
Introduction to Modern Application Development
Prof. Aamod Sane

FLAME University and Persistent Computing Institute
Abhijat Vichare

Persistent Computing Institute
Madhavan Mukund

Chennai Mathematical Institute

Lecture-19
Week6_Session1

Hi, welcome to modern application development. This is week 6, and session one. In this

session, we are going to take a look at following up with the study of the logs and the browser

tools that we did in the last few sessions. Here is a summary of what we have seen so far.

1. We began by looking at the development of an application that provides an interesting

service which is the ability for people to manage their money given certain expenses.

2. We first saw how to create a simple command line version.

3. Then we change that into a CGI bin and in doing CGI bin we now see that in order to

understand these applications where a standard debugging system does not actually work,

we have to become familiar with new tools. These tools include the browser tools, which

tell you what the browser is doing, which tells you how the view layout works.

4. And we saw that the the second set of tools is on server side, which show you what the

server is doing. And then there is the intermediate set, which is how the protocol is

working, which we do with the aid of both the browser and the server. And there are also

intermediary tools available such as socat and all which we saw a simple example. But

you can do many other things. For example, watch requests as they go by and so on. But

if we need to, we will take a look at that.

But for now, it is enough for you to know that such things are possible okay. So, this time we are

going to take a deeper look at how logging of an application is managed.

(Refer Slide Time: 02:14)

So, the session plan is to understand application logging. And to understand how together with

the curl tool which we have used before, we will be able to debug web applications and

understand them in the greater detail. It is important to understand the facilities such as logging

in the context of a very simple application, so that by the time we add other details such as

servlets we are not overwhelmed by the complexity of studying both of these things at the same

time.

Therefore, we are going to study logging in isolation. We will use a library called log4j. And we

will see how you can use curl instead of relying on the browser to automate some of the testing.

Several other browser automation libraries exist and in time, we will go over them.

(Refer Slide Time: 03:21)

In the case of Desktop applications, and even many of the command line application, the person

using it is present when the application is running. On the other hand, applications like Web

Servers are always on and they are used by a multiplicity of users. So, we can’t know when

issues arise, or what issue arose if we are not storing the information about the errors etc. in the

system. This is exactly what we achieve by using logging libraries.

And the act of logging becomes central to understand the behavior of applications that sit behind

web servers. Here are some other points along this theme. One thing is that continuously

operating applications can fail in one other way, which is different from applications which are

started and stopped. They can accumulate errors over time as many, many different people use

the application. And the failure of the application can be more gradual.

It might seem difficult at the first, but you should realize that testing web applications and

understanding these parts can actually be simpler in many ways than understanding a simple

graphical user interface application.

Because in GUIs both view and model are coupled by programming language facilities. And if

your GUI happens to use what is called event-based programming, then the control flow of a

GUI is rather non trivial. It is not amenable to the usual stack discipline. And you have to be

aware of exactly how the writer has arranged the interaction before you can start making sense of

it. On the other hand, the style used in web apps certainly of the kind that we are looking at is

very straightforward in many ways.

For every single interaction, there is a request that gets sent out from the browser and a

response comes from the server. And for every interaction, the result is a new webpage. This

style of writing applications has created a great deal of simplification in what people expect from

applications. Though, many people might not agree, but there is some weight in the fact that the

way the web works is a preferred way of writing applications.

So, in this session, in particular we will see that the browser server-link over a textual network

protocol helps us understand the functioning of the two parts of the application much better than

a tightly coupled view and model within a GUI application.

(Refer Slide Time: 07:19)

The big picture for this session is the same as the one we used last time. So, there is the browser

with its URL, it has a DOM, it has form contents, HTML, CSS, etc. But now our interest lies in

applications which store logs.

Last time, we also saw how web servers maintain their own logs. And this time, we are going to

focus on logs that are generated by the application. We will see how we should write them and

how they are generated.

And as a side effect, we will also find out a way to automate the testing of the behavior of a user

certainly for the simple application that we are using. So, you can think of this session as a

continuation of the last one where we will be looking at a part that we did not study so much last

time.

(Refer Slide Time: 08:17)

Here is how we will proceed next, we will first take a look at the logs which are used by apache

as a refresher again, and then we will think about where should application information go. Once

we figure that out, we can understand how to manage application logs and we will be doing so,

using a library called log4j.

(Video Starts: 08:43).

Let us get started.

In the Apache Log directly, you can see (see the screenshot given above) that we have access log

and error log, and both of them are empty at start. To begin with, we are going to start apache in

our Xampp control panel. As soon as it starts, it prints some information to the logs. So, let us

see what this information is.

We got quite a few things in the error log and nothing in the access log. This says that there has

not been any URL access.

But the error log does not necessarily mean there are errors, although it might, it also prints some

things that happen at the start of the system. So, let us look at the error log here. So here what it

says is some complaint about the example.com which I tried out, then something about, you

know, unclean shutdown of a previous apache run, etc., etc. Some warnings about PHP startups,

and something about ability to unload, not load a dynamic library, and so on and so forth.

And something about starting these many worker threads. By and large, as long as the startup

works, it is nice to have these things clean. But sometimes these warnings are spurious in with

some experience you can know which matter and which do not. Some of them are simply

announcements like this, something about the build time, and so on and so forth. But in any case,

let us go ahead and see what happens. When we write the command: tail error.log , we

get the following output.

We will tail the error log as well as the access log. And this time, there is nothing in it yet.

Now let us go to our fair share to application and within our standard example expenses to 200 or

f1, something this far. So as soon as we submit it, you will see that first you get access log,

which tells us that the application has become active. And second no error has happened. And

so, no change in the error log.

In this version of the fair share app, the app works successfully. And so, we did not see anything

in the error logs. Now we will use such data on the form of FairShare which is known to have an

error, and let us see what happens. We write following in the command box:

register f1 f2

expense f1 200

report f2

end

And as you will see, nothing new will shows up in the access log because I know there is an

error. And now let us see what the log says. So, now if we check the the access log, it will simply

show that there was an access (See below).

And in fact, there is something odd about this system because as far as the access is concerned,

we are actually returning the HTTP success code. But if you go back to the browser, of course,

you cannot see anything. And as far as this system is concerned, we still see HTTP success. And

if you look at the contents, it looks like everything is okay. So, this tells us that when designing

the application, we have to make sure that the error status is properly reflected in the application,

which we will see how to do in a little while.

For now, we will ignore this part and instead see where can we find that there is an error, aside

from the fact that there is a blank screen in the browser. So, let us see what the error was the

access. So, this is what the error log has to tell us:

It says, first of all, that there was an exception in a thread and there was a Java class, which it

was unable to find. Then, it kind of says the same thing over and over again.

There are many more errors but, in any event, what matters is that there is enough information

for us to figure out that something is wrong, just exactly what is wrong. Since we have injected

this error deliberately, we already know.

The point is that when a Java program is invoked, it gets a class path. And the particular class

path pointed in the picture given below, as it turns out, is not what you need. Instead, what we

need is a class path which I have already written below that line but is commented out. The point

of this was simply to show how using errors, we can find the bug and then fix it so that the next

time we run the program, we would not be having this particular problem.

If we test this again, we shall see that it will work properly. And now success is actually success.

And there were no new errors. As you can see, this is from the last time we created room here.

So, if there were errors, the new message would have arrived at this point. So, we just saw

another demo of how access log and error logs are used and access log just record requests,

whereas error log tells us whether there was an error and what the details were. This part

has been done for us by the apache server itself.

But our application will need to have logs of it own, we could decide to make it part of apache

log. But there can be multiple applications. And generally, every application should have its own

log. So, let us see what that looks like. Our applications are in CGI bin. And so, one good place

for the logs to be could be in CGI bin in our case, usually though, all logs tend to be in the same

directory.

And so, we will create typically logs in the same directory where the apache logs lie, in most

production settings, but for now we will just do it inside the CGI bin directory itself. So, here is

what we have in our CGI bin (see picture given below).

There is a bunch of implementations of fair share. And then here are a bunch of log related

things. So, first, let us see what log related packages we have log4star.

So here we have a few important points.

We ignore the files whose name with tilde as those are created by the editor. We execute the

following command:
ls -l log4* | grep -v ‘~’

So, this will remove everything with that tilde okay and leaves the files we want. So, we have

log4j2.xml, we have two jar files. And these two jar files, and the config is typically what you

need for logging. So that is the as far as the library is concerned. But first before we look at the

details of the library, let us take a look at what the general idea is behind organizing these logs.

So, here is what the log4j documentation tells us about logging versus ordinary printing.

1. The first and foremost advantage, they say, over system.out.println is that certain

log statements can be disabled while certain other ones can be allowed to print

unhindered. So, in normal system out print line, of course, whatever you insert is,

whatever gets printed. Here, the main thing is that we can make distinctions between

different statements that should and should not be printed, depending on our needs in the

context in which we are working.

2. This capability assumes that the logging space that is the space of all possible logging

statements is categorized according to some developer chosen criteria.

And what these criteria will be, we will see in a bit, here is the parts of the system that matter to

us: In the library, there is an entity called a logger, which we are supposed to use instead of

system or printf or similar. And this is how we use it. Let us take a look at the actual code.

Let us just take a look at these two lines pointed in the picture above. So, first of all, here we

have logger. And here we have logger dot info, log something that could be useful. So, what is

happening is that there is an object which is automatically getting created of the class

LogManager. And when you ask the log manager to get a logger that is appropriate for the

logtest class, we get it.

By the way this name is chosen by us, the logging system does not necessarily involve itself

unless you ask it to be. And having acquired a logger object, we will now log something that will

be useful. So, let us see what happens.

If we head over to CGI bin and compile logtest.java and let us run it. So, we have java log

test. And here is what happens we get some information saying info log test log something that

will be useful.

But a second thing has happened, in this directory logs, we have two logs, one for logtest and

another for fairshare. And as you can see, something also got printed to logtest. And it

was the same message there. We printed out here, which is logtest - log something

that will be useful. So, the logger has indeed done something different from just

standard out printf. How did this know where to put text message?

The answer is in the log configurator and the XML file that we just saw, which tells it what to

do. So, the configuration says that we can change the receiver of the output. And you can even

do so dynamically during the execution of the program. There is one other feature which we will

talk about which is called log appenders, such that within a single log, you can have a multiple

appenders. As a quick look, let us take a look at log4j2.xml

This XML file does the configuration and here is what I was talking about. First of all, there is

something called the appenders, which is the targets where logs are appended to one such

appender is test app log, which is our log test dot log. And it has this pattern layout. By and

large, I just picked some layout that works. Sometimes there is value in designing this layout

properly. But for now, we would not get into those details.

And then there is something called loggers, which again for log test says the following that the

content should go to the console and to the test app log. And this is what we are seeing in this

system, there are a bunch of other things involving: levels, additivity, etc. which we will talk

about. Additivity is something that we will set to false. And we will ignore the issue for now. It

gets into things that are sort of irrelevant for the kinds of apps that we are looking at.

So, let us get back. So, as you can see from the picture give above, there is a configurator. And

there is something called appender. And within a single log, there is an appender, which says

send this thing two places to the console and to the test log okay. Here is how the apache side

describes it. It says that there is a logger context.

(Video Ends: 23:44)

(Refer Slide Time: 23:45)

So, we have a logger context. We have a configuration is a bunch of things called filters. These

two are abstract. What we care about is there is a logger, there is a log config and there is an

appender. These are really the only 3 classes that we care about. It has many features, but I have

picked out a few that are relevant to our types of apps. In the main point is in the code, use log

statements in a config file setup log.

And when needed, we can affect the logger dynamically. And that is actually one of the more

interesting parts about using loggers.

(Video Starts: 24:26)

So, let us see what is going on with that. This is an idea called log levels. So, if you look at the

code shown in the picture given below, what it says is after the statements there is a bunch of

false to the logger using levels called info, debug, trace, etc. Something else is happening. This is

the dynamic setting and we will come to that in a bit. But here is the significant part first, every

time in the log file has a level.

So, this is the level indication in the log. Here is how you choose levels. Throughout your

application, you are going to put log statements. And the categorization works like this, you

should use info to show that the application is working normally, a few important stages in the

application are captured at the info level. So that it is kind of a health check. You can write log

watchers which are processes that go around looking through the log to see whether the info

material is flowing through as expected.

The next level is one which says that things are okay now, but you might be in trouble later

because maybe, you know, the currently we found a workaround around some fault. For

example, you are trying to contact some other server and it is not crucial, it may be gives you

something useful, like how many visitors have visited or some such thing. And perhaps it is not

crucial right now, but at some point, it may start mattering.

Error level says that there are problems right now, and you should act. And this is where some

crucial service is failing and perhaps users can see the effect. So, error generally is a pretty

severe situation.

Fatal, on the other hand is giving up completely, at least for the request that is currently working

to other levels are debug and trace as you might imagine, these are for detailed information for

debugging purposes.

And trace is even more detailed. So, look at it absolutely step by step. That is generally how this

thing works. And now we will see some interesting interactions between these ideas. This log

configuration here, as we can see in picture given below:

First of all, we have two loggers. Currently we are only concerned with log test we will look at

fair share in a little while. But the two things to watch it are that logs are going to console and to

the log file. Okay, so let us see what happens with our logtest file as we keep making changes.

So, first of all, here we have logger info. And after this, we will put out a debug message. And

we have to go and do the same thing that we did before which is to compile and run

logtest.java. Now we get one more message info and debug but this time something else

interesting happens. So, if we execute:
cat logs logtest.log

we find that the second info message has arrived. But the debug message appears only on the

console and not in the log file. Why did that happen? This was our choice in the configuration.

So, let us take a look at the configuration again. It says that overall this logger will accept any

debug level and above messages, whereas trace and above will go only to the console and the test

app log will only have info level messages. Here what we are doing is what we are using this

idea of levels.

In the notion of levels, we there is more to what then what we saw, there is an implicit hierarchy

of levels. So, we can say that info is a lower level in the hierarchy and debug is a higher level in

the hierarchy. So the general idea is that we can say that levels higher than a certain level should

not go inside a particular app vendor like we saw, such as the file system, whereas debug type

messages should go to the console because the user has generated them, the developer has

generated them to work that way.

We will also be able the same thing happens, for instance, for debug level messages as it is also

not logged in the file as per our configuration

Because what we have said in the configuration is that the only debug level messages go due to

this logger. Whereas inside it we have given a higher level called trace, but the message never

makes it past the first filter.

But that is not always what you want. Sometimes you also want trace level messages. And you

can do with the line pointed in picture given below:

So, we can tell the configurator instead of doing it in the config file that for the logger we are

using now it should enable trace level messages. So, the first trace message did not make it. But

by changing the level dynamically we will make sure that the second trace level message makes

it. If we check again, we will see that the second trace level messages are being shown in the

console. And in the log (file) on the other hand, we still have the info filter, so, nothing new

happens. Notice that the log is of course, active cumulating all the messages, whereas here we

see only things that happened during this particular era. This is the way we can decide that some

things are useful only in the context of a single request. Whereas some things are useful in the

context of the entire application lifecycle.

And accordingly, we can use the levels and filter out these messages. Since this is your first web

app, and you have not really gotten into these kinds of issues before, though eventually you will

understand the importance of making these kinds of distinctions as the complexity of your app

continues to increase. We said that what happened for one particular level, which is the trace

message.

Now, let us see what happens for something like warn. Warn is considered of greater importance

than info. And one should therefore go to both destinations. But let us just verify this Java log

tests. So, there is a warn message which showed up here. And if you go to the log of course warn

shows up here as well. We will see that the same thing happens for error and fatal which are even

more important than warn.

So, this is how a logging system helps us make important distinctions between message types,

what to watch for. So, the log watcher thing which I talked about right before, that is a separate

program which watches a log, and it can start doing things like count the number of warnings or

the frequency of warnings, and any presence of error, fatal messages, and alert whoever is

responsible for running the website.

Once upon a time, the running the website part was more or less the province of system

administrators, but increasingly, the system administrators are being asked to develop some

programming skills, and programmers in turn are getting asked to manage websites. Not always

as it depends on the size of the organization, in something small, like a startup of course,

everybody does everything.

And so, being on alert for something like failures, falls to the lot of developers and for

administrators, if there are any, and then it is your skills, that your knowledge of the logging and

what they are telling you, which can make a difference between success and failure in resolving

problems. When I was involved in developing websites at one point long ago, there used to be

things called pagers, and the pager would alert you when something went wrong.

And all of us had rotating pager duties. There is even a startup called or maybe now it is a full-

fledged company I do not know it is called pager duty, which takes care of precisely this, of who

should be paged when what happens. And I do not know if devices called pagers are available

anymore, I imagine that people simply get calls on their phones or whatever it is that people do

these days. But in any case, pager duty is one of the most interesting and important part of any

developer who is responsible for a website.

Now that we have seen our simple log testing program, which generates a logger, which shows

us how to make dynamic changes, and what the users of different levels are. We will use this in

our application to figure out how the application can tell us what it is doing in the next part of

this session.

