Modern Application Development
Mr. Aamod Sane
FLAME University and Persistent Computing Institute
Indian Institute of Technology — Madras

Lecture — 24
Introduction of Modern Application Development

Hello. Welcome to week 8 of introduction to modern application development.

What we have learnt till now?

1. We discussed logins, but we have not implemented them yet.

2. We have servlets which allow us to maintain a session and last time, we saw how
cookies can be used both as identification and mechanism to maintain continuity across screens

which gives us one use which is sessions and another use which is logins.

Goal of this week:
1. How the view is put together.
2. How servlets are created and deployed.

In this session, we are now coming very close to finally having a full web application that is

quite similar to a GUI application, but which will have multiple users and other facilities.

Servlets : A disciplined Way To Build Web Apps
The creation and deployment of servlets is a disciplined way of a general problem which we
have repeatedly mentioned during this course which is, how to maintain and deploy a web app as

you go ahead.

Interesting observation about most real life Web applications

Notice that web apps never have down times, they always seem to be working, the method that
we are going to see in use with servlets is one of the key pieces in achieving this kind of

always-on type of development. With web applications you are almost never aware that

anything like an update has happened. The things we are going to see today is one of the major

pieces in how Web Apps achieve such continuity of behavior.

NOTE: This is very different from how desktop systems used to be, where people had to create
new versions of programs and download them. However this is better now as we get operating
system updates and the updates although we are somewhat more aware of it in the case of

desktops and also to some degree in the case of mobiles.

(Refer Slide Time: 03:05)

P Week 07 Plan {9

Persistent NPTEL

Session Plan

« Our own servlets

« Servlet deployment, redeployment etc.
+ Templates and JSP

Demos

+ HelloServlet

+ FormsServlet

+ JSP Forms Serviet

Introduction to Modern Aoolication Development

Goal of the session:

1. Look at our own servlets’ deployment
2. Take the first steps towards template need for templates and JSP - a particular template

language

Demos:
First servlet : HelloServlet (last time we looked at HelloServlets and FormServlets as they came

in Tomcat.)

This time we are going to look at what it takes to do our own, which is somewhat more involved.
We build our own HelloServlet, we will use the patterns we learn while creating the HelloServlet

to create a Form servlet , finally create a JSP servlet.

PART -1
1. Understand the servlet structure.
2. Understand occasional problems that can arise while creating servlets.

(Refer Slide Time: 04:52)

P Review

Persistent

+ The layout of basic apache apps
+ Basic URL mappings
+ Next step, how this changes with Servlets

Introduction to Modern Application Development

uick review of what we have seen for Apache applications, the layouts, URL mappings and

compare that with how it changes for servlets.

e (o to xampp control -> start Apache

e start Tomcat

Open http://localhost:8080 to Run Tomcat in browser.

e Start Manager app
(Refer Slide Time: 05:21)

http://localhost:8080/

Recommended Reading

Security Considerations How-To
Manager Application How-To
ClusteringiSession Replication How-To

Developer Quick Start

Tomeat Setup Raakms & AAA Examules
First et Anphiaiion 408K Datedowice

Managing Tomeat Documentation

ol Users ire

ey Tomeat 7 Cenfiguration
SCATALINA HOME/ conf /ToRCat -user s, Ind M

-,/ | S [[Innage

(Refer Slide Time: 06:25)
|

Fo socurty, acess 10 10 MAgH Tomcat 7.0 Documentation
il b

Find addibonal important configuration

0 D loeshed m -~ "
Home Documentation Configuration Examples Wiki Mailing Lists Find Help |
Apache Tomeat/7.0.99

fincre ‘ (*)

NPTEL

SdevEd Bt

Managor Apo

Howt Manager

lats

Sarviot Soecimoanons
Tomeal Yorslony

Getting Help

Tomgat-aneounte
Igtant BT PR, Feleae

W) bimamies 2000203 1443 177
Q= 2020-02-22 1828
(£ dusbbroard 204213 14:43
() e st i 2020-02-24 01:10 11K
) bl 202002.22 2048 31K

§) fiinhars2hom) 2000.02-23 2257 33K
8] firshorsthoml 202003020038 33K
N ki 0200213 1443 WK
Dime 04213 14:43
2 webalize 01540716 15:32

| (0 2020:02-13 14:43

Apache 2441 (Wingd) OpenSSL L1 le PHPT 4.0 Server at localhait ort 80

REMARK: Fairshare application consists of fairshare.html and fair share.sh, plus a fairshare.java
code. Java code is usually not visible to the front-end, the front-end only shows HTML files but
we know that there are 2 components to it, one of which is fairshare.sh and then the
htmlInteractive.java files and class files which reside in cgi-bin. This is a disorganized system in
which some files are in one place, some files are in another place. It becomes difficult to manage

and so, the first thing that servlets do is, they impose a greater structure on what constitutes an

application and how we deploy it.

0 1) bt "

Index of / P
Neme Lasmedifid S Docriptien (*)

8] spplcaions himd 20200213 14:43 35K Pt

lets

(Refer Slide Time: 07:22)

A web application in servlets is well structured using WAR format (Web ARchive).

Structure of a basic Hello application In servlets.
Hello application has a directory structure.
1. There is a top-level directory called nptel.
2. Inside nptel, we have created a directory called “hello”
3. Inside “hello”, there is “helloservlet.war” and two directories called “sr¢” and “ WEB —
INF .
4. src will contain sources.
5. WEB-INF has 2 directories: classes and lib and a file called web.xml.
6. web.xml does URL mapping : serves as a general description of how a Java file and a
front-end sort of file, if any, is put together and made available to the server.

(Refer Slide Time: 08:17)

PhS OF-
HOME INSERT DESKH

g, X cu Ly
¢ e
Copy * St
hate tow B
FomatFabt gy + 2 Secfn
Cipkowrd 3 s
i ®
[p—
[—

TRANSTIONS ANIMATIONS SUDE SHOW

el gt - Pt
REVIEW VBN ADDNS

o

Persistent

Sompuring Irattirs

P

TH 8%
sanit
Hirnd
i Roplacs =
oot -
dirg -
NPTEL

+ Directory structure

* 8IC
+ WEB-INF
+ classes
+ lib
* webxml
« Web.xml and URL mapping

Introduction to Modem Application Developmel

Basically, WEB-INF will contain whatever is necessary for the web application to function,
which includes these 3 pieces.

(Refer Slide Time: 09:12)

import javax.
import. javax.
import jevax.

serviet_http.
serviet. http.
servlek hikp.

HEtpServlet;
MttpServletRequest;
HetpSarvletRaspanse;

[Fi: B8 Cptiors B Tools Ml ek | Signir
o o localhondfenimet iy oo] = B (% | X BB R]
import jeva.util.ResourceBundle; “llace -
]
1 1 |
imgport javax.servlet.ServletExcaption;
frg A

ip:mH:’ clazs HelloServlet extends HtipServiet {

private static final long serialVersionUID = 1L;

public weld dobet{HttpServletRaguest reguast,

Message: |':B< HttpServletlespanse response)
throws IOExcaption, ServletException
;-
1 _ response. setlontent Type(" textfhtml™);
Pripthriter out = reswnae.ge-turlter::];
List lcations
] out.printlng“<html>");
out . println{"<head:"]; *
Path Varsion | | String title = "helloservlet”;
|:d out.println{“<titles” + title « "¢/titlex™);
i Hone spacified | W out.printlng </ heads");
1 | out . printlng "<body=");
| | eut.printdn chl>" + title # "o/hl3"};
Ifacs None spacifisd | Te out . printing " foadva™);
| out.println"</ntnl="]);
| ! 1

iamples mmmfs;l}

|| “\ees HellaServlet.java ®% 123 (lava//l Abbrev) cvs
| None gpacifisd | Te Find file: d:fapps/nptelfhellc/srcf

Hello Servlet

1. src contains NPTEL

2. inside the nptel directory we have HelloServlet.
This is how as we have seen last time that the GET request is mapped into Java code and the

servlet request and servlet response object contain all the data that we want.

Here is something interesting to remind you from last time, one is that in the response we set a
content type and in a response, we create a printWriter and write to the printWriter all the HTML

text so that it goes out in a single stream is all seen in this file.

src is where java code begins, and java packages are all structured inside src.

(Refer Slide Time: 10:51)

Rl Bl Dpiees Boffers Toobs ML Temr Holg
T BCIRARE Y A !
| <¥unl versionz"1.8" encoding="IS0-8859-1"?» =g+
cwab-app sElas="Rttp// Java. sun. conlxml/ ne) javaes”
walng wei="RtTo: /S, W3 . orgs 2021/ ¥MLSChena -1 natance”
wsi:schemalocations"http: //java.sun. comfxnl/ns/javaee?http://Java. sun. con/unl fns/ javaes,webe #°8
p-app_3_B.xsd” versiona"3.@"

T 0 lacahananmn

fdi:—nlw-lane‘:ﬂutel Servlet< display-name?
cdescription:igtel Hello Servleto/descriptiona

{zerviets
¢serylet-namerhelloserviet ¢ /eervlet- nane:
cgerylet-classanptel . Hellodervlets/servlet-clase>
ofserylats

Meszage: HR

<servlet-mapping>
Zearylet-nanerhellosaryletcfdervlet- nane
curl-patterns/hellsservliet, himls furl-pattarnsy

List Applications of sarylet-mappings
| t/web-app>

Fath

| None specified | W

|fdacs None specifisd | Te

fExAmDes None spacified |34

|| Uhes- wehiomlchello/MES-THES AIL L4 (ndML valid) ovs
| hosl-manaper | Mone speiied | T
[T

The structure of code in web.xml is by and large standard. They have not changed for a very
long time and unless you are doing something special, the code can just be reused. So, only if
you have a program that validates the xml will some of these kinds of details start mattering.

Otherwise for the most part, most uses of xml are just based on tag names.

Remember : Components of a web application for the Apache case anyway included HTML, a

shell file and a java program.

In servlets we just have a Java program. There is no need for the shell file because that is

exactly what the servlet container which is Tomcat does.

A servlet container runs the equivalent of a complete command line program but without having
to deal with details of command lines. Instead, we just use a standard HTTP program which
follows a standard interface called the servlet API.
1. There is a HelloServlet class.
2. So, nptel.HelloServlet here, by the way, this is a full Java class(so all the details of
capitalization etc. matter). So, nptel/HelloServlet.java will have to be present.

(Refer Slide Time: 14:06)

File E Opors Bulers Tools Mnal el
[} Tocalhodt A0 nak [y fin ri e IR E g A
import jeva.util.Resourc=Bundle;

import javax.serviet,ServlstException;

import javax.serviet. http.HttpServlet;

import javax.servlet_ http.bttpServlietRequest;
import javas.serviet hitp.HitpServleiResponse;

{pualic class HelloServlet extends HttpServiet {

private static final long serialVersionUID = 1L;

= public woeld doGet{HitpServletlegqeest reguest,
Meszage: : HttpServletlesponse response)
throws lOException, SerwvletException

responie. setContent Type("text /html™) ;
Prirtiriter out = response.getWriter():

IJst Applications

out.printlnf“<htnl>"];
out. println(“<h=ad:");

Strlng Title = "helloserwlet”)

out. println{“<Title>” + title +« "</ title>™]);
out . println "< /head:");
out.println “<body>");
| | cut,printlnf chl>" + title # "o/h12");
idacs Mome specifisd | Te eut.println "< Bady»");
| out.printlnf”</html>"];
| H

feramples | Neme spsciied |54 1

-

Mone specified | W

| | “%er= HelloServiet.jawa =X 112
Masl-ranapel | Mone specified | T Find file: d:/fapps/nptel/hellofsrc/np
ot LW

Capral (1] abbrev) cus

(Refer Slide Time: 14:20)

[Sgn
& i T T hdr e = 4 0o Hneen o
s.-f.- i o ¥ _'fx Aoz . M-{I I St pore
l:"«lll-l . . |- iy :. [l i I::'y ki L
T agas () it
+ T ThePC * DT * spps ¢ npid * helle * WEL-INF kw naw vk Eanchngl]
Fropcts £ Ham [mreif e o
chvanerd [
akaifima
(LY
g
& Sl
5 This B
30 O
B Doz
9 Caimems
& Covarizacy
F Minic
E P
B ik
4. Windews 1]
o Duta (T4 ¥
T [P SR Vi mt.;lri.ntlnlf_"i."'lcz:l}'ﬁ; - L.
out.printlng "<body:");
| | cut printdnd "chl:" + title # "o/hlx");
\fdacs Nane specified | To cut printing "< /hodya*);
cut.printlnd "< /htnls");
b
earples | None specied 54!
| “iee- HelloServlet.java 8K L5

| {(lavaff1 abbrev] <
\hasl-ranacar | Mone spaclisd |Te Find fils: d:fapps/nptel/hellefsrc/nptel/

1.

2. Inside WEB-INF, you have classes and in classes there is nptel followed by HelloServlet

class. So, inside WEB-INF, classes contain the overall directory structure for the
distributed Java program.

3. lib in this case is empty.

4. lib is meant for jars and other standard libraries and classes.

(Refer Slide Time: 14:58)

o T |

dan L Al Bl Optors Buffers Toolh lwva Help L "
A - D8 s xnb 3
Tty iy e g import jeva.util.ResourceBundle; 2

CER"
imgort javax,servilet . ServletException;

ThePC * Dww) @ g iMPort javaw. serviet.http.HttpServlet; I

I_i'r:u:-ri: javax. servlet. http.MttpServlietRequest;

Pezjacts A . = o
import jevax.servlet hitp.HtipServletResponze;
ackarrcrd
shynifires pubtlic class HelloServlet ewtends HttpServiet |
gk £
Lo] privete static final long serialVersionUID = 1L;
s Cralrrer o "
publlic weld doGet{Ht |.|.-'H"'I|-.'Lf!d.w-u:~t reguast,
% Th PC #ttpServletespanse response)
I 20 Dhiers throws I0Exception, ServletException
| [
[Pp—— reszponse. setlontent Type (" text html™);
& Devarbzazs Pripthriter out = response.gethriter]);
4 W x o E
i g out.printin{“chtml:");
5 e out.printlng "<head:") .
don
L= Windesa () Strlng Title = "helloservlet”;
o Dun |
clic el 'I':l"c;r:'-‘" R, | out. printIn{"<title:® + title + "< titles”); =c
T ThOnE spaciisd |

out. printlng "</ head:");
out.printlng "<bady:"]1;
out, prelotind"chl>” + title + "</h1>");
Idacs None spacifisd | T out, printin "</ body>*);
out.println]“</ntal="];
1] ¥

fEmamples Home spaciied |34 !

. | =h=ss Helloservlet.jawva Y L18 (Java/ /1 abbrev) <vr
- el | Mone spaciied | Te

e W CTRANTE

URL Mapping

Above figure shows nptel.HelloServlet. So, this tells the system that, in this servlet mapping the
url HelloServlet.html corresponds to the class nptel/HelloServlet. So when you visit this url,
Tomcat will interpret your visit as fetch the class and execute whichever method you have
got.(In this case just the straightforward GET method). So, in Apache when a URL is mentioned
usually, the mapping of the URL corresponds directly to the file system beginning with the root
of the overall document hierarchy. This makes managing simple applications very easy but as
applications get more complicated it becomes difficult to track 2 or 3 files in different
directories, so a url pattern is instead mentioned and we say that there is a servlet name and the

system takes care of mapping these 2 things for us.

So, that is why the structure becomes important. We shall see how this is reflected in the

web.xml while learning JSP. (Refer Slide Time: 16:52)

OBE*E % xaB R
«<7kml version="1.0" encoding="IS0-8859-1"7?

¥ {iveb-app ZRlas="htipd/f Jave.sun. cond kml/ ne javaes”
L]] L i =

= e i =

[hosl-rErEnes | Mome spoc SRR
mredorr [E M W R

HOW THIS WORKS IN PRACTICE.

e Run “javac src\nptel\HelloServlet.java” as shown above the compile the java file

e (o to src\nptel

e We see HelloServlet.class. If the compiling is sucessful, then a .class file gets created.

e Copy just the class to WEB-INF/classes and under the nptel directory to obtain the
necessary directory structure.

e Bundle up using this command “jar cvf helloservlet. war WEB-INF”. (As shown in figure
above)
(jar is a program that will collect all the files that are under WEB-INF and put them

inside helloservlet.war.)

As the deployments get more complicated other directories like build and dist, but the core
directories that are needed are src and WEB-INF.
(Refer Slide Time: 18:36)

Fie Bl Wew Rraes Rools Help

| = = o o A 4

Azd Leraci fem Copy Woww Deleie inio

D3 appinpiel hel o' el cesrdulanr

Nlmre Sizn Pedod St Rlodried Crasted forained AHrbaie Enayperd Corrserd CRC Mathod Chassdui. m
o T e B P01 o S INI4E Defes SeCAFE:D. FAE
VER-TE 1 BT 05 A o . MEOREC] Srve UTEa =

If you want to see what a war file is like, go to: apps\nptel\hello\helloServlet.war.

These are just zip files. So, you can get a program like 7-zip and look inside this thing. So,
because we have just zipped a directory, this entire structure is present as is and what we get.
We get meta information and manifest file created by the zip program. Deploy the entire WAR
file without worrying about manually putting this file in this directory, that file in that directory
and so on.

(Refer Slide Time: 19:29)

List Applications HTML Manager Help | Manager Help Server Stalus

| Path |Varsion | Display Name Running | Sesslons |Commands
[[| stet Stop | Reload | Undepioy
I Home spacifisd | Walcome 1o Tomea s Q
| | Expire sessions with idle = 30 mirubes

Slat Stop Reload Undeplay
docs None specifisd | Tomeat Documentation Iruse a : ==,
! Expire sessions with idle 2 10 mirabas

| et Stop | Reload Undaploy
Expire sessions with |dle 2 30 mirutes
[| St Stap Reload Undeploy
Mone spaciied | Mptel Servial Iruse il -
* | Expire sessions with idle = 10 mirutas
[| St Stop | Reload Undeploy
Expire sestions wilh idle = 30 mirubes

'm :ﬁwl " - Start Stop Reload Undeploy
i | e | Lt Expire sessions | with |dle = 30 mirutes

SERAmples Nane speciied ;Sen-letand JEP Examples s a

hgst-mangger | Mome sparified |Tomcat Host Manager Agpication | trus ']

+
==

by hlinran, e

1. Go to the Tomcat application manager
There are 2 ways to deploy these systems.

Create a WAR file. (Since we have created it, i.e. helloservlet.war)

> wn

Deploy it. We get a new row and our helloservlet app is ready to use.

Error;: HTTP status “404 - Not Found”.

(It says “the origin server did not find a current representation of the target resource or is not

willing to disclose one that exists”).

This means URL HelloServlet as is, does not really work.

web.xml says /helloservlet.html should map to nptel.HelloServlet.

When the manager gets a war file, if examples were deployed by a file called examples.war then
this is used as a starting directory of the URL. If we want multiple applications, they should be in
multiple parts of the subdirectories on the URL. But here we have just given slash at the

beginning.

So what the manager does is, it takes the war file name as the base and extends your url in
relation to the war file.

(Refer Slide Time: 22:55)

$xnl version="1.8" encoding="I50-8859-1"%»
{web-app kalase"htip: 7 java . sin. com sml/ ns/ javaes”
walnaresi="http:/ fuib. Wl arg/ 2081/ ML Schena -1 natance”
¥si:schemalocation="http: //java.sun. com/xnl/ns/javaeettp:/ /java. sun. con/ xnlfns/ javaeewebe

ny

-app_1_B.xsd" versions"3 8"s

cdisplay-namesiptel Servlet</display-name?
cdescriptionadptel Hello Servletd/description:

fzarvlets
{zarylet-naneshellosarvlet ¢ fearylet- nanes
gerylet-classrnptel . HelloSery letcfservlet-classy
ofsenvlats

<zervlet-mapping:
{garylet -namaihelloserylet ¢ /servlet-name:
furl-patternr/bellosery let.htmlsfurl -pattern:
tu.ﬂl-p.ﬂtwn:-jl."url-pattprn:s *
/servlet-mappings
{/web-apps

ieee wah wmléhalln/UEn.ties AT11 117 oyl walidh cus
Is there any way for example to easily get helloservlet directly serve you the url?
Open web.xml, and in addition to the url(helloservlet.html), since anyway it is the final part of
the name that matters, put an additional url which is simply *“/” .
(look at code in figure above)
This time you will see that the deployment is a much simpler affair.

(Refer Slide Time: 23:51)

5 Cnmimand Prompe

bl } (et Labed 441

We have changed the configuration and web.xml so re-package (as shown in command prompt
above) to create a new WAR file. So, this new WAR file has our new XML.
(Refer Slide Time: 24:11)

(£

f APACHE

Tomcat Web Application Manager

miﬁm: |l'.F|': BLUI.ILI&LI !:‘.‘pllt‘.!l.lul'. &t conbext I'.:JL.'| lI.‘lEi.u"!ft'—'it‘Ll
List Apnlications HTML Manager Heip Manager Help Server Status|

NI

Display Name Runnifi | Sessions Commands
St Stop | Reload Undeploy

d None speciied | Welcome 1o Tormeal Irise [

Evpire sessions with idle = 30 mirabas
|t }
| Siwt Stop Reload Undeploy
Igocs Hone specified | Tomcat Documentation frus 1
Expire sestipns wilh idle = 30 fmirmbes
Slet Stop | Refosd Unceploy
IREamples Nome specified | Sarviet and JSF Examplas Inm 4

Expire sessions with icle = 30 mirutis

Pz specined | Npjel Sanyviat Start Sop Reload Undeploy

e
s W s

e Stop the application (by clicking Stop in the row corresponding to helloservlet).

It returns a “context path” which is the name of the servlet because it gives you a context.
e Un-deploy the application by clicking on the Undeploy button of the row.
e So, at this point this file is gone from the system.

(Refer Slide Time: 24:37)

>(ey im ¥ e
b LS
iy b e mas
T mdei jaridzy vl
i ks laks Sl
W [E] ¢ Aggs aispp | osngie A FIAES | s 0 W ¢ wetep B G : 2
n
bt i i
o L1 X302 247 PM b bk
A S R0 Bd1 BY e ok
Pl radet ¥ b
h‘b‘l-mﬁa_‘rf I M3 EITFE Fle Inkd
TRATRERT bty craated: 1101200 &8 KK S e Filw lekdet
beiliegery Fricens: irages, WETAIWE, WTE-RE i a8 o
Files .M
w

En
T T T ENDTE SN T T &30 TS 1 -ﬁ[n‘

Go to xampp / Tomcat / webapps. We used to have our hello but it is no longer there.

Re-deployment:

Deploy again as done earlier, helloservlet.war appears in webapps again

(Refer Slide Time: 25:54)

PLUH-GTr [T ——
OME INGEST DESIGH TRANGTIONS AMMATIONS SUDESHOW 3617

W VI

apat” pgel FRN R SR

o
A g =4
Bl USeMom A E

Servlet Layout {‘%)

NPTEL

+ Directory structure %
L
« nptel
+ HelloServiet java
+ WEB-INF
+ Classes
+ HelloServiet.class
v ik
+ webxml
+ Web.xml and URL mapping

ion to Medem Applicati

(Refer Slide Time: 27:28)

s T e bt - Pt TH-F X
ME INSERT DESIGN TRAWGTIONS ANIMATIONS SUDESHOW REVIEW VIEW ADDINS Signi

S iz =

'“““"' . 9 | J:) Servlet Deployment ﬁ)

Persistent TE
Compiring Iratiien NPTEL

+ WAR files preserve the WEB-INF structure
+ Tomcat manager
+ Start / Stop / Deploy / Undeploy

' Introduction to Medemn Application Developmen)

War files preserve the WEB-INF structure because those are just jar files and jar as we have seen

is simply zip files which you can open with programs like 7-zip.

Tomcat manager does start-stop, deploy and undeploy.There isn’t much copying to do. In
complicated cases there are tools like ANT. ANT is a reasonably common build tool. There are
newer ones that have come around which deploy, un deploy etc. and in a single shot produce the
build, copy, create the WEB-INF structure, wrap it into a war and deploy, which simplifies a

great deal of our life.

(Refer Slide Time: 29:10)

5 Continuous Development i%}

Persistent
Cormpuriing Irati ste.

+ Continuous Irftegration
« Continuous Deployment

« Puzzle: Why is it possible to redeploy on the
fly?

Introduction to Modern Application Developmen

But the interesting part I would like to point out is that there is an explicit place where we take

urls and map them.

Continuous Integration and Deployment

In normal applications, continuous integration and continuous development happens: Different
parts of a team come together and as they produce features, the website gets refreshed

(sometimes as many as every half an hour).

Not only do though all the teamwork is brought together, the entire deployment is completed
very fast, this idea is called continuous integration and continuous deployment. Making this

work one step is simple deployment.

For continuous integration there is something much harder, which is a good test suite, which
allows you to make small changes, tests, to make sure things have not been broken and go ahead

and deploy.

So, CICD as it is called is a bigger topic but it can be motivated by the question: Why is it
possible to redeploy on-the-fly?
(Refer Slide Time: 30:26)

JHTTP Status 404 ~ Not Found

(T2 Status Report AF
[Hessagef TN v

BescriptionfII= orign server did ot fird a current representaticn for the run:t*'.mr:t o b nctwiling to dischose that one exsts. NPTEL

JApache Tomcat/7.0.99

We went to the manager, undeployed and redeployed and without any change, so to speak, as far

as users are concerned, we were just able to refresh right away.

Observation: Since we are the ones deploying and using, in helloservlet above, there is no case

where a request arrives at the same time that the application is undeployed.

But if we had undeployed this application, then we just cannot go to it and if we try running the
file at the same time, it does not find the file. So, in that sense, there is no magical continuous
deployment in our example, but if you want to do it, keep the old file as it is, before we make the
new change. (We say that a certain percentage of requests only should go to the new file.) So,
you simultaneously deploy the old file and the new file under a new name. Eventually, as you
acquire more confidence in the new file released, increase the percentage of traffic that goes to
the new file and slowly switch over. In case something goes wrong, at most a few people are
affected and you usually find out that something is wrong very quickly. The simple web.xml that

we have seen does not allow to do these sorts of changes.

But there are ways to do it and if we get time in this course, we will see how it is that this is

achieved, it is usually achieved through things like Apache front ends and whatnot, so we may

not get into those intricacies this time. But it is useful to know the general principle of how these

sorts of, you know, evergreen fresh websites work. So, we have seen the overall structure.

(Refer Slide Time: 32:57)

response. set€ontent Type(" text/html " §;
Printhiriter out = response.getiriter();

out.printlag’ chenls Wy
out.println"cheads");

String title = "helloservlet”;

aut,printdn{"ctitles” + title ¢ "/titles’);
aut.println{™e/neads");
out.printin{“cbady>");
out.printlaf"chl
et printing " c/bodys

+ "4/h1");

b
aut.println{*c/ntnl>*);

. GUlForms.java Top 112 (Java//l Athrev) € : ;

When we develop our next app, replicate the overall structure.

Eg: Create a directory called “guiforms” similar to “hello”, inside guiforms you follow the same

structure as “hello”. (Refer Slide Time: 34:25)

t Thin FC
Proprcty
hedla
el
g
Kk
Cralvren

N This PO

W 30 Obfems

B Deeiong
£ty

4 Drearloacs

} manic

E Puwrn

B viken

2. Wiredew iC1

]

) ieies

X

P DatwTr) ¢ sppa Fonpis

P

Hrrken o
i dl "
Cary o - [Sehacd nore
Arprtn .
i et e
2o

Especially if you use IDEs like eclipse which are capable of generating their standard structures
and populating them, which is usually how most people do these kinds of things when they are,
they are doing new materials. However, aim of the course is to go every step so that you have a

complete understanding.

These are examples of a particular way of organizing web systems. It would be just as easy to
use some other tool, for example, nodeJS or elixir , but the only thing that would be different is
the underlying tools that are used to put these systems together, the fundamental flow and the
fundamental principles that lie within web systems does not change.

(Refer Slide Time: 36:14)

N &
A
Summary Jf}
Persistent NPTEL

+ We have the basic structure of Servlets
« Next we will produce a simple folms app with multiple buttons
+ After that, we will learn about template languages
» Now, all the pieces are in place
+ We understand the control flow of web applications
+ We understand how to produce the view
+ We understand how to create the model using serviets
+ We understand how to store data in a database
+ And, we know how cookies work.
« Qurfirst complete Web app synthesizes all these pieces.

u Introduction to Modern Application Development

e We have the basic structure of servlets.

e Next, we will produce simple form apps with multiple buttons.

e Then we will see why something called template languages gets used and all our pieces at
that point will be in place.

e We will understand the control flow of web applications, we understand how to produce
the view.

e we understand how to create the model.

e We have seen examples of how the database is used

e We also have our first glimpse of how cookies and sessions work.

The complete web app synthesizes all these pieces.

