
Modern Application Development
Prof. Aamod Sane

FLAME University and Persistent Computing Institute
Indian Institute of Technology – Madras

Lecture 25

Introduction to Modern Application Development

(Refer Slide Time: 00:28)

Hello, welcome to the second session of week 8. We have already done our own servlets.

● Remaining parts of JSP and servlets.

● Motivate the need for templates

● Java version of templates, which is Java Server Pages.

Demos:

● Hello world using templates

● Basic problem to be solved in templates, how Java Server Pages solve that.

● Use JSP to create a form application

(Refer Slide Time: 01:29)

Let us take a look briefly at what we learnt last time.

(Refer Slide Time: 01:37)

● Basic server layout.

● Directory structure of the systems (as shown in Slide 1:37)

(Refer Slide Time: 02:35)

Web.xml, in the case of the Hello application:

● Description to the Tomcat server what the arrangement of servlets is like

● URL maps: So what we have here is that we created a servlet, which is implemented in

the class HelloServlet, whose name is HelloServlet and that name is available under

helloservlet.html and “/”

(Refer Slide Time: 03:20)

HelloTem.java is the java template, vs HelloServlet.java

(Refer Slide Time: 04:29)

The difference:

In HelloServlet.java:

1. As soon as we get the information in HelloServlet.java, we start printing it out in the

same style as in CGI.

2. The line by line output (out.println lines) clutters and dominates the contents of the file.

This is resolved by HelloTem.java. In HelloTem.java:

1. Templates are written as string(line 33 in ​HelloTem.java in figure above),where the

string literals are written with “​+​” to concatenate them.

Note: We are writing ​String template in this style because Java does not have multi-line

string literals. In Python and in some of the other languages and I think some of the newer

versions of Java, you can write a single string that spans multiple lines and so we will be able to

write all of this without having to add little string literals.

2. These string literals are markup like ​<html>​, ​<head>​, ​<title>​, etc.

3. Figure above is the html printed in response, by HelloTem.java. The highlighted

“​helloservlet​” between ​<title> ​</title> and similarly between the markups

<h1> and ​</h1>​) is the data part of the html file. These are not directly written in string

“Template” to be printed.

4. We divide the problem of printing into two; one is HTML markup and second is the

“data” part. The parts where we want to fill up the “data” within the HTML are identified

by giving names in a particular way. Look at the above figure. Between the markup

<title> and ​</title>​, we just have ​$title and similarly for body , we are

naming the data to be filled between ​<body> and ​</body> as ​$body​. ​$title and

$body ​are just placeholders for the data to be filled inside these tags.

So how is the actual data printed?

5. First, a hash map is to be created as shown in figure above, which is this ​Map<String,

String> ​params = new HashMap<String,String>​, a hash map and in this map, we

insert key value pairs, (here, ​<title, “hello template title”> ​and <body,”hello

template servlet body”> ​are the two key-value pairs).

6. Call ​generatePageByTemplate(out,​params​).

7. ​generatePageByTemplate(out,​params​) means ​generate a page by using the template.

Stringbuilder b in figure below, uses the template and using for to loop over ​keys of

param,​attaches value of keys into the template. Eg: wherever ​$title appears in

template string, replace the value of key “title” in the hashmap ​param​.Use ​out to print

this “template substituted with values in place of $key” in the last line of code.

In this example, we calculated the length of the value of ​$title​. ​indexOf finds the first

character where this dollar title appears and then the end character, of course is the start index

plus the length of the key and so, from start to end, i.e. we replace ​$title with the value,

which means, we replace ​$title with “​hello template title​”, whatever it is and

similarly for body.

Note: Java string builder which is the standard way to manipulate strings efficiently

To summarize, we leave holes in the template and fill it up by sending the data to be filled in as

parameters to generate. So this is straightforward enough and now we can execute this as usual.

Let's do a few things: Go to hellotem directory

Compile HelloTem.java;

Assemble to a jar file using jar command:

In real life, people include these in the scripts, but we want to be clear about the entire working

and not use too many tools.

Deploy ​hellotem.war​.

Open /hellotem in new tab.

Output :

View the source of this html file:

Note that since ​String template ​in HelloTem.java didn’t have newline character, we see

that the html file is printed in a single line in above figure.

JSP makes the above process of creating html file to be printed using templates much

slicker than what we have done with this little handcrafted template.

To summarize: In Hellotem.java, the doGet(..) has a template and a hashmap and we fused

the two in ​b​ and printed it.

Java Servlet Pages

Go to ​nptel/hellojsp/src/nptel/HelloJSP.java​. The template is nowhere to be

seen in this.

The template is in a new directory.

The above figure shows the new directory. The directory structure for our new system has

hellojsp.war which has ​src and ​WEB-INF and here we have a ​new directory called hello.jsp​,

in which there is a ​file called hello.jsp​.

(Refer Slide Time: 13:39)

1. This markup looks much nicer than the markup created using a Java template inside the

code.

2. The code here says: There is <html>, <head>, <title> etc., but this time, title and body are

generated by snippets of the form : ​<%= ​request.getAttribute(“markup_name”) %>​.

(Refer Slide Time: 14:30)

3. HelloJSP.java, as shown in figure above, takes the request object, using a standard API

called ​setAttribute()​ sets key-value pairs.

4. Associated with each request object, there is a ​getRequestDispatcher and a

Request Dispatcher basically says what to do with the request object. Here, RequestDispatcher

says: ”do the next request of jsp/hello.jsp”.

(Refer Slide Time: 18:00)

To summarize: We are going to maintain the above structure and add a JSP directory which has

hello.jsp. This is a ​servlet plus JSP layout.

(Refer Slide Time: 18:36)

(Refer Slide Time: 18:38)

(Refer Slide Time: 18:40)

Transition in development style of Servlet Programs:

1. There are two ways of code generating text: one is via the style we used in HelloServlet,

which is explicit output versus the second way, we did it which is with templates. So

HelloTem which generates output by replacing placeholders, but it is still code.

2. Instead of having code which is generating text, we reverse the relationship; we have

code existing within text and that is what this is doing.

It is taking the text as primary and putting in little bits and pieces of code(included within

different kinds of signs: %, >, < and =). So code exists within text.

View part of the application i.e. what the user sees, is now explicitly made into a template JSP

file.

(Refer Slide Time: 20:06)

This is clearly just the view. Nothing to do with the content. Some content will be there; we do

not know what it is and this is the interesting part: what happens is that, internally and we will

see this in a minute JSP which is HTML interspersed with java code is actually compiled into a

servlet and therefore, it can cooperate with a servlet. So, the reason that we can say include or in

some sense, send forward or send the request to the JSP file and get its result and include that in

the overall request. That is what is going on.

(Refer Slide Time: 20:54)

How this happens is like this; let us first make sure that. Let us first run it and then let us see

what happens.

(Refer Slide Time: 21:11)

Compile the file: “javac HelloJsp.java”, we are now going to copy. ​(Refer Slide Time: 22:18)

Take a look at what the web.xml says: HelloJsp corresponds to the class HelloJsp as usual, but

internally. So externally this looks not too different from what we have for hellotem.

But in reality we are going to make an internal call to the JSP file. This difference will start

showing up in web.xml after deploying.​(Refer Slide Time: 23:35)

(Refer Slide Time: 24:13)

(Refer Slide Time: 24:57)

Visit helloJsp. For the first time, the server itself, which is Tomcat, creates ​hello_jsp.java​. This

is the translated version.

It converted our nice template in ​hello.jsp​ to ​out.write(..)​ statements.

All the unnecessary tedious work is done for us. It takes the strings as they are and interpolate it

with a template except, in JSP, it is replaced on the fly and instead of compiling it, we actually

had to call a replace method which does replacement at runtime.

We do not have nice separation between what you see in the view and what you see in the model,

which is only this much.

So that is the core idea of JSPs.

