
Introduction to Modern Application Development
Prof. Aamod Sane

FLAME University and Persistent Computing Institute
Abhijat Vichare

Persistent Computing Institute
Madhavan Mukund

Chennai Mathematical Institute

Lecture-17
Session 1-Part 1_Introduction to HTML and CSS

(Refer Slide Time: 00:11)

Hello, everyone, welcome to the fifth week of the course on modern applications development.

We have come a long way since we began. We have the basic web application infrastructure

ready with us. We started from a spreadsheet. We went on to the command line. We gradually

modified the command line, so that it produced HTML output. Finally, we also added the ability

to accept input using HTML; using the forms interface.

In this week, we will look at this view in a little more detail and understand the HTML and CSS

operationally. Prof. Sane has discussed the conceptual aspects behind this idea. We will quickly

review those ideas and go ahead with trying to understand the workings of actual HTML and

CSS.

(Refer Slide Time: 01:22)

In his sessions, Professor Sane has shown you this picture, where he contrasted the architecture

of a graphical interface and architecture of a web system. The view and model separating these

two aspects of a program has been an architectural innovation in some sense. In a graphical

system, a part of the code is dedicated to the views and the other part is dedicated to the model;

with handlers that communicate between them.

Very similarly in a web system, you have the HTTP protocol, as the glue, that binds the view

aspect that is the responsibility of the browser and the model or any computation that is the

responsibility of the server.

(Refer Slide Time: 02:28)

We saw that in action when the form interface of our FairShare app accepted a sequence of

commands that otherwise were done on the standard input of your terminal. Your roommates

typed in a sequence of commands and submit. This formed the request aspect of the HTTP

protocol from the browser to the server. The browser collected the data that was there in the

form, packaged it as a request and sent it over to the server.

(Refer Slide Time: 03:11)

The server, on receiving that packet, ran a program that read the information that was sent by the

browser, performed whatever computations were necessary. In our case, it was a FairShare

application that actually responded to the commands. So, when registered command was

received, our FairShare application performed the registration of the roommates. If expense

command was received, then the expenses were recorded.

If the report was to be generated, it was done so and finally when it all ended, our FairShare

application generated the HTML page that contained all this information as an HTML page.

(Refer Slide Time: 03:57)

It was this HTML page that was sent by the server back to the requesting browser. This is how

the HTTP system realizes the model view aspect of the idea that professors Sane mentioned.

(Refer Slide Time: 04:19)

Let us begin our journey of trying to understand HTML. Let’s start from; what the- user really

seeks in the information?’ On the right of your screen, you see the output of a FairShare system

in a plain HTML form or the results of rendering a simple HTML page. Let us keep the HTML

aside for a moment. From the user perspective, what really is the information that is really

relevant to a user?

(Refer Slide Time: 05:09)

A title that gives a brief overview of what is the following information really about.

(Refer Slide Time: 05:19)

We might think of a registration section that gives us details of the registration of the roommates.

In other words, which set of roommates does our current system know about.

(Refer Slide Time: 05:36)

We would want to have a transcript record of the expenses that were done. These are pure

expenses in the sense that what for every event, the amount that was paid by which roommate

those statements, it is just a list of those statements.

(Refer Slide Time: 05:59)

And finally, we would really want to have a report part where the report commands for

whichever roommate that we needed, were given. And in response to the report command, our

FairShare system gave information about any paybacks that were required.

(Refer Slide Time: 06:26)

It is possible that we might add some additional information. We might seek the actual database

of the information that was contained in the transactions of the roommates. We could give some

simple information like the number of roommates, the number of events and so forth. We could

also list out the actual entire database of computations that were performed by our system. Let

me reiterate the point: we are looking at the kind of information a user might really want.

We are not yet dealing with the question, how to represent this information using HTML. We are

asking: what is it that the user would want as information? Registration section with registration

information, a expenses section with a record of the expenses that were done and the reports

section, which contain the reports for whichever friends the reports were requested for. We might

possibly need more information optionally, in terms of general information, like the number of

roommates or a detailed database of all the calculations performed.

(Refer Slide Time: 08:04)

Let us now go ahead and see how this required information by the user, which we will call as

user content. How do we actually use HTML to display this user information? As usual, this

would be a good point to take a little bit of a pause and recall what we have done, review what

we have just said.

(Refer Slide Time: 08:39)

As we said before, on your screen, you see the bear form of information that was generated by

the FairShare application. Let us now mark parts of the application conceptually in various ways.

We seek, for example, a title with a short description.

(Refer Slide Time: 09:07)

There would be section headings to separate out individual pieces of information.

(Refer Slide Time: 09:18)

The pieces of information themselves could be lists of various items.

(Refer Slide Time: 09:24)

They could also be tables of information. So, we are now aware, of what we seek as information

that we want our users to see. We also see what the logical components of that organization are.

We require a title, we require headings, and we require ability to list out some pieces of

information. We require the ability to tabulate information and so on and so forth. It is exactly

this aspect of the information that is marked by using the HTML system; HyperText Markup

Language.

(Refer Slide Time: 10:16)

(Refer Slide Time: 10:19)

We now see the same information that was presented simply as ‘text’, we now see an HTML

version of it. Although, it is a very small font and almost invisible, it is actually a complete

HTML page. Let’s now focus on the parts of this page and study how HTML markup system has

been used to organize the user content. Let me repeat we are going to reorganize the user content

using HTML.

(Refer Slide Time: 11:03)

Here is the initial part of the HTML system that you just saw. The arrows show you which part

of the HTML correspond to what we, as users, are seeking and organizing. As users we seek a

title and as organizers of the information, we want a part of the document to be explicitly marked

as title and a heading. We see the title tags, the one in red, and we see the heading of level h1 in

the current system, as displayed right.

(Refer Slide Time: 11:59)

Heading level-2 roommate registrations as a heading, expenses record as a heading, report as a

heading and the database as a heading of level-2 is used to separate out logical pieces of

information. In the registrations part, we are going to list out the friends who formed the

roommates here. In the expenses section, we are going to list out the set of expenses that this

group of roommates has carried out and so on so forth.

What we are showing here is, how a simple text system is simply marking what part of the text is

to be representing what part of the information that we want to organize. There is no statement

about how the information is to be presented. For example, when we see a heading level-2 as

roommate registrations over here, this is simply typed in as text by us. When this is displayed by

the browser, it is displayed like this.

(Refer Slide Time: 13:38)

We now see how lists of information are created and presented, as creators we only create a list

of information. Here is a list of here is a tag; HTML tag, that is used to present ordered lists. By

ordered we mean that they are enumerated: 1 2 3 4 on and so on so forth. An ordered list is

tagged between OL and forward slash OL. The members of the list are tagged between list item

LI and forward slash LI to denote the end of the current list item in this case it is f1.

The next list item is f2 which is again enclosed in the tags LI list I2 and forward slash LI. In

expenses record, we again have an ordered list OL and forward slash OL with list items f2 200

between LI and forward slash LI. This is how we write ordered list in HTML. When we mark up,

we are simply writing text documents with a very standardized system that marks the text for

whatever the eventual purpose of organization is.

We wish to organize this as a list item for expenses section. Therefore it is here is the

organization of the list and it is coming under the heading h2 for expenses.

(Refer Slide Time: 15:38)

Here is the later part of the same webpage, HTML piece of code. Again, you see the database as

the second level heading.

(Refer Slide Time: 15:55)

And we now see tables. Just like lists we now have tables which will create a table of

information and values or information and records of values. It is possible to write this page by

hand. In other words, you could simply open up your editor and start writing the page as we just

saw. We start with this doc HTML, HTML head, body, h1, h2, p for paragraphs, ordered list, list

items and so on so forth, we can just go and typing.

The actual information is here. Between the tags our tags in this slide are colored. To distinguish

them from the information that we type.

(Refer Slide Time: 17:08)

Let us for a moment, see and understand this organization of HTML. The HTML that we just

saw, which created the part of the presentation of information of the user content as shown in the

slide above, we can conceptually imagine that as a tree structure, we are showing the tree

structure here for the table part of the system. This is a sample part of the HTML page. A table is

made up of some rows, one or more rows.

Each row is made up of some data. What exactly is the data is represented by an ellipse? This is

one column, this is another column. In the next row, this is one column here is the actual

information that gets displayed. Here is the next column here is the information that gets

displayed. In the second table that actually was a database, we required one row that represented

the headers of the table.

And that row had the first data item as the event number second data item as the information for

friend f1 roommate f1. The third data item was information for roommate f2 and so on. This

structure of the HTML document is called as a ‘document object model’ or the DOM. And the

tree that result is called as a DOM tree. This conceptual view of an HTML page is extremely

useful.

In fact, it corresponds to a very object oriented model of a web page. This object oriented model

of a web page will be extremely useful for us in the future. A few sessions later, we will use

actually use this particular document object model idea, much more usefully. However, at this

point, it is also not as bad. It is something it is required for us to understand how HTML is going

to be represented and its display will be done by the browser.

(Refer Slide Time: 20:00)

Here is a quick overview of the HTML page system. We are going to be compliant with HTML

version 5. It starts with a DOCTYPE HTML as a declaration and it is entire HTML page is

enclosed between HTML and forward slash HTML. And the entire page is enclosed between this

one specifies the language of the page. This is short for English. We are going to present this

page in English. If you were to present it in Japanese, you would use the corresponding short.

An HTML page has sub parts the head which has the title, there could be other things that are

also included in the head. In fact, those other things that are included in the head are very, very

useful for search engines. Apart from the head, the HTML also has a body which is enclosed

between the tags body and forward slash body. Among the many things that are there are

heading at various levels, h1 that we just saw.

Ordered lists, list items and so on and so forth. Whatever you need to put, there is a whatever

information you need to display, there is a way of hierarchically presenting it. We also have

some links shown over here which you can use for more detailed study or as a reference for the

various HTML tags and their uses. In fact, the most authoritative version would be in the W3

pages, this is an organization that defines the standards for the web of various kinds including

HTML, CSS and so on and so forth.

There are a number of online tutorials also available one of them that is the one that we have

mentioned over here, which you can use to know which are the other tags and how to use them.

If one looks at it, they are fairly logical h1 represents heading level one. There are six such

heading levels available in HTML that are defined. You have the abilities to present ordered list

using OL. If the lists are unordered then they are represented using a tag UL for unordered lists.

Whether it is an ordered or an unordered list will always have a list item. All such kinds of

detailed information can be obtained here from the original HTML specification site or more

incrementally using various online tutorials like the W3 schools. There are many others that are

also available. Before we leave, let us have a look at a web page. (Video Starts: 23:35) Here is a

web page that is generated by one of our FairShare programs.

Let me take you step by step through this entire page. The first line over here is a comment.

Comments in HTML are enclosed between this mark and this ending mark. Whatever is there

between this for example, this part is command and is ignored by the browser. A web page starts

with this declaration of the type of the document DOCTYPE. As I said, HTML pages are

enclosed between 2 tags HTML and if I go at the end of the page, we will have a forward slash

HTML.

The closing tag for every HTML there is a forward slash HTML closing tag. Here is the head,

which has a title. The title is the FairShare system full stop and is enclosed between the title and

the forward slash title. After the title we have the body of the page. The body of the page is

composed of a heading at level 1. Then there is general description, a short one.

This tag ‘br’ is a line break. It is this ‘br’ tag that is used by the browser to go to the next line.

This means that in your HTML page, you can split the line anywhere you want for your own

convenience. And the browser is not going to use that line break that you have given. Hence, you

can write the information of your web page in any way that is convenient to you.

Again, this is a command. Note that the command is used to just mark the start of the header and

end of the header. And this is something that is useful to people who are going to write web

pages. Here is a command that indicates that the HTML registration section part of the web page

is starting. It starts with the roommate registrations as the header at level 2, therefore it is h2.

And the header is as usual enclose between two markers: h2 and forward slash h2.

A p tag starts a paragraph which, of course, will involve a new line as displayed on the web

browser. Notice that, I start the ordered list on the same line as this part of this information that I

have written. Recall that, the browser is not going to worry about the line breaks that we

introduce. Whenever an ordered list is to be started, it always is to be displayed on the next line

fall with proper enumeration: 1, 2, 3, 4 or A, B, C, D whatever may be.

Here are the list items. In this particular page, unlike the one that we saw in these lines, we have

4 roommates. As of now, no expenses have been recorded and no report has been requested.

Therefore, the expenses section is marked by header at level 2. There is a statement that no

expenses have been recorded. And a line break has been introduced in the HTML displayed

version. The ‘hr’ tag creates a horizontal run line, the so called horizontal rule on the web page.

The registration section ends with a line and then the expenses section begins. It means as far as

the user is concerned, the user will see a registration section, a line and a expenses section. It will

be more neat than what we had presented the plan is the very simple information that we had

presented on our slides. This will be a little bit better. Again, the report section enclosed using

the h2 heading level 2 tag.

A line break here then on the new line, a horizontal line and fine and the next section; database

information that has the table. We will ignore this class for a moment. And we will take care of

that when we work with CSS that is cascading style sheets. As we saw in the document object

model side, a table is defined by a table row that table row has some data. The first column of

table data contains the information file name.

Once that first column is finished using the forward slash td tag. Then, the next column of table

data begins that has this piece of information and the column ends with a forward slash td. But

there are only two columns. Therefore, the first row is now over and you go to the second row.

The next row has one column with this information and the second column and so on and so

forth.

The second-row finishes, the third row begins, the third-row finishes and so on and so forth. The

table ends with a forward slash table and then we write a horizontal rule to separate it from the

next table. The next table is marked with a heading at level 3. It says that right now the only

thing that has been done is registrations, therefore, it is a fresh start and there is no other

information in the database.

We have organized the user’s information that the user seeks; the content. Thought(think) about

how that organization is to be marked and used HTML to actually mark it. It will be good to try

out some web pages for yourself and see how they appear on your browser. (Video Ends: 32:37)

(Refer Slide Time: 32:39)

Having marked our information that we want to present to the user. Let us now look at the next

part of the story, how to actually define the presentation. To start with, let us have a look at this

conceptual picture of how an HTML page is rendered on by the browser. This picture is taken

from the Mozilla developers pages which describes how CSS works.

This picture is from the point of view of a browser. A browser loads the HTML. By load we

mean, the server it has connected to the server and whatever the server has sent as an HTML

page, that page is loaded by the browser in it is memory. It is parsed in the sense you can

imagine that it constructs a document tree of that particular page that it has received. It creates a

documentary and it displays over here. The black box on the right side is your screen.

The HTML that we saw was a very unadorned simple HTML. It only indicated what part of the

information is to be marked. We had designed that information layout. We thought about what is

the information that the user seeks. Having recognized that information we designed it like the

first there would be a registration section, there would be an expenses section, there would be a

report section, there would be optional databases information. Having organized in our minds the

layout of the information we then used HTML to mark that layout.

In order to perform presentation and to actually present that marked information, we can

additionally take the support of the CSS; Cascading Style Sheets. Just like the HTML is loaded,

our browsers will also load the CSS and pause it. The information in the CSS the style sheets

will then be used to attach the various pieces of style to the objects in the DOM tree. And then

they will be displayed.

(Refer Slide Time: 35:39)

So, the HTML will be used to mark.

(Refer Slide Time: 35:42)

The CSS will be used to define the details of the presentation.

(Refer Slide Time: 35:47)

And the display is where both of these will come together and you will see a much better web

page than the simple plain one that we had created. Let’s try to understand this process of

actually performing the presentation.

(Refer Slide Time: 36:10)

What do we really do when we want to present? At this point, we are not going to concern

ourselves with the markup system that is there. Our only concern is really with whatever

information comes from the markup, how do we present it. There are two basic specifications

that we really need to worry about. Given a document we would like to present regions of the

document in separate ways.

For example, we would want to treat all the HTML that is a part of the registration section, we

will want to treat them separately. For example; we might want them to have a different

background color. We might want to actually separate sections of the information and display

them in different ways. This sectioning is related to the entire document, we would want to group

a bunch of HTML tags together.

That is what we would like to treat them as, we would like to divide the document into various

parts. The other specification that we need to worry about is for individual HTML tags. We

would want for example, the tables to be presented differently. After all, they present different

kinds of information. One table is just presenting the values of some people of information, the

other one is presenting the results of computation.

We might want to present these two tables differently. The markup only gives the logical content

of the table. It only says that in row 1, column 1, this is the information row 2, column 2, that is

the information, row 3, column 1, whatever else is the information and so on. It does not specify

how the information is to be presented or how the table the table rows and the table columns are

to be presented.

Perhaps, we want to have a different background color for the first column and a different font

for the second column. So, in general, there will be two kinds of specifications that we need to

really worry about. One is the markup layout: given an HTML markup tag, how is it to be

presented. We might want to worry about attributes of presentation, like the font family, the

colors of the text, the sizes of the font.

And many such attributes of presenting that given markup. We have already seen various

markups. HTML forward slash HTML is one markup. Body slash forward slash body is another

markup. Ordered list forward slash ordered list is another pair of markups. The general format of

defining the presentation or specifying how a particular markup is to appear is as follows. You

write the markup selector, for example; h1, h2, ordered list OL, whatever.

And separated by a colon and then within the braces for that markup, whatever attributes, you

want to present and the value; this list is all that you really write. So, for example, one might

write as h1- colon - brace, font family; whatever font you want, font size; whatever font you

want, and so on and close it. This is an instruction to the browser that in the incoming HTML,

wherever you find h1, it is to be displayed using the font that is given here, add the size that is

given here and so on so forth.

This takes care of the individual markups. We will shortly see an example of CSS, but before

that, let us look at the other kind of a part where we are concerned with dividing the document

into various parts according to their logical organization of the information, and that is

something that we know not the machine. We would like to divide the group of HTML tags into

various subgroups. This division is specified by the div tag of HTML.

The div tag of HTML does not really mark text. It instead actually divides regions the HTML

into various logical parts that we as designers create, you could divide the HTML into groups

called classes or you could specify regions over which the given specification spans. There are

ways of organizing the HTML page and we have just looked at using div and we have just shown

how to organize HTML into groups using classes of the div tag.

The CSS specification format then is just like we had a markup selector, we have a class selector

and again, attribute and values. This is the most basic way in which presentation is controlled or

presentation is defined. As usual, we have provided some links which you can use to see how

CSS works.

(Refer Slide Time: 43:15)

Here is an example: This example actually just illustrates how markup tags are to be presented.

The HTML tag, there is a colon here that is missing in this example. In fact, throughout this

entire slide, HTML colon, open brace, the background color has a value has a value hash

CCCCCC. This is in the RGB format each are of 2 hex digits. So, this is red. This is green and

this is blue. All of them have been mixed in equal proportion.

This actually will give us a gray colored background. The entire HTML page is to be rendered in

a gray background. This is what this particular specification sees. It also says that the font to be

used is Arial. One could use a variety of fonts that are available. The body of the page: body,

colon-open brace and close brace within this, you have a left margin of two em’s, it is actually

two m's. This roughly corresponds to the width of the small m character.

And when we say two m, it means two small m's, that the from the left of the page, a margin of

two m's has to be kept and the text is to be presented left aligned in the entire body. Note that the

body will have the background of HTML because HTML is the main tag which defined the gray

background for itself. And that information will spill over into the body unless the body also says

that it wants its own background color.

The h1 tag, again there is a colon over here the h1 tag, says that the size of the font is to be

increased 150%. This means that the header level 1 will be presented by the user's browser using

a font size that is 150% more than what is the default size of the browser. Moreover, it says that

the font style is bold. So, the browser will present the user a bold, bigger font. For heading level

1, only. You can go on specifying the details of every tag in your CSS system.

(Refer Slide Time: 46:25)

The HTML markup tags are shown.

(Refer Slide Time: 46:33)

The attributes, names of the attributes are in shown using red arrows and the values are shown

using green arrows.

(Refer Slide Time: 46:47)

How do we include this information in the web page? We are going to show two different styles

: One is by using the style tag in your HTML page, within the style and forward slash style, the

entire CSS that is the stylesheet specification is are written. We just type it in there. This is called

as in-lining the styles. The styles specification how to present the information is made a part of

the HTML page itself. This is called in-lining.

(Refer Slide Time: 47:36)

The other approach is to save the style specifications into a file, in this case, we are showing we

are saying that that file has been saved into a file called as demo dash CSS, dot CSS. And in the

HTML page, we give a link or reference to that particular file. This allows us to separate the

presentation information in a separate file and the in markup information in a separate file. And

they are linked together using the link tag in HTML.

(Refer Slide Time: 48:31)

This is interesting because you can now have multiple style sheets linked into the same page.

The styles can be form different sites, too, because the specification of the stylesheet simply uses

a href attribute and the style specifications will cascade. Recall what we said: whenever the body

is rendered, the attributes of the higher level tag cascade information into that particular tag too.

If we have a sequence of style sheets, then the information from each tile will aggregate together

until the final sheet is finished.

In other words, the specification of how to present from file 1 will cascade into the presentation

information in file 2, which is following that. That is why the name is cascading style sheets or

CSS for short.

(Refer Slide Time: 49:48)

This is again a good point to pause and review the material. We have also given some links to

further information. The W3 of course, is the most authoritative site, which contains information

about CSS standards. Again, there are a number of tutorials available on the internet, W3 schools

is one of them. We also suggest have a look at sites the like the CSS Zen Garden, which

demonstrates the power of CSS.

They will show you the same web page, same HTML markup rendered using different style

sheets. And you can observe how the same markup can be rendered differently by using different

style sheets and the changes are dramatic. (Video Starts: 50:57) Having looked at how HTML

and CSS Work together; let us finish the final part of the puzzle. How will our program create

such a thing?

Here is our FairShare application; the usual interactive one, that generates output in HTML. If

you recall, the major computation part, the model part of the story was actually done by this

method do setup. Let us revisit that. But before we revisit, observed that after the computations

are done, our Java program has been instructed to assemble the entire HTML page. Let us recall,

‘doSetup’. The doSetup fellow is quite interesting.

It reads the standard input for the various commands. Here is a Boolean assemble HTML: This

will be true if the incoming mode of the command is end otherwise it is false. This means that a

web page will not be created until the user gives the end command in the entire transcript of

commands. Only after the end command is received, will the webpage be generated. As usual,

our command line program will perform the various tasks of registration, recording expenses,

computing the reports, computing the FairShare and then reporting all of that will be done as

usual.

Having finished all the registration expenses and reporting functions, let’s assume that the user

has given the end command, which means that a simple HTML would be true. So, at the end,

when our program receives the end command, it will start assembling the HTML page. How

does it do that? It is just a sequence of methods which assembles the HTML header the

registration in information, the expenses information, the report information; it shows the

database and finally does the tail part of the HTML.

Let us see how the header is assembled. The idea is fairly simple. It starts with a variable output

messages, which starts of as null or empty, then the entire webpage that we want to produce the

markups are actually included in the string. And using the plus-equals operator, they are

concatenated to the previous value of output messages. So, initially it was null, and then one-by-

one the string gets added to generate the full string. Note that we add \n at end of the lines.

Because of this backslash string \n, the new line character, our HTML page appears as if

handwritten. But when this page that we have apparently handwritten goes to the browser, these

new lines have no meaning. The browser will only respond to
 tags. Also note that because

our HTML itself requires double quotes, these double quotes must be escaped. To avoid

misinterpretation of these double quotes.

If you observe, what we are really doing is simply writing the entire webpage ourselves but

within Java and the functions that we write are going to assemble the header part and just start up

the body part. We have introduced this ‘div’ to divide our HTML into sections and the sections

will be named using the class attribute. In this case, this section is named as welcome block. By

welcome block we mean the heading and brief information that is displayed that makes our user

comfortable.

It informs the user of what exactly is this application about. After you mark the start of the

welcome block, you have the h1 title as usual, you have some message for welcoming the user

and giving information about it. And yes, the br tag, very necessary, and enclosing forward slash

div tag. This forward slash div and this div, together mark the region of the HTML that we want

to treat as a block called welcome block.

Once all of the output has been collected into output messages at this point, we simply print it

out and then we print out a HTML header and comment. What we are really doing? When we

say that the Java program creates an HTML page is simply writing down the page using Java

constructs. That is all. If you look at the dual registration HTML part of the story again it is the

same thing.

You start with the output messages as empty and go on assembling the registration information

into this string variable. By assembling we mean; the new information is concatenated to the

previous information, which is why we have a plus-equals operation here. Again, we are using

the div tag with a class name as reg block to demarcate the region of HTML that we want to treat

as a registrations block.

We will use this treatment part of the HTML as a registration block or welcome blog or whatever

blog, in the corresponding stylesheet. As can be seen, the entire code is simply about writing the

HTML page using Java constructs for string manipulation. It is this that gives us a web page. As

a result of when the server responds with a web page, this is how the web page gets generated.

We had already seen this before. (Video Ends: 1:00:14) That brings us to the end of this session.

Thank you. See you in the next session.

