Mark Regesp Immediste Subde Help

De@x@ s ' ¥xabh' ®
Pa d:/apps/nptel/hellojysp/isp:
total used in directory 1 available 312737596
drwxrwxrwx 1 Aamod Sane None © 93-20 15:51 .
. drwxrwxrWx 1 Aamod Sane None @ 83-21 ©1:11 .
-rw-rW-rw- 1 Aamod Sane None 282 ©3-21 01:11 [Jello.jsp

[

The above figure shows the new directory. The directory structure for our new system has
hellojsp.war which has src and WEB-INF and here we have a new directory called hello.jsp,
in which there is a file called hello.jsp.

(Refer Slide Time: 13:39)

o <N page

%= request petAttribute title™) % «

|: ¥
X Ftnutl!.hﬂnl‘t'lh!tf Body”) %

]

A

_l 1\-+» hallo.jsp All 111 (Web) <>

1. This markup looks much nicer than the markup created using a Java template inside the

code.

2. The code here says: There is <html>, <head>, <title> etc., but this time, title and body are
generated by snippets of the form : <%= request.getAttribute (“markup name”) %>.

(Refer Slide Time: 14:30)

doGet (

response, setlontent Type(l-' heml®);
t t = response. pethriter();

s regquest ‘flafllt‘lifjllpﬁtﬂ'f’;l p/hella. J5p°);
request. setAttribute(title”, 81l p title”);
request. setAttribute| "body”, "hell)
rd l"l:uﬂl|ll'.'.'ul\[' Feiponis),
3. HelloJSP.java, as shown in figure above, takes the request object, using a standard API

called setAttribute () sets key-value pairs.

4. Associated with each request object, there is a getRequestDispatcher and a
Request Dispatcher basically says what to do with the request object. Here, RequestDispatcher
says: ’do the next request of jsp/hello.jsp”.

(Refer Slide Time: 18:00)
|

3 Servlet + JSP Layout (r’*)

Persismm. NPTEL
+ Directory structure
« Jsp
+ Hellojsp
L
k + nptel
+ HelloServiet java
+ WEB-INF
+ Classes
* HelloServiet.class
« b
+ web.xml
+ Web.xml and URL mapping

To summarize: We are going to maintain the above structure and add a JSP directory which has
hello.jsp. This is a servlet plus JSP layout.
(Refer Slide Time: 18:36)

D 0
f Serviet Deployment \ i)

Persistent

+ WAR files preserve the WEB-INF structure
+ Tomcat manager

« Start / Stop / Deploy / Undeploy
+ web.xml

+ Maps Servlet classes to URLs

n Introduction to Modern Application Development

(Refer Slide Time: 18:38)

p F i
) JSP \

Persistent

%

+ Basics of JSP
* How JSP enables data-driven web pages

(Refer Slide Time: 18:40)

P JSP Key ideas rﬂ

Puv;wsmnt NPTEL
+ Instead of Code generating Text
+ HelloServlet: explicit output
+ HelloTem: replacing placeholders
« Have Code exist within text
+ IThe “View" part is made explicitly into a JSP file
« JSPis HTML interspersed with Java Code
« JSP's are compiled into Serviets
« JSP's can cooperate with Serviets

n Introduction to Modern Application Development j
m— -

Transition in development style of Servlet Programs:

1. There are two ways of code generating text: one is via the style we used in HelloServlet,
which is explicit output versus the second way, we did it which is with templates. So
HelloTem which generates output by replacing placeholders, but it is still code.

2. Instead of having code which is generating text, we reverse the relationship; we have

code existing within text and that is what this is doing.

It is taking the text as primary and putting in little bits and pieces of code(included within

different kinds of signs: %, >, < and =). So code exists within text.

View part of the application i.e. what the user sees, is now explicitly made into a template JSP
file.
(Refer Slide Time: 20:06)

tentType(“text/htnl");
1 = response. gethriter();

] § equest . gethequestDispateher (*5p

R) . Hi request setAttribute(“title", “nello fsp title’);
') request. setAttribute(“bod, 1 4

* Tt rd.include(request, response)f
. JS

o — . JSy
=] - . Je

n “\eee Mellodsp.jova Bot 131 (Java//} Abbrev) <V 1

This is clearly just the view. Nothing to do with the content. Some content will be there; we do

not know what it is and this is the interesting part: what happens is that, internally and we will
see this in a minute JSP which is HTML interspersed with java code is actually compiled into a
servlet and therefore, it can cooperate with a servlet. So, the reason that we can say include or in
some sense, send forward or send the request to the JSP file and get its result and include that in
the overall request. That is what is going on.

(Refer Slide Time: 20:54)

pe(“text/htal");
ponse. getiiriter();

k » request. getRequestDispatcher|” fip/hell

ces hello.jsp AL (Meb) D

How this happens is like this; let us first make sure that. Let us first run it and then let us see
what happens.
(Refer Slide Time: 21:11)

Sl 0 bsabon i RN T . un - @ ofEl
*] Dpresssions winidez X meues

‘WMI’WHMHM
Context Path (required)
XML Conigurabion fle path:
WAR or Dwectory path.
Deploy
WAR ke [0 deploy

Select WAR fie 1o upiond | Browl. | Mo fle selected
Degioy

Chack 1o see il a web applicaion has caused » momory leak on stop, reload or undeploy
Find lesks Thes dagrossic check wil Figger full gabag Use fce yvies

Tomeal Version JVMVerslon JVM Vendor OS Name | 08 Version 08 Architecture Hostname P Address

Btcher("jip/hello. Jsp™);

Apache Tomcal? 095 | 180 221411 | Oracie Carperation | Windows 10 100 w86 Ms 132 168 1,100
Copynght © 1999-2019, Apache Software Foundation .
b\ 5L ATTIT (Wet) oy e L]

Compile the file: “javac HelloJsp.java”, we are now going to copy. (Refer Slide Time: 22:18)

‘ave
LSchoma: (nstance
un. com/uml/ns/ Javaeehttp: // ava sun.c o |
100

3
hesa - instang

con/xml/ns/ Java e - bt %
A0 oo/ xm) /s Juvane/web-app_3_8.a3d" vers

<display-nameshpte] Template</display-nane>
«descriptiondigtel Hello Tesplated/descriptions

cdisplay-name)Nptel JSP(/display-nase)
tdescriptionlipte] Hello JSP¢/descriptions

(serviety
cservlat -namerhel lotemc/ serviet -nanes
<serviet-classonptel MelloTes</serviet (J.Mi'
«/serviets

tserviets
<servlet-name>hel lojspc/serviet - nase)
cservlet-classinptel Hellodspe/servlet -class)
rerviety

iservlet-mappingy
«serviet-namerhellotenc/serviet-nase>
<url-patterny/helloten. htal</url -pattern>
curl-patterns/</ur] -pattern)
«/serviet-nappings
fweb-app>

cserviet-mapping) .
cservlet-namerhellofspe/serviet-namer
turl-pattern) /hellojsp. htalc/url-patterns
orl-patterns/¢/url-patterns

</serviev-mapping?

/e app>

Uless web michellojsp/WES-INF> ALL 113 (nML Valid) W= wabomlchelloton/NED-IF> ALLLLL (WOKL Velld)

Take a look at what the web.xml says: HelloJsp corresponds to the class HelloJsp as usual, but
internally. So externally this looks not too different from what we have for hellotem.
But in reality we are going to make an internal call to the JSP file. This difference will start

showing up in web.xml after deploying.(Refer Slide Time: 23:35)

1 hello.jsp ALL 112 (Web) o

fo
-
nos '
request . gethttribute
play-namestiptel J5P¢ play fame)
tioniNptel Hello JSPc/descriptions
squet getattributel)
Let-nameshellojsp/ serviet - nase>
Y assinptel Hellodsp</serviet -class
et app
Mellogp AILZ (Wab) Wil M- AL 2. (08 W) |

(Refer Slide Time: 24:57)

-1 EN IR AR N1 -0

Jspx_out = out;

ot .write|

out .write(DOCTYPE html L
cut .write(" <himl n");

out write(” hebd

out .write("\tititle)

cut.print({ request.getAttribute(title”) .,
out write(” title n");

out . write(” heady\r\n");

out .write(2)

cut . write("\t");

I out print(reguest. getAttribute{“body™));
out .write” n")

)i
out .write(Body2»\rin);
out . write] hemla\r\n®);
ateh (s T -|.:
f {!1{t instanceof 1 t. sp.SkipPageException))|
out = _jepu_out;
if (out e B out.getBuffersize() |= 0)

\f (response.isCommitted()) {
out , flush();
) elee {
out . clearBuffer();
)
h I ept y () a
if (_fspu_page_context e) _jspx_page_context l

W

(t):

} fina
_jspxFactory.relessePageContext (_jspx_page_context);

Ao Thello_jep.daeve 7K LST (Javal/l Abbrev) V>
Visit helloJsp. For the first time, the server itself, which is Tomcat, creates hello_jsp.java. This
is the translated version.
It converted our nice template in hello.jsp to out.write(..) statements.
All the unnecessary tedious work is done for us. It takes the strings as they are and interpolate it
with a template except, in JSP, it is replaced on the fly and instead of compiling it, we actually

had to call a replace method which does replacement at runtime.

We do not have nice separation between what you see in the view and what you see in the model,

which is only this much.

So that is the core idea of JSPs.

