Modern Application Development
Mr. Aamod Sane
Department of FLAME University and Persistent Computing Institute
Indian Institute of Technology- Madras

Lecture - 23
Introduction to Modern Application Development

Welcome to session 1, part 2 of Introduction to Modern Application Development. We have
now begun to change our CGI wrapper app into a GUI app, and as a part of that we saw last

time that we studied :.

1. How the architecture changed across the three systems ; CLI, Cgi-bin, Servlets.
2. The internals of servlet
3. The demos that Tomcat’s built-in servlets give us.

(Refer Slide Time: 00:56)

o
Welcome fo Session 1 Part 2 5!\@

Persistent

+ Changing to GUI App
* Rpview of how GUI differs
+ Maintaining state using cookies and session

. Intraduction to Modem Application Development
| N
Now, we take a look at the next step of how to make a GUI app out of our CGI app. Our

GUI app has a register button which acts somewhat like login and it then displays the name
of the current user and it provides identity and context for other commands and enables
further actions.

(Refer Slide Time: 01:47)

ek anktagn Rrweies 70 -MX

/2 INSERT DESIGN TRAMSMIOME ANSATIONS SUDESHOW REVEW WIEW ADD-NS S

3 s
User Identity
i i)
e + Toy example:
o == Avinash and Kalyan B

register, Kalyan
spends Rs.40, asks
for report

+ Report can use
current user
information to craft
its output in a
readable way

Fgsbt tapa g

+ |t is implicit who is using the application. This is helpful, but
in the case of Web Apps, can be dangerous as well.

Introduction to Modern Application Development m

This notion of a single application, which shows you a user interface and you work in its

current identity, is exactly like how we login to our systems. So on a per application basis,
one can have a similar idea, which is known as sessions. So our toy example was that if the
current user is known, then report can use that information directly to craft the output in a
readable way and that it is implicit as to who is using the application.

(Refer Slide Time: 02:37)

WS INSERT - DESKSN TRAMEMK IONS SLDEEHOW REWITW

% Top shus

« Every request is hased on contents of Browser
+ GETneedsaurl

+ POST needs input from page
+ What can ensure continuity across pages?

10 Introduction to Modern Application Development -
=i |

This nature of GUI apps, is what we intend to replicate this time. The difficulty with that, is
HTTP protocol is stateless. HTTP is the protocol that connects the browser to the server. To
demonstrate what stateless means, do the following:

l. Start the apache system

(Refer Slide Time: 03:06)

] XAMPP Control Panel v3.2.4 -

™ @
Saven Mol PO Peis) Aelins o Kettsl
o .

L T we [E] | aome | o || s | W3

ad W | oy || Lo g

iz Firen

il i Hep

Tt i oo | g

luf bu whener you do sumesfing with sendces
vl sty daleg @ thge vl tsak? S0 hik
bis agpicaan wih admnisraor g

anver at localhost
le or too busy. Try again ina

ack your computer's netwark
Stas change deected slopped icfeiih

11 [Apatna] - AmpEng 1o s1an Apachs agg

A A [Apache] Status change detected: rinnng
id by & firewall or pragy,
|ecess the Web.

ts of Browser

§ pages?

on Development "
i Ea

NOTE: Sometimes you have to do start-stop cycles yourself if apache fails to start on the first

try. Usually the cause is that the Apache system did not shut down properly. This is very

common even in real server systems. Usually, the issue for not shutting down properly is the

process ID of the server has not been cleared during shut down. Typically we want only one

server to start. So during startup next time, one server is already up as is recorded in a PID

file in xampp/logs there is HTTPD.
(Refer Slide Time: 04:39)

Mot Fugeop bneditie Sutdi Hp

@ YAMPP Cortol Panelv3.2.4 [Rm: Tiek

e

Sitvcs Wi P Sl Aetsis : {hpps [xanpp/ xampp-7 &, 2-B-VCIS/ xanap/ apache/ logs
A o win am | totel used in directory 86 aveileble 452322624
e | draxrwxrwx 1 Aamod Sane Hone 4836 82-13 14:43 ..

draxruxrwy 1 Aamod Sene Mone 436 B3-82 18:26 .

T -ru-ro-ri- 1 Aamod Sane Mone 14315 @3-18 @6:43 H:cess.log
mcary i A -Pu-rii-ri- 1 Aamod Sene Mone 28276 83-13 82:51 !rr'ur'.lus
TR = -r-ru-ri- 1 Aamod Sane Hone 6 #3-13 82:51 httpd.pid

-rw-rwerw- 1 Aamod Szne Hone 3146 82-13 14;43 install log
Udisond pyepy-ri- 1 Aamod Sene Mone 3272 82-15 15:51 ssl_request.leg

mast aglcation siuf but whene
ase

7y

talus change dei slogped
A igacha] - Aamptag o s Apacha 2

Al [gache] - Status change detected: unang

|

The process ID of the main process of Apache is stored here in a file(in this case, pid is

8232). The actual work is done largely by the second process(here, 18272) while the main

process acts as a supervisor.

(Refer Slide Time: 05:26)

Elri=thiftel
Irspector Cshit-T
Wik Cvsale Culizhilel

e [UIRET
Ruetnork Uyl+shites.
a1y Belor E
Fwlamn hillals
Hlorage Fepctoe shifta1%
sty T2
e et

B Comin TSt
Sesponsies Ursqn Mode Cideshifl-ht
Epedregpr

Suralchl ShilH
Fage fine Ll

Gt Hore Jaols

vk Cine

2. Open fairshare Application. In the text box, write: Register fl and end, Submit the form.
Open web developer tools and toggle tools of your browser. Select the POST request in the
tool. Observe the contents of the post request. Every piece of information that we are sending
across to the server is something that the server can see directly or get directly from the single

page that we are working with.

(Refer Slide Time: 06:01)

Gt mpiocahoag L EhaEs -8
P ‘ ok i T e
ol © {1 louahusticgi-bilanharc2h 07| Qe i O Debionee 1 b) vt - £

W wrmcm IO & Tresktiog [oabeces Mool 213 |

AT G55 05 MR Tank s Meda WS Ol

The FairShare System.

Sab.. Mel. Domar lie Cause: Ty Townshe., Siae

Welcome. This is the commiand line version o the FaieShare application with HTMILICS8 output.

Roommate Registrations

(B srqees DA @M Frg 1B OO T g 13
Registered Roommates are: B bestrs ook Params Resparse Trmings

Ferquest AL ttp: ¢ docelhost /ot binsairSharad.sh

Al B el v
Tornote diddwss 177.8.8.9:A0
Number of Roommates: | — T
R,cg‘wstwn Done. Varsier KT1PAL1
Retortét Pelicy. vr-rufurrer-shen-dunprude Fil® el R
W tirer Heeckrs
Expenses record = Rspores Hoas 211 o

(@) Connation: Koap-idoi

(3} Canteot- Tyttt
Repnrt () Tt 2 W 20 3154 T

(3 eep i imeaut 5 mas- 100

. A/ A 41 WA, DSl Te R AL

Tresh start, no database. (D Torwie-oadieg hunkedd
R e 479 1) S s

@ et b el onbinerny o080
0 uspbelndog wiy oellbe
(D Aol mlSeni=t3 i

(Refer Slide Time: 06:46)

A5 0T
Ul v BECT DION TRANSTIONS AN

OM5 SUDCSHOW - REATW MIEW ADC-INS Aguiy

el 0 0 louahislgi4

& - o =
e #
The FairShare System. o " K
; i
Walcome. This is the command line version of the FairShare application with) f «}
Roommate Registrations RS, User |dent|ty
et
Registered Roommares are! = i
i + Toy example:
4 Avinash and Kalyan e e
Mumber of Roommales: | registef, KaJYan
Regisiration Doue, Spends RSAO, asks
S for repart - =
Expenses record * Report can use
current user
information to craft
Report its outputin a
readable way
Ky start, g dalaboge. « It is implicit wha is using the application. This is helpful, but ‘
in the case of Web Apps, can be dangerous as well. ‘
Intraduction to Modern Application Development ‘
3. However, consider our GUI system where upon the press of the register button,

another screen is supposed to show up, as in the figure above and so on. This new screen

remembers any information provided in all the previous pages!

Right now, using servlets, every data that went to the server is the ONLY data that is

available from the previous page!!

So then there is no way to remember the thing that we are working on.

GUI apps, on the other hand, have sequences of pages that achieve a goal together: for
example, in the screenshot of GUI app above, it is implicit who is using the application even
when the user came from the previous screen. This idea of remembering some information

across sessions is necessary.

There is hence a need to create the notion of session in servlets so that we can remember
information over multiple screens. This is achieved using cookies, which is a well-known
word to all of us who have used the web and a specific kind of cookie is known as a session.

(Refer Slide Time: 08:58)

Bt} Aoy i

[i | sy | Ae | onfg | L L

Wk S

i caty |l o7

e o
M [Apacha] Stats changa dtuctsd nnnng
4404 [Tamezt] - Atemping to tat Tomcal app.

Repart

Fresh start, no database.

n. This is helpful, but
Jerous as well.

lon Development ‘
= }

So, to get an idea of what those things are, we will look at Tomcat.

1. Start Tomcat.

Keport

Tresh start, no database.

n. This is helpful, but
jerous as well.

ion Development .
- P H—uﬁ:&!

NOTE: Sometimes “status change detected” might be reported while starting Tomcat. (Refer

Slide Time: 09:28). The above window might pop up. When you start Tomcat, the
information about the start is provided in windows like this. (The above figure says it looks
for some kind of JRE, JDK etc. It finds one and when it finds one, it starts executing and it is
giving us some information). It is good practice to look up these kinds of displays for

warnings. Here, for example, the warning is creation of a secure random instance took xxx

milliseconds, which might probably have been reported as the system expects it to start in a

shorter time.

2. In your browser, enter the URL : http://localhost:8080. Login to the manager app. Enter the
username and password set in the last lecture. (This information is available in

xampp/Tomcat/conf/tomcat-users.xml).

Since HTTP is stateless, if there are a sequence of pages and each time you go from one page
to another based on solely the information present in the page before, then there is no simple
way to generate some sort of information, which persists across that entire series of pages,

but when we have an application, we might need to remember pieces like this.

3. Go to serviet examples . Go to cookies example and let us see what this example looks like
when we perform a request. The GET request elaborated in web developer tools depicts how
all the information came directly from the page before and this time, there is no request body
or anything.

(Refer Slide Time: 13:43)

(el 0 (0 louahonl 6000l

e -

Cookies Example
Your browsat isn't sending any cookies
Yo just sent the follosing conkie ta yons hrowser

Name: ¢l
Value: thisismy irsiconkie o

drequests | PLM4KE/ S Banstorsd Fnish s | pOWConrafioxdt 170 | bt 1

Creale coolc |0 send to your browser w Cookizs Faeme fespore Timings
e T

Name: | et TP/
Vahue: bl Foiey: ne nefeer when Coangrast Leitand keszrd

Submit Query

dosporea Hoaders 400 1) K lfoackrs

i Heirkts

4. Run the app, create a cookie called ¢/ whose value is thisismyfirstcookie. The response this

time has a header called Set-Cookie. This is where the server tells the browser to set the

above cookie.

NOTE: Conventionally, cookies will normally get set automatically by the server, however

the Set-Cookie header exists in this version too.

Understanding The Cookie information

The raw response header has the following Set- Cookie information:

Set-Cookie : cl= thisismyfirstcookie; Path= /examples/

The Path says that out of the parts of the URL, the ¢/ cookie applies to anything that has
examples 1n it.
To understand what the above statement means:

1. Set a cookie (we have already done, i.e. c/) in cookies example.

2. Start a watcher at this point. (we have already done, i.e. Toggle tool)

3. Execute servlet examples (In the hierarchy, we have servlets, which is under

examples)

This time, the browser is sending a new header, which contains the cookie (¢/) that was

set!!

So, from now on, all interactions with this browser that happens under examples will

automatically get this cookie in the request.

Takeaway:
Browser effectively says to the server that; “I interacted with you once, you sent me
something which says Set-Cookie. I remembered this information for future requests. I am

attaching the cookie whenever the URL to be loaded in under examples.”

Where is the information about cookies stored by the browser?
To see where the cookie got set,

1. Go to “Options” in the browser.

2. Go to “Privacy and Security”-> “manage data”.

3. You will see the cookies that are set by localhost.

We can remove cookies that have been set by clearing them here.

Can multiple cookies be set for the same path?
Set another cookie ¢2, with value secondcookie and submit the query in cookies example

(similarly enter cookie c¢3 with value thirdcookie).

While submitting the query, we see that the request header has information about c2 while
the response header has c3. This is because the browser has ¢2 information and is giving to
the server, while ¢3 has been asked to be set to the browser(by server) and hence part of the

response header.

So, let us do a fourth cookie and so now the browser is sending two cookies (c2,c3), and

getting back yet another one (c4).

Now, let us just submit nothing (i.e. click “ Submit” with empty text boxes). The application
gets confused, returns “name may be null or 0 length”, giving us the
IllegalArgumentException, but the old cookies that we had already set are properly getting

sent as usual.

So, this is how a browser manages to send so much information. When you are
experimenting with things like cookies, one useful thing you can try is to create a private
window. Because in private windows, you do not store the information that goes with them
and if we look at something basic like Google site, what you will see is first of all, of course,
that it makes a very large number of requests that you would not necessarily expect, and these
things will usually contain some cookie or the other. From the names of the cookies,
sometimes you can figure out what is going on. These cookies in requests are used by web

companies.

Cookies: Boon or Ban?

Amazon and other companies use cookies to understand your activity, to provide better
suggestions. But this information can be misused. Tracking your activity, say throughout a
day or throughout a month might be not so secure, which is one reason why from time to
time, your cookies need to be cleaned. One can get extensions, which do cookie cleaning for
you, on part of your browser, so that you do not get tapped for years together and some of
these cookies will stay that way and get refreshed and so on far more times than you might

imagine.

SESSIONS

The next interesting thing that we have to see is the idea called a session .(Refer Slide Time:

26:48)

» O RO

'S

Sessions Example

Session I

Created: Fri Mar 13 03:23:10 18T 2020

Last Accessed: Fri Mar 13 03:23:1018T 2020
Thee fllowing dhata i in your session: O dnquosk | Zks R rrchd | Finsh e DCMConrlcadod T ok
Name of Session Attribute: i Faems fesgone Timings

Value of Session Aftribute: bt/ Localost: by exsrples servles/ servletisassiontuengle

Tt e i1
iy 001 i
GET Based Form: Sabsiode 0 o @
Wi 11F411
Mg of Session Atibute: RS 0 -y s it and fzerd
Value of Session Attribute
Submit Query
= e ks 7 B i Hoiebrs
URL encoded

Dete: T, 13 Mar B 21 ar

Faw Hzckrs

L b ot

ok o=l uoskie -

1. Execute Session example.

2. The header above says, the moment we execute this example, a unique id is
generated.

3. To see where this id is: this session id information actually i s obtained from a
cookie, which is set by the server. So, what this cookie is telling our browser is that it

should set a cookie whose name is JSESSIONID and the value is this particular

unique id. The path is “examples” and it is a http only cookie, so it will not get sent to

a https site, if it is there. So, ultimately a session is just a cookie.

What is the distinction between cookies and sessions?

]While cookies which are used for purposes like tracking, which stays around and helps you
know that it is the same person whereas a session might be temporary, for example, banks
will often log you out as they say after a certain amount of time has elapsed for security’s
sake. So, the things that determines how long you are logged in and whether you are logged
out is what is the job of a session, but a session is just a specific kind of cookie, it merely
managed differently from other cookies, which might be for instance, login cookies, which

says that this person logged in.

So let us see what happens, so we have attribute one, and value is v1, and if we submit this
guy, then what we see is, first of all the session id is put here as well, but in addition to that, it

is also getting sent.

Moreover, the earlier cookies cl, ¢2, and ¢3 are different and the session id is just these
things, plus we need information about where this particular data is being kept and that it can
choose to keep. Store that information in a way that we will see when we look at the code of
that application. So, here we are as far as this is concerned, here the request method was
POST. If you look at what was being sent, you sent these two guys, so data name and data
value and those are basically the names of the form.

(Refer Slide Time: 30: 12)

L34 WLl 2 aliguslah: border alt-"vicw

Emlyll-Z4 wldli24 aligeesiaL busn-0 all-"relu

Wtaulewn | HETEm COMOoTion

hohod UKL

POST i o DR e s el sl Sesmiur Enaubeseseiunid =1 0507 2090 046

Rt escers

e 1 4Tk N I Wi o e 1.4 b1 00T e 10
SR A0 =0

el)

Just to confirm that, we can look at it like this, and you will see data name and data value in
both the forms. This is what we sent. That got sent to the server as part of the request and
then, as part of the response it sent back these headers and this information it baked into the
page itself. So, for example, this string was generated by the server and this time, session

data, is something that is not remembered by the browser, but it is remembered by the server.

There is a cookie. Cookie is for a general purpose mechanism to store data across pages. One
particular kind of cookie is called a session id and you can store data in a session, which
means that the server will try to remember some data for the browser where it may put it in a
file or it may store it in a database, or it may store it in any other persistent container and that

data will be accessible when you give it this particular session key.

So session data acts like a key value pair on the server side and cookies act as key value pairs
on the client side and the client does the job of remembering the client-side cookies whereas
the server will do the job of remembering the server side information. For all browsers,
cookies are a standard mechanism, whereas a session, technically speaking, is nothing that is

specified by anything in the http standard.

It 1s something decent enough practice that was invented by people who wanted to program

applications with sessions. Let us take a look at a different example of this. Visit the site “

Lambda the ultimate”. It is a programming language discussion site. Start a watcher here,
and here if you look, there is a cookie that gets set called the PHP session id.

(Refer Slide Time: 32:41)

s

[l 0 & laribde- bealimalemg

O £ spectr (B ensce £ tehugger 1

Lambda the Ultimate

The Programming Languages Weblog

e]

1] her 2 Il O @ [Creseing Oresse vk bl #0113

Al ML (5505 0R fuls mage Meda WS Ol

Sl We. Curei i G e Tewl Se O

Turnstile+: Dependent Type Syslems a5 Macros

2017, 2 team y raleaced Tumztile, a framework for i i !] Mew
Home typed langunges in Racket; cf, nuuikmssmTwE Systems s Nocros, The satem e el mice b 3y ST LTy S e
Foodhack allowed type sjsten 1 be exprezsed 1 2 manner simlar 1 the way theoretical PLresearchers waul
" and bgause t hooked into Rackets clean comgiler backend, & % Cookiz Faurms Responee Timngs
Gateg Sarad Nes Stoher Thang, ane of that tesm, together with new cosuthors Michas Bellantyre, Usamia Tur ¢{Lonbds-the-ultinste. orgimsc/drusal ez
Bowman, have releasac s rawrite thatthey call Tumatile-, tapether with a 50PL article, Denendent et
D0 s acres, From that articles nireduction: Wk .)
it gsiation
i Tl e 3t s o e s o el s e
dependent types and their ing
b el r-rpu 8 fich st e ot suppert], while retaining the ariginal abilties of Faw Hosekrs
[Turnste. For exampie, ane considercble sbstocle was the separotion betweer the macro
Separtments ‘espansian phase and a program's runtime phase, Since dependently typed (nguages may
‘eualuote expressions while type checking, checking dependent tynes with macras requires
Laurmm new macrolsgy type checking,
Reseavch Papers and evalustion. The following summarizes our hey imovations
S Dy + Timstiles demnrdum\w\ﬁv:'rﬁrmlmfwm!mmma\whwr! i
Qustations mst g e rorge of eansiruets
[— rom base types, mmmwg farvm ke - rv.az ta datatype defintion forms for
ptn) indezed inductive ype fomife,
o o Tinmsties tnsludes an AP for deftoing tyne-level campatation, wnich we dlh
normplteation by macro eypansion. 4 programmer writes o rediction e csing syntax
rosemiblig familar o0-Deper notatian, and Tumatiie= Qanedates @ meces difinltin
Uner ngin hot perf tion dueing This olows easly
woduiar tpe-leve! evaltion
bz o Tirmatile's now type AP eckis & Qaneric o eperation itarf
of and
o rexugaring, This s particaiarly rmpwmnt for implementing fraly ke tactic ystems
'} that inipret Indermeetiate ype-checking stepn end coniruct partial termi. -

PHP programs that are written to create this site and they generate these kinds of session id
cookies. The header is cookie, the name of the cookie is session id, and this system will
remember something about our session on the server side. So, that is the overall structure.

(Refer Slide Time: 33:28)

wekT nbtsgte Bawtvisn TE-0X

FORKY

CME INSERT DESION TRAMSMIONE ANMAATIONS SLUDESHOW REVIDW VIEW ADD-INS

0 0 louabwst 000 g = X Al G
= | Tl Ny S ¢
b [&,
e ‘ CBIUSmf A- = sy
"Manager Fent % Raragasph 5 Crawing [A
List Applications HTML Manager Help
Apptors u P : G
Path Version Display Name & Summary of Cookies and Sessions 7",
I i NFTEL
' Nore speciied | Welcame ta Tomeat =
- e B + Cookié is also a header
I + The server tells the browser to set a Eaukie
— ‘Nm sl | St 2P Bt + Browser remembers to send the cookie to the server
+ Ifthe “path” of the cookie is a part of the url of the page
g s specind | ot e s + A particular use of cookies is called a session,
| ; + Sessions are short lived interactions such as with &
1 bank, which will log you out after some time.
Imanagar Nors soeciiad | Tomcal Manager Applization n = T A S DR Br e A A
Deploy . =
| Daploy directory or WAR fils located on server oo Mo Aot
Gontet Pt {faguired: |
XL Canfigursian e path. |

So, what we learnt is that a cookie is also a header. It is the server that tells the browser to set
a cookie, and the browser remembers to send the cookie to the server if the path of the cookie

is a part of the URL of the page.

A particular use of cookies is called a session and sessions are short lived interactions such as
with a bank, which will log you out after sometime.

(Refer Slide Time: 35:47)

% B Unifsdvcamen x +

RO > = 8

at request, Httpicrvleticsponsc response)

#
ies and Sessions ‘f{@
TRAPANAR. AREEANEANT T ("Taxt/ i NPTEL
Prin ougponze . qulkziter ()

cusklen = regueol el Cookisa () .
i- 07 i ¢ ceckics.length; idH) | o set a cookie

1the cookie to the server
ol priablufuane 4 " = " 4 valusl: a part of the url of the page
5 called a session,

sractions such as with a
after some time.

pplication Development

So, that is our summary of cookies and sessions. Now, let us take a look at the code for those

things.

Go to servlet examples and here we have the code for cookies example.

1. The core part of the code is as shown in the Tomcat.
2. We have already seen the doGet and receiving the servlet objects.
3. It gets access to the body of the system as a PrintWriter object and from the

PrintWriter object, it can get an array by using the function call, called request.getCookies
and it prints them. Later if you ask to set a cookie, it gets one by saying
request.getParameter(name) and once it gets that parameter name, it will get the second

parameter, which is the cookie value, thus you get to set the cookie.

Let us just look at what the code was talking about.

So, here we have our cookie and if you look at the page source,we have cookie name and

cookie value parameters, which are form fields, and in this code, this cookie value and cookie

name is exactly what we are getting, but this time if you want to set a new cookie, you call

this function, response.addCookie, which actually creates that header we saw called Set -

Cookie.

How did this Set - Cookie comes about?

It came about by means of addCookie. We use these headers to set a cookie, when requested
by the server, and the browser will remember all the cookies that have been set so far for this
particular path, where path is “examples”. So all the pages under examples, which includes

all the servlets, which all get to see all of these cookies.

In a similar way, let us see what the source code for sessions looks. Similar to cookies, we get
getSession information. With every session, there is a session object that is created on the
server side, which contains this information such as HttpSession etc. It is just going to remain
in memory and when you create one, it automatically gets fields like: id, created, last

accessed etc.

To complete this discussion, besides the simplified code, let us take a look at the real code.
So, in a real code, the difference is that while the naive code focuses purely on the setting of
the session, this code also has all information necessary to generate this page i.e. current
session etc. is contained in this guide and the actual work of getting the data of the session is

done in this.

So, getAttributenames() and hasMoreElements() etc. is where the information is getting
stored. Given a session, it is also possible to make it persist past a server removed, by storing

it in a file or a database etc. and much of this machinery is actually standard in Tomcat.

Now that we have seen the one important core idea which is cookies and how a specific way
of treating cookies yields sessions, we now have machinery to try to implement this
multipage memory in our application, what is remaining is to understand how to get the
forms to work especially with the multiple buttons and with that we will have transitioned

into the world of servlets and GUI like applications.

