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Hello everyone, welcome to lecture 6. The plan for this lecture is as follows. We will discuss 

about the birth of modern cryptography, namely the approach that we use in modern 

cryptography. We will also discuss about the notion of computational security and necessary 

evils which are associated with computational security, and finally, we will define 

mathematically what do we mean by efficient algorithms and negligible probability. 
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So, just to recall in the last couple of lectures, we discussed about the notion of perfect 

secrecy, which is always desirable because that is the strongest notion of secrecy we can 

achieve. Because the secrecy is achieved against an adversary who is computationally 

unbounded whose running time is unlimited, but we also discussed that we have to pay a 

heavy price to achieve perfect secrecy, namely in any perfectly secured encryption process, 

your key need to be as largest a message and each instance of the encryption needs to use a 

fresh key. 

 

So these 2 restrictions are kind of impractical, because in practice, we aim to design an 

encryption process where we can use a short key for encrypting long messages and we would 

like to have an encryption scheme where the same short key could be used for encrypting 

sequence of multiple messages. That means, practical perfectly-secure encryption is simply 

not possible, that is kind of cheating. So if someone claims that his or her encryption process 

is practical as well as it provides you perfect secrecy, then that is clear cheating. 

 

That brings us to the approach that modern cryptography follows. So the principle that we 

follow in modern cryptography is that instead of achieving perfect secrecy, we will try to get 

as closer as possible to perfect secrecy and in return, we achieve two practical goals which 

we aim for. Namely, we achieve an encryption process where we can use the same short key 

for encrypting multiple messages. So that is the kind of tradeoff we use in modern 

cryptography. 
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So, let us see the approach that we use in modern cryptography. So remember, in the perfect 

secrecy model, our adversary is computationally unbounded and a secrecy goal in the model 

of perfect secrecy was that we want to ensure that adversary learns absolutely nothing about 

the plain text right and then we rigorously formalize this notion, what do we mean by 

adversary learns absolutely nothing about plain text. 

 

We also discussed that the consequences of this goal, namely the goal of achieving that 

adversary achieves learns absolutely nothing is that you have to have a key as large as the 

plain text and you cannot afford to reuse the key right. So, that was the consequences or the 

restrictions of perfect secrecy. 
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Now, the changes that we are going to do in modern cryptography is as follows. Instead of 

assuming that our adversary is computationally unbounded or computationally unlimited, we 

assume that our adversary is computationally bounded techniques, that means we are no 

longer going to assume that adversary could run his algorithm for breaking the scheme or 

attacking the scheme for an unlimited period of time. We will see how to mathematically 

formulate this notion of computationally bounded adversity. 

 

The second relaxation that we are going to make in the model of perfect secrecy is that 

instead of demanding that adversary learns absolutely nothing about the plaintext, we target 

to achieve the following goal. We target to achieve that adversary should learn additional 

information about the plaintext with a negligible probability, that means we are now willing 

to let adversary learn something about the plaintext, but that is additional information or the 

probability with which the adversary could learn the additional information is so small, it is 

so negligible that for almost all practical purposes we can ignore. 
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As soon as we make these two relaxations and the model of perfect secrecy, we should hope 

that we should get the following two implications. Namely, our encryption process should be 

using short key and the same short key should be usable to encrypt a sequence of messages, 

and it turns out that indeed if we make these two relaxations in the model of perfect secrecy, 

we can achieve the two desired goals, namely the same short key can be used for encrypting 

sequence of long messages and that is what the approach modern cryptography use. 

 



The notion of secrecy that we get by making these two relaxations is what we call us 

computational secrecy, right? Because the security is achieved against an adversary whose 

computational power is now limited, rather than saying that the adversarial computing power 

is unlimited, right? So, that is the approach we are going to follow in modern cryptography. 
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So the two relaxations that we are going to make is we are now aiming to achieve security 

only against efficient adversaries, and what I mean by efficient in adversaries is informally 

those algorithms those adversarial algorithms whose running time is practical or whose 

running time which takes an amount of time which is feasible and practice. We will 

mathematically define what exactly we mean by efficient adversaries very soon. 

 

The second relaxation that we are going to now make is to assume that adversaries allowed to 

break the scheme with some probability, but the probability with which the adversary can 

break the scheme is so small that we do not bother about such a small probability. Again, we 

are going to very soon mathematically and rigorously define what exactly we mean by such 

small error probability. Moreover, as we will see during the course, as the course proceeds, 

that under certain assumption the amount of time that the adversary will require to break the 

scheme with that is small probability will be of order of few lifetime. 

 

This is in contrast to what we achieve in perfect secrecy. In perfect secrecy, even if we give 

the adversary unlimited time, there is absolutely zero probability that he learns anything 

about underlined plain text, but in the computational security, in model of computational 

security where our goal is to achieve key reusability is to give enormous amount of time to 



the adversary, then there is a chance that adversary will be able to learn something about the 

underlying message, but that something is going to be so small that for most practical 

purposes, we can ignore it, right. 

 

Moreover, the amount of time that is going to require for the adversary to learn the message, 

it is some that a small probability will be of order of few lifetimes. It turns out that this is 

acceptable for most of the practical applications because in most of the practical applications, 

we do not require everlasting security. What I mean by this last statement is the following. 

Imagine you want to have a secure system to maintain the secrecy of your credit card details, 

right. 

 

So if I have an encryption process, which ensures that it will preserve the privacy of your 

credit card details right, with significant amount of probability, that means the probability 

that adversary can learn your credit card details by looking into the encryption of your credit 

card details with very, very small probability and the amount of time that the adversary will 

take to learn about your credit card details is of order say 35 years or 40 years, then it is fine 

because ideally, you will require the secrecy of your credit card details to be maintained only 

for few years.. 

 

You do not require the secrecy or the privacy of your credit card details to be maintained 

forever lasting, right. So this is acceptable. As it will turn out that above two relaxations that 

we are making in the model of computational secrecy is absolutely necessary if our ultimate 

goal is to achieve key reusability. Namely, in the next couple of slides, we are going to 

discuss that indeed if we want to design the encryption process where our goal is to ensure 

that the same short key is used to encrypt multiple messages. 

 

Then definitely we need to make the two relaxations that I am discussing here, namely the 

first relaxation is that we should be willing to let the adversary learn something about the 

underlying message with a small probability and a second relaxation is that we should target 

security only against efficient adversaries, right? 
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So let us see the necessity of these two relaxations. Namely, the first relaxation is that we 

should now target security only against efficient adversaries. So, to see that why this 

relaxation is necessary, consider an arbitrary encryption process, where you are going to use 

the same key for encrypting sequence of messages and namely, the same key is going to be 

used for encrypting multiple messages. And imagine we are in the known plaintext attack 

model KPA attack model. 

 

Just to recall, in the KPA attack model, we assume that adversary sees encryptions of several 

messages, and it means it knows both the underlying messages as well as their encryptions 

under an unknown key, where the same key is going to be retained for encrypting for the new 

messages, right. So imagine I have an arbitrary encryption process whereas say the sender has 

encrypted message m1, m2, mt and the resultant ciphertext are C1, C2, Ct and adversary has 

got access to this plain text comma ciphertext pairs, right? 

 

It knows that each of the ciphertext in each of these pairs has the encryption of the 

corresponding plain text under some unknown key k, that the key is not known to the attacker 

okay. The adversary also knows the description of the encryption process and it also knows 

that the same unknown key k is going to be retained by the center for encrypting next 

sequence of messages. So, under this scenario, the adversary can always run what we call as 

the brute-force key key-recovery attack right. 

 

Idea behind this brute-force key-recovery attack is that what the adversary can do is since it 

knows the description of the key space, it can try for each candidate key little k belonging to 



the key space and decrypt each of the ciphertext in his pairs of plain text comma ciphertext 

pair and see that does there exist a candidate key little k such that each of the ciphertext in his 

pairs of messages comma ciphertext pair decrypt back to the corresponding plain text under 

that candidate key little k? 

 

If he could, definitely there is some candidate key little k and as soon as it hit upon that little 

candidate key little k, it can find out what is the key which sender is going to use for 

encrypting the next sequence of messages. So you can see that the success probability of this 

brute-force key-recovery attack is one because definitely there exist some key in the key 

space which adversary will hit upon when it runs the brute-force key-recovery attack, but if 

you see the running time of that adversary, the running time of this brute-force key-recovery 

algorithm is order of the number of candidate keys, maybe the size of the key space. 

 

So if we assume that our key space is significantly large for us, for instance, imagine that the 

key space is the set of all possible 256 bit strings right? That means imagine my key space is 

2 to the power 256. Now this brute forcing over a key space of size 2 to the power 256 is 

going to take enormous amount of time, that is kind of impractical. That means if I make the 

relaxation that I am not going to tolerate or I am not bothered about adversaries whose 

running time is impractical, then this brute-force recovery attack will not be considered as an 

attack in my attack model. 

 

So that is the necessity of the first relaxation if your goal is to achieve an encryption scheme, 

where the same key is going to be used for encrypting multiple messages, right, that shows us 

the necessity of the first relaxation. 
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Now let us see the necessity of the second relaxation if your goal is to achieve key 

reusability. The second relaxation is that you should allow the scheme to be broken with a 

small probability. So again, consider an instance of an arbitrary encryption process we are the 

same key k has been used to encrypt multiple messages in sequence and say the adversary is 

in the KPA attack model, where it has got access to several message coma ciphertext pairs 

and the key is not known to the adversary. 

 

But adversary knows the corresponding ciphertext or the encryptions of the corresponding 

plain text in each of the pairs, right, and the adversary knows that the same unknown key k is 

going to be retained by the center for encrypting the next sequence of message. Now, 

adversary can always launch what we call us a guessing attack, right, and the idea behind a 

guessing attack is adversary can simply get a candidate value of key, say little k from the key 

space and check whether that candidate key which he has guessed is indeed the right key or 

not by performing the following operation.  

 

Namely, it can check whether under that guest key little k, each of the ciphertext ci gives him 

back the corresponding plain text mi, and if it so happens, then he has hit upon the right key. 

Now, what is the success probability of this attack? The success probability of this attack is 

one over the key space. What is the running time of the attack or the attacker’s algorithm. 

The running time of the adversary’s algorithm is constant because he is now not doing brute-

force over the key space, he is just guessing the value of the candidate key, right. 

 



So again, if I assume that my key space is extremely large, that means imagine again for the 

moment that your key space if order 2 to the power to 256, then the success probability of 

this attack is 1 over 2 to the power 256, which is very, very small. That means even though 

adversary has a chance to break the scheme, namely to learn the scheme, the chance that he 

can learn the key is so small that, namely, it is 1 over 2 to the power 256 that we can ignore it 

for most practical purpose. 

 

So, this again demonstrate that if key reusability is your ultimate goal, then we have to make 

the second relaxation in our model, namely, we should be willing to let the adversary break 

the scheme with a smaller probability and which is so small that we can ignore it, right. 
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So, just to summarize the two necessary evils which are associated with our ultimate goal of 

key reusability is, are the following right. So to prevent there are two possible attacks, two 

extreme attacks which can always be launched against an arbitrary scheme where the key 

reusability is the ultimate goal. The first attack is the brute-force key-recovery attack, whose 

running time is very large, but success probability is 100%.  

 

There is the second extreme attack against such scheme where key reusability is the goal, 

where the running time of the attacker is very less, it is constant, but the success probability 

of the attacker is very very small, it is so small that for most practical purposes we can ignore. 

So now if you see that if we make the two relaxations that I have been talking about, namely 

the first relaxation where we target to achieve secrecy only against efficient adversaries, then 



the brute force attack would not be considered as an attack in our attack model because as I 

said, the time complexity of the brute force recovery attack will be enormously large. 

 

If I make the second relaxation, namely where I am willing to let the adversary learn or break 

the scheme with a very small error probability, then the second attack, namely the key 

recovery attack would not t be considered as an attack in our attack model, right. 
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So this is the summary of the two necessary evils which are associated with any encryption 

process, where key reusability is the goal. The first relaxation that you should make in your 

model is instead of targeting security against a computationally bounded adversary, you 

should target secrecy only against computationally efficient adversaries. And the second 

relaxation that you should make in your model is instead of demanding that he absolutely 

nothing about the underlying plaintext should be revealed. 

 

You should be willing to let the adversary learn something about the underlying plaintext 

with some small error probability and that probability should be so small that for most 

practical purposes, you can ignore it off. Now, the challenges how exactly we mathematically 

define efficient adversaries, namely which algorithms, which adversarial algorithm, which 

you can say is an efficient adversarial algorithm? 

 

The second challenge here is which quantities you will define or you will call as a small 

quantity or a small error probability, right. So, what we are going to do here is we are going 

to mathematically define these two terms in asymptotic notation. 
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So, people who are familiar with the concept of algorithms, they will know this what exactly 

we mean by asymptotic notation. So, when I want to measure the running time of an 

algorithm, there are two approaches by which we can measure the running time of the 

algorithm. One is the concrete approach, where we compare two algorithms for the same goal 

based on the exact running time right. So, you have say algorithm 1 algorithm 2 for a task. 

 

You run the algorithm 1 on samples of various size, you run algorithm 2 on samples of 

various size and then you compare the exact timings of the algorithm 1 and algorithm 2 two, 

of course over what processor you are given and so on. Based on that, you compare whether 

algorithm 1 is better or algorithm 2 is better, but the downfall of this approach is even though 

you get the concrete comparison of algorithm 1 versus algorithm 2, this approach does not 

take into consideration the underlying computing speed, the progress in the computing speed 

and so on. 

 

The second approach that we follow in the world of algorithms to compare 2 algorithms is 

asymptotic notation, where we compare the running time of the 2 algorithms for solving the 

same task in asymptotic notations, namely in big O notation right, and we compare the 

running time by measuring the number of basic steps of algorithm 1 and the number of basic 

steps that algorithm 2 where the number of basic steps are computed as a function of the 

input size.  

 



Depending upon which algorithm takes less number of steps, we define whether algorithm 1 

is better or algorithm 2 is better and you have various asymptotic notations like big O 

notation, theta notation, omega notation based on which you can compare 2 algorithms. So, 

when we want to define what we mean by efficient, algorithm negligible probability in the 

context of cryptography, we are going to follow this latter approach, namely we are going to 

define these terms asymptotically. 

 

For defining these terms asymptotically we have to introduce something what we call a 

security parameter which we denote by n. The reason we want introduce this security 

parameter is that once we introduced the security parameter n, then all the three quantities 

namely the running time of the users, namely the running time of the key generation 

algorithm, the running time of the encryption algorithm, the running time of the decryption 

algorithm. 

 

Similarly the running time of the adversarial algorithm of the attacker, and the success 

probability of the attacker, all are going to be expressed as a function of the security 

parameter. Typically in the context of symmetric encryption process, the security parameter 

is the size of the secret key, which is typically for most practical purposes is 128, 256, and so 

on right. 
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So, let us first define what do we mean by efficient algorithms asymptotically. Informally, we 

say an algorithm is efficient if its running time is some polynomial function of the security 

parameter. Namely, if we have an algorithm A, then we say that algorithm A has polynomial 



running time if there exists some polynomial function say p such that for every input x of size 

of cardinality this, the computation of the algorithm A on the input x dominates within 

polynomial in the number of size of x steps, right. 

 

If that is the case, then we say that our algorithm A has polynomial running time and we will 

call our algorithm A to be an efficient algorithm. Whereas, if we cannot bound the running 

time of our algorithm A by some polynomial function in the size of its input, then we say that 

our algorithm is not efficient okay. That is the definition of efficient algorithm. Now, once we 

have defined a notion of efficient algorithm, the requirement that we put on any cipher is the 

following 

 

So, remember we have the correctness requirement, we have the privacy requirement, and 

apart from that we have now the third requirement from any encryption process. The new 

requirement is that the running time of the key generation algorithm, encryption algorithm 

and decryption algorithm should be some polynomial function of this security parameter n. If 

the running time is not a polynomial function, then we would not consider that algorithm or 

cipher to be an efficient cipher. 
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Now, let us define the notion of negligible probability as a function of the security parameter. 

So informally, we say a function of the security parameter is negligible if it becomes almost 0 

as the value of your security parameter n tends to infinity or the function of the security 

parameter will be called as a negligible function if it is asymptotically smaller than the 

inverse of every polynomial function. 



 

Namely, if f of n is a function, then we will say that f of n is a negligible function if for every 

polynomial function p of n, there exists some value of n, namely big N, such that f of n is 

strictly less than the inverse of the polynomial function p of n for all values of n greater than 

big N, right. If this holds, then we say that our function f pf n is a negligible function. 

Another equivalent definition of this negligible function is if the function f of n is strictly less 

than and n power minus c for every positive constant. 

 

Namely for every value of constant c, f of n is strictly less then n power minus c for all values 

of n bigger than big N, then we say that our function f of n is a negligible function. The 

reason that these 2 definitions are equivalent is that any polynomial function p of n, you can 

always write it as some n power constant c. So, if f of n is strictly less than the inverse of the 

polynomial function for every polynomial function, then I can recast it as f of n is strictly less 

than the inverse of n power c for every constant c right. 

 

So, you can use any of these 2 definitions to prove or disprove whether a given function f of n 

is a negligible function in n or not. So, here, example a few functions which are all negligible 

functions. Each of these functions is strictly less than the inverse of every polynomial 

function, where the value of big N is different for the corresponding polynomial functions. 

So, even though all these functions are negligible functions, namely if I keep on making the 

value of small n to be large and as n tends to infinity, each of these candidate functions will 

become0 eventually. 

 

However, the rate at which each of these functions approaches to 0 is different, right. So, for 

instance if I consider the function 2 power minus n and if I consider the second function 2 to 

the power minus root n, then definitely 2 to the power minus n will approach the value 0 

faster compared to the value of the function 2 to the power minus root n and so on. On the 

other hand, if I consider the function 1 over n power 10, then it is not a negligible function. 

 

Because the requirement from a negligible function is that the function should be strictly less 

than the inverse of every polynomial function, but you can easily see that for no value of n, 

the function 1 over n power 10 is less than n power 11, that is not possible for every value of 

n. As a result, it violates the definition of negligible probability, right. 
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So, we have defined mathematically what do we mean by efficient algorithm and we have 

defined which probability you can consider as a small probability. So now the family of 

negligible and polynomial functions satisfy some nice closer properties. So let us see the 

closer properties satisfied by the class of polynomial functions. So if you consider to arbitrary 

polynomial functions, say P1n and P2n, then the summation of these two polynomial 

functions is also going to be a polynomial functions, and in the same way, the product of 

these two polynomial functions is also going to be a polynomial function. 

 

What is the implication of the first closure property? It says that suppose if you have two 

subroutines a way to interpret the first closure property is the following. Imagine you have 

two subroutines, where the running time of the first subroutine is some polynomial function 

in n and the running time of the second procedure is also some polynomial function in n, and 

if you have a biggest routine, which actually cause this sub procedures in sequence, then the 

running time of the bigger algorithm is also going to be a polynomial functions. 

 

Namely, a bigger algorithm which causes these two smaller functions in sequence is also 

going to be considered as an efficient algorithm. That is what is the interpretation of the first 

closure property. In the same way, you can interpret the second closer property. Interestingly, 

the class of negligible functions also satisfies the certain closure properties. So, for instance, 

imagine you are given to arbitrary negligible functions, then it can be proved that the 

summation of two negligible functions is also going to be a negligible function and you can 

quickly prove it by contradiction 

 



Assume on contrary that the summation of these two negligible functions is not a negligible 

functions, namely, the summation of these two functions is not strictly less than the inverse of 

some polynomial function say P of n, then you can end up showing that either of these two 

functions is also not a negligible function, which is a contradiction. In the same way, we can 

prove that if you have a negligible function negligible of 1n, then if you multiply the 

negligible function 1 with some polynomial function, then the result of one function is also 

going to be a negligible function, and again you can prove it by contradiction. 

 

That means, on contrary, imagine this function which is a product of a polynomial function 

and a negligible function is not a negligible function, then you can end up showing that the 

function negligible 1 is actually not a negligible function, which is a contradiction, right. So 

this is a nice closure property, which is satisfied by the class of negligible function, and the 

interpretation of this latter property is that there is absolutely no amplification of a negligible 

advantage. What do I mean by that is the following. 

 

You consider an experiment where I toss n fair coins and say I want to estimate that what is 

the probability that all the n coins give me the value 0. Now, since each of the coin is a fair 

coin, the probability that all these n coins give me the value 0, 0, 0 is 1 over 2 power n. It 

turns out that if I run this experiment independently polynomial number of times, then the 

event at in one of these versions of the experiment, I get the value of all the coins to be all 0 

is going again to be a negligible probability. 

 

That means this event is going to occur with very, very negligible probability, that is what is 

the interpretation of this second closure property that means if you consider it in the context 

of an adversarial advantage, that means if you have an algorithm and say the adversarial 

advantage of breaking that algorithm or breaking that experiment is negligible, and if that 

experiment is repeated polynomial number of times, then again there is absolute no advantage 

in the winning probability of the adversary, that is what is the interpretation of the second 

closure property, right. 
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So, even though we have defined mathematically the notion of efficient algorithm, the notion 

of negligible probability asymptotically, you have to very carefully select the value of n when 

you are actually deploying a scheme to ensure that the resultant security guarantees that you 

get is indeed meaningful. What I mean by that is the following. Consider an arbitrary 

encryption scheme where it is ensured that any adversarial algorithm which runs for n cube 

minutes or say n cube steps, can break your scheme with probability 2 power 40 into 2 power 

minus n. 

 

Again, I have not mathematically defined what exactly I mean by break, but intuitively, by 

break you can understand that it can learn something about the underlying sets, say that is 

what is the meaning of break for the moment. So the guarantee that my algorithm is giving is, 

if any algorithm runs for n cube minutes to break it, the success probability of the algorithm 

is 2 power 40 over to 2 power n. Now in asymptotic notation, definitely, this is secure 

because the quantity 2 power 40 over 2 power n is negligible. 

 

That is asymptotic guarantee you are getting. But when I want to deploy the scheme, in 

practice, I have to replace the value of n by some concrete value because as I said, the value 

of n is nothing but the size of the secret key. So what value of n you will use? Let us see 

some implications. If I substitute the value of n to be 40, then the guarantee that I get from 

this asymptotic notation is the following. Any adversarial algorithm who runs for 6 weeks, 

namely 40 cube minutes, which is approximately 6 weeks. 

 



The success probability of that attacker’s algorithm to break the scheme will be 1, namely 

100%. So choosing a value of n equal to 40 is definitely useless because if I operate my 

encryption process with n equal to 40, then any adversary algorithm which runs for 6 week 

can break my scheme. So what I can do is, I can run the same algorithm with the larger value 

of key, say n equal to 50. Then the resultant security guarantee that I get is the following. 

 

Any adversarial algorithm running for 50 cube minutes, which is approximately 3 months 

have the guarantee that it can break my scheme with probability 1 over 1000. Now, depends 

upon your underlying context whether 1 over 1000 is good enough security guarantee for you 

or not, right. If the success probability of 1 over 1000 is not a good security guarantee for 

you, and what you can do is you can further increase the size of key. Say you operate the 

same encryption process with a value of key which is equal to 500 bits, then the security 

guarantee that we obtain is the following. 

 

Any adversarial algorithm running for 200 years has the success probability of 1 over 2 

power 460 of attacking the scheme. How large or how small is this quantity, the quantity 1 

over 2 power 460 is very very small. Namely, it is a number of seconds which has elapsed 

ever since the last big bang happened. That means, even though there is a chance that 

adversary can break your scheme, as you can see, it is so small that you can almost ignore it 

off if you operate the scheme with n equal to 500, right. 

 

So, what is example demonstrates that when even though asymptotic security guarantee is 

what we will follow for the rest of the course, when you are actually deploying a scheme 

whose guarantee is given in terms of asymptotic notation, you have to very carefully choose 

the value of the security parameter to get a meaningful notion of security , right. 
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So, this asymptotic security, you can imagine that the value of your security parameter is like 

a knob. As you keep on increasing the value of n, the security parameter, which is the size of 

the key and adversary’s job becomes more and more and more hard, that means, it has to do 

more and more steps to break your scheme, and if there is a negligible probability that 

adversary can break your scheme and as you keep on increasing the value of n, then 

eventually the success probability of the attacker will become 0. 

 

You should be very careful, you should not simply blindly fall increase the value of n 

because as you keep on increasing the value of n, the user’s running time namely the running 

time of the key generation algorithm, the running time of the encryption algorithm, the 

running time of the decryption algorithm also increases because remember, the running time 

of each of these algorithms is also some function of the security parameter n. 

 

So, you have a trade off, you cannot blindly increase the value of n when you are actually 

deploying a scheme, you have to very judiciously decide the value of your security parameter 

when you are actually deploying a scheme in practice. So that brings me to the end of this 

lecture. To just to summarize, in this lecture, we discussed that if key reusability is our 

ultimate goal, namely if we want to design a scheme where we want to retain the same key 

for encrypting multiple messages, then we have to make to relaxations to the model of perfect 

secrecy. 

 

The first relaxation that we have to make is that instead of assuming that our adversary is 

computationally unbounded, we have to assume that our adversary is computationally 



bounded and we have also seen that what do we mean by, how to measure whether the 

adversaries time is computationally bounded or not. In the same way, the second relaxation 

that we have to make in our model is instead of saying that adversary should not learn 

absolutely nothing about the underlying message, we should give the adversary some chance 

to break your scheme. 

 

That some chance to break the scheme should be so small that for most practical purpose we 

can ignore it off. So, we have also seen how to mathematically define such a small 

probability of adversary breaking the scheme. We have seen that these 2 relaxations are kind 

of necessary evils for any encryption scheme where the goal is to achieve key reusability. 

Because if you do not make these 2 relaxations, then there are always 2 extreme attacks 

which are possible, namely the guessing attack and a brute force attack. 

 

The success probability of the guessing attack will be very, very small, but the running time 

of this guessing attack will be practical, whereas the success probability of the brute force 

attack will be 100% but the running time of the brute force attack will be extremely large. So 

we have to definitely make this to relaxations. I hope you enjoyed this lecture. Thank you. 


