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Hello everyone. Welcome to this lecture. Just a quick recap, in the last lecture we concluded our 

discussion on Public-key cryptography. So in this lecture the roadmap is as follows. 
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We will basically discuss some of the main results related to number theory which we have used 

during our extensive discussion on public-key cryptography. I stress that we will not be having a 

full-fledged discussion on number theory because I personally feel that as; in a course on 

foundations of cryptography we should basically just use the important facts for number theory. 

But I thought that probably we should have a very high-level discussion on some of the 

important results which we used extensively during our discussion on public-key cryptography. 

 

So motivated by that we will have this discussion; today’s lecture based on completely on the 

number theory were we will discuss about Modular arithmetic, Prime numbers and their 

properties and we will see the Extended Euclid’s GCD algorithm.  
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So let us start with Modular Arithmetic. So imagine you are given 2 numbers or 2 integers a N 

big n belonging to the set of integers Z. And here N is here modulus where N > 1. Then a mod N 

is defined to be the remainder r, such that the remainder r is in the range 0 to N - 1, such that the 

relationship a = q times N + r wholes for some integer q. If that is the case, then we say a modulo 

N is r.  

 

So for instance, if I want to find out 5 modulo 4 then 5 modulo 4 is 1, because if I divide 5/4 I get 

the remainder 1. In the same way, if I want to found out -11 modulo 3 then -11 modulo 3 is 1 

because 1 is in the range 0 to 2 and -11 can be related to 3 by this relationship namely I can say 

that -11 is 3 times - 4 + 1. It turns out that I can write -11 as a linear combination of my modulus 

3 in another form as well, maybe I can say that –11 = 3 times - 3 - 2. 

 

And hence one might feel that -11 modulo 3 should be - 2 but that is not that case because as per 

our definition the remainder r should be in the range of 0 to N - 1. That is why -11 modulo 3 is 1 

naught -2. Now we have the definition of a modulo N; so if we have two integers a and b such 

that both a as well as b gives you the same remainder modulo, the modulus N then we say that a 

is congruent to b and we us the notation that a and with this special equality symbol b modulo N.  

 

So this means that a and b are equivalent in the sense that they gives you the same reminder 

when you divide them by the modulus N. So as per the definition of a modulo N it turns out that, 



if a is congruent to b modulo N then this is possible if the difference of a and b is completely 

divisible by N. Because if a gives the remainder r modulo N and since a is congruent to b modulo 

N that means b modulo N is also the same reminder r and if I subtract b from a then the 

remainder r and r cancels out and what I obtain is that a - b is completely a multiple of N and 

hence it will be completely divisible by N.  
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So we have some well - known arithmetic rules for modular arithmetic’s. So for instance we 

have two numbers a and b and if I know that a modulo N is a prime and b modulo N is b prime 

then I can say that a + b modulo N will be the same value as you obtained by doing the operation 

a prime + b prime modulo N. The same is true for subtraction as well as multiplication. So the 

way you can interpret this rules is that you can imagine as if you can first perform the modulars 

or you can first do the reduction modulo, the modulus N. 

 

And then you can perform the addition, subtraction, multiplication operation instead of adding or 

subtracting or multiplying and then doing the reduction modulo N. To be more specific for 

instance imagine I want to compute the value of this number namely I want to perform the 

product of 1093028 and 190301 modulo 100. If I want to compute this value, then there are two 

ways to do that.  

 



The first way will be that I first perform the product here or first compute the product here and 

then I do the reduction modulo 100. But this will be a complicated operation because multiplying 

these two large numbers will be really challenging. I cannot do it easily on a notebook. On the 

other hand, the same operation I can perform by first reducing the individual values here namely 

1093028 and 190301 modulo 100. And reducing each of the modulo 100 is very simple. 

 

Because I just have to focus on the last two digits here which I get as 28 and 1 and then I can 

multiply 28 and 1 and then again reduce it, reduce the answer modulo 100. And whatever 

obtained by option 1 and whatever result I obtained by option 2 they will be same as per the our 

rules of arithmetic rules of modular arithmetic. So this is a very powerful trick or powerful 

concept applicable in the context of modular arithmetic where you should; where; instead of 

applying the operation and then doing the modular or reduction modulo N and you can first 

reduce the operands modulo and then you can perform the operation and if required you can 

again perform a reduction modulo N. 
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So we have seen the addition, subtraction and multiplication modular and what about modular 

division. So the question is can we say the following, imagine a modulo N is a prime and b 

modulo N is b prime then can we say that a divided by b modulo N will be the same as a prime/b 

prime modulo N. Answer is no, because in fact in turns out that operation a divided by b modulo 

N is not at all well-defined.  



 

So to demonstrate my point imagine my a and b are 3 and 5 and my modulus is 4 so I am given 3 

modulo 4 is 3 and 5 modulo 4 is 1 and I know that 3 divided by 1 modulo 4 what have given me 

3 but if I want to calculate 3 divided by 5 modulo 4 I do not have the answer, because this 

operation 3 divided by 5 modulo 4 is not all well-defined. That means in modular arithmetic I 

cannot say that, if I am given that the product of ac modulo N and the product bc modulo N are 

same. 

 

Then I cannot say that cancel out c from both the sides and it cannot get implication that a 

modulo N = b modulo N, which would have been possible if I had perform a same operation in 

regular arithmetic and c would not; and c is not 0. That means in the regular arithmetic if I know 

that ac = bc and c is not 0 then I can say that if I divide both the sides by c then I obtain a = b. 

But the same thing I cannot conclude in the modular arithmetic because modular division is not 

well - defined. 
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So now let us discuss some of the algorithms for modular arithmetic. So imagine we are given 

two operands a and b each of size little n - bit and the modulus begin whose size is also little n-

bit, and some of the common operation which we encountered in public-key cryptography are to 

perform the modular addition, multiplication, subtraction and the exponentiation. So remember 



modular exponentiation is a very important operation in almost every instantiation of public-key 

cryptosystem, we encountered modular exponentiation.  

 

So we now want to have algorithms to perform this modular arithmetic operations, such that the 

resultant algorithms, their complexity, their time complexity should be some polynomial 

function and the number of bits namely little n. So it turns out that if I want to perform modular 

addition, subtraction and multiplication I can perform them in poly of little n number of bit 

operations.  

 

But what about modular exponentiation, imagine I want to compute a to the power b modular N, 

a naive algorithm will be that I perform a square modulo N whatever is the result I multiply it 

again with a and do a modulo N, and like that I have to perform basically b - 1 modular 

multiplications and since each modular multiplication requires a poly of N number of operations 

and I am performing b such order or b such operations one may say that, the overall time 

complexity of this naive modular exponentiation algorithm will be O of b times poly of n - bit 

operations and hence it is overall polynomial.  

 

But that is not correct because what exactly is the value of little b here. I have to express the 

value of little b also as some function of little n and it turns out that a magnitude of little b here is 

some exponential function in number of bits little n. Basically b can be as large as 2 to the power 

N. That means, this naive multi; a modular exponentiation algorithm; it is time complexity; its 

exponential function and the number of bits that you need to represent your a b and the modulus 

N and that is why it is the exponential algorithm. We cannot use this naive exponentiation 

algorithm to perform; to computer a to the power b modulo N.  
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So now what we are going to discuss is we will see a poly time algorithm to computer modular 

exponentiations. So this method is called as the Square and Multiply method. And to 

demonstrate the algorithm I will take an example here. I want to computer a to the power 53 

modulo N. Remember, the naive approach will be to multiply a 52 times and each; with each 

multiplication you do a mod N operation.  

 

So basically, the naive approach will require you to perform 52 modular multiplications. But 

what we are going to see here is that using the square and multiply method we can perform the 

same computation with just naive modular multiplications. So the idea behind this square and 

multiply method is as follows. So I express my exponent 53 in this case in binary. And 

depending upon the bit representation of 53 wherever I have the bit value 1 I have to take that 

power of 2. 

 

Wherever the bit power is 0 I have to screwed that power of 2 and hence I can say that 53 

depending upon its binary representation can be expressed as summation of these powers of 2. 

And hence I can say that a to the power 53 is nothing but the product of some selective powers of 

a namely a to the power 32, a to the power 16, a to the power 4 and a to the power 1. So the idea 

behind this square and multiply method as the name suggested is that in each iteration we will 

accumulate or we will compute the successive powers of a. 

 



And that means, we will start with a power 1 and then we will go to a square then from a square 

we will go to a to the power 4 then from a to the power 4 we will go to a to the power 8 and so 

on and then selectively depending upon the current bit in the binary representation of the 

exponent namely 53 in this case we will decide whether to accumulate the current power of a or 

not, and that is why the name square and multiply.  

 

In a more detail imagine I write 53 in this binary representation from LSB to MSB in this form. 

And as I go from LSB to MSB the different powers of a that I obtained as I go from 1 current bit 

to the next bit is just a square of the previous power, right and it is easy to see that my goal is to 

compute a to the power 53 and a to the power 53 basically can be computed by just multiplying 

some selective powers of a namely the powers of a corresponding to the bit positions where in 

the binary representation of 53, I have the bit 1.  

 

So based on this idea the algorithm is as follows. So we set an accumulator here which will have 

the final answer. The final answer that I want to compute is a to the power b or a to the power 53 

in this case. So I initialize my accumulator to be 1 and once I perform then all the iterations my 

accumulator will have the final answer. So in each iteration what I am going to do is, I am going 

to do a conditional update, namely I will do the operation that y = y into current power of a 

depending upon whether my current bit in the exponent b which I am exploring right now is 1 or 

not.  

 

So for instance, the current I start with the LSB of 53 or the exponent B, right now the bit is 1 

that means I have to take accumulate this power and that is why I will update my accumulated to 

by existing y and the current power of a and then I go to the next power of a. And I check the bit 

position, bit position is 0; bit is 0 so I do not need to accumulate this power. Then I go to the next 

power of a which will be a to the power 4 and I check the current bit, it is one. 

 

That means I have to accumulate this power, so that is why I will update my accumulated by 

multiplying the current content of the accumulated with the current power of a. Then I go to the 

next power of a which I do not need to include or accumulate because the bit position in the 



exponent is 0 then I go to the next power of a and I check the bit position of the exponent in this 

binary representation it is 1, so I have to accumulate. 

 

And hence I update my accumulator, and then I finally go to the MSB of the; MSB of the bit 

representation of my exponent, it is 1, that means I have to accumulate the current power of a 

and hence that is my final answer. So I am not writing the exact pseudo code here. You can 

understand; I hope you will be able to write down the pseudo code here. But idea here is that I 

will need to perform a sequence of iteration, the number of iterations is nothing but the number 

of bit that you need to represent your exponent b.  

 

And in each alteration we have to do a compulsory squaring to computer the next power of a. 

And in optional accumulation depending upon whether the current bit in the binary 

representation of the exponent b is 0 or 1 and it turns out that in the worst case my exponent b 

could be such that all the bits and its binary representation is 1, that means in the worst case in 

each iteration this optional accumulation has to be performed compulsory.  

 

But even in that case the total number of modular exponentiation, modular multiplication that we 

end up performing is two times N which is some polynomial function in the number of bits that 

you need to represent your N and your modulus and your numbers a and b and hence this is a 

poly time algorithm and this is the algorithm which we use to perform modular exponentiation in 

all our public-key cryptosystems. 
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Now let us discuss about prime numbers. So the definition of prime numbers is that an integer p 

> 1 is called a prime number if it is only positive factors are the number itself and 1. And a 

number positive integer greater than 1 which is not prime is called as composite number. And 

well - known theorem of arithmetic which is also often called as the fundamental theorem of 

arithmetic is that any number n >= 1 can always be expressed as product of different powers of 

prime and this is true for every n >= 1.  

 

This is a well-known fact which we can prove using indexation and not going into the exact 

proof. And there is another well-known fact from number theory which says that, there are 

infinitely many primes. It is not the case that you have only finite number of primes. And again 

this theorem we can prove using contradiction or any proof method. So there are several well-

known proofs to prove the fact that there are infinitely many primes. I am not going into the 

details of the proof here. 
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So if you recall that in our RSA cryptosystem and also in the context of Elgamal encryption 

scheme, we basically require as a part of the setup description of a prime number to be available 

to all the parties and the prime number should be sufficiently large. So the question is how 

exactly we pick the prime numbers. That means, we need an algorithm to check whether 

randomly chosen n - bit number is a prime number or not. 

 

And there is a naive algorithm for doing that. And the naive algorithm is based on the fact that if 

a number p is composite then it has at least one of the devices which is less than or equal to root 

p and the proof of this theorem is very simple because if you have all the devices of a composite 

number p greater than root p. Say you have two such factors a and b and neither a and nor b is 

less than or equal to root p and both a and b are the factors of p and p is composite then it turns 

out that product ab will be greater than p which is a contradiction. 

 

So that means if at all you have a composite number p it is bound to have at least one of the 

factors in the range 2 to root p or 1 to root p. And based on this observation we can have this 

following Primality-Testing algorithm. So imagine you are given a number p and you want to 

verify whether the number p is prime or not and say the number p is an n - bit number. So the 

naive algorithm is basically you check whether they are exist any deviser i in the range 2 to root 

p for the number p. Okay. 

 



Because if indeed p would have been composite its bound to have at least one of the devices in 

the range 2 to root p that means it will have at least one deviser i in the range 2 to root p and that 

is what you are searching in this naive algorithm. It turns out that the running time of this 

algorithm is order of root p divisions because you are performing root p number of divisions in 

this algorithm. 

 

And since p is n - bit number the magnitude of p is 2 to the power n so basically you are 

performing 2 to the power n / 2 divisions in this naive algorithm. And hence this is an 

exponential time algorithm which we cannot use in practice to test whether a given number p is 

prime or not, if my N is sufficiently large. So it was really a very challenging problem to verify 

whether a given number p is prime or not in polynomial amount of time. 

 

In fact, people believe that it is not possible to come up with the poly time algorithm to check 

whether a given number p is prime or not. But history was made in year 2002 where a group of 

computer scientist from IIT-Kanpur namely Manindra Agrawal, Neeraj Kayal and Nitin Saxena. 

They came up with a poly time algorithm, polynomial in the number of bits that you need to 

represent with your prime p, or number p. 

 

And they came up that this poly time algorithm which tells you whether a given number p is 

prime or not and that algorithm is now well - known as an AKS algorithm. So you can use that 

algorithm to check whether a given number p is prime or not. But it turns out that we do not use 

the AKS algorithm because even though it is a poly time algorithm the underlined polynomials 

are sufficiently large and that prevents us from deploying this algorithm as it in practicing.  

 

Instead what we do in reality to check whether a given number is prime or not is what we; we 

believe some algorithm which is called as Miller-Rabin primality testing algorithm. And it is a 

randomized algorithm in the sense that you cannot always trust the output of this algorithm. In 

the sense that, for 99.99% cases it will give you the right answer whereas there such small error 

probability in the output of this algorithm. 

 



That means even though your algorithm; your input may not be a prime number it may end up 

labeling the number as a prime number. So in that sense it is an error prone algorithm. And the 

reason we used Miller - Rabin test to check whether a given number is prime or not is that its 

running time is super, super fast compare to your AKS algorithm. I stress that the AKS algorithm 

is completely error - free. 

 

You can completely trust the outcome of the algorithm of; that is given by AKS algorithm 

because it is a deterministic algorithm. There is no randomization involved as part of the 

algorithm.  
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Now let us discuss about Greatest Common Divisor a GCD. So if a and b are two non - zero 

integer then the GCD of a and b is the greatest integer which is a common factor for both a as 

well as b. And if we have 2 numbers or 2 integers a and b whose GCD is 1 then we say that the 

integers a and b are co - prime. And if they have such several pairs of such numbers or several 

integers say a1 to a n such that pair - wise here. 

 

We say that they are pair-wise co-prime or relatively prime. If pair-wise the GCDs are; GCD 1 

for every pair of integer ai, aj in the list. So if we want to out the GCD of 2 numbers a and b then 

the naive algorithm will be that I first find out the prime factorization of a because as per the 



fundamental theorem of arithmetic I can express a as the product of powers of prime. And in the 

same way I can express my number b as a product of powers of prime. 

 

And then I can say that GCD of a and b is nothing but I take the minimum exponents from 

individual prime factorization of a and b and arrange them and that will give me the GCD of a 

and b. But the problem with this algorithm is that how at the first place I find the prime 

factorization of a and b.  
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So it turns out that we can do something very interesting here. We can use the efficient algorithm 

to compute. GCD algorithm and this algorithm is called as Euclid’s GCD algorithm. And based 

on Euclid’s algorithm is the following facts. So if you are given integers a and b such that a is b 

times q + r. And if you are going to find GCD of a and b then GCD of a and b is nothing but 

GCD of b and r. If a = b times q + r. 

 

Again I am not giving the proof of the start. You have to believe me. But based on this we can 

find out an algorithm to compute the GCD of a and b. And basically, what we do in this 

algorithm is we set my x value to a and y value to b and iteratively I find the value of x modulo 

y, I set my current y to be the next x and I take the remainder of my current x modulo y to be 

next y. And I perform this operation till my y becomes 0. 

 



As soon as my y become 0 which will eventually happen, I obtain the x at that point to be the 

GCD of a and p. And a correctness of this algorithm follows from the fact that GCD of a and b 

will be same as GCD of b and r and GCD of b and r will be same as GCD of r and b modulo r 

and so on. That means at every stop I am basically reducing the value of so called b and 

eventually it will become 0. 

 

So if you are wondering that what is the time complexity or how many modular divisions I am 

performing here; how many mod operations I am performing inside this Euclid’s algorithm. I can 

come up with exact bound using well - known Lame’s theorem which says that if the GCD of a, 

b is computed using Euclid’s algorithm and it needs n number of divisions then your b should b 

at least n + 1th Fibonacci numbers namely b should be greater than or equal to f of n + 1, so here 

fn + 1 denotes a Fibonacci n + 1 Fibonacci number. 

 

If you are wondering what is the Fibonacci number, it is a sequence starting with 0 the next 

number is one. These are the first two Fibonacci numbers. And then if I want to compute the 

value of the ith Fibonacci number, the ith Fibonacci number is basically the summation of the 

previous Fibonacci number and then previous to previous Fibonacci number. So that is my 

Fibonacci sequence here.  

 

So what is Lame’s theorem basically says is that, if the Euclid’s GCD algorithm would have 

performed n number of divisions then the magnitude of b will be at least as large as the n + 1 

Fibonacci number. And there also exists well - known lower bounds on the value of the nth 

Fibonacci number. It says, the lower bound says that for every end of the value of nth Fibonacci 

number is at least alpha times n - 2 where alpha is also called as the golden ratio namely 1 + root 

5 over 2. 

 

So based on these two facts I can say that if my GCD of a, b needs n number of divisions then it 

is utmost the n will be utmost five times log of b to the base 10. Hence, asymptotically the 

number of divisions that we need to perform in this algorithm is proportional to the number of 

bits that we need to represent the value b and hence the overall algorithm is an efficient 

algorithm. 
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It turns out that we can use the Euclid’s algorithm to do something more. So to understand that 

let us first; let me first go to here Bezout’s theorem here. So what Bezout’s theorem says is that, 

you can always express the GCD of two numbers a and b as the linear combination of the 

numbers a and b. That means you can always come up, you can always find out linear combiner 

s and t, such that you can express the inputs a and b as a linear combination which will give you 

the GCD of a and b. 

 

That means the GCD of a and b can be always expressed as a linear combination of the inputs a 

and b where the combiners s and t always exists. And if you are wondering how exactly you can 

find out is Bezout’s coefficients s and t or the combiners s and t where you can do that by 

performing some extra bookkeeping or maintaining some extra variables in Euclid’s algorithm. 

And this extended algorithm where you perform the extra bookkeeping activity to find out the 

linear combiners s and t is also known as the Extended Euclid’s algorithm. 

 

So I will not go into the full details of how exactly this extra bookkeeping happens in the 

Euclid’s algorithm. Let me demonstrate it. So suppose you want to find out the linear combiners 

or Bezout’s coefficients for the numbers a to be 252 and b to be 198. So if you see the way the 

GCD algorithm will work operate, the Euclid’s GCD algorithm will operate for the input a to be 

252 and b to be 198 is as follows. 



 

In the first iteration you’re a will be 252, b will be 198 and you will obtain the value of 252 

modulo 198. In the next iteration your a will become 198 and your b will become the current 

remainder 54 and so on. And you do this operation till your remainder become 0. And when your 

remainder become 0 you know that 18 is your GCD. So now your goal is to find out the linear 

combiners so that you can represent the GCD 18 at the linear combination of 252 and 198. 

 

And for that what we can do is we can back track here and we can see that I can rewrite 18 to be; 

based on this equation, I can rewrite 18 to be 54 times 1 - 36. And if I go back once step of up 

then I know that my 36 is nothing but 198 - 3 times 54. So if I come back here and I substitute 

the value of 36 here then I obtain that 18 can be rewritten as a linear combination of 54 and 198, 

but that is not my goal. 

 

What I can do is again I can go back one step up and I can rewrite my 54 as a linear combination 

of 252 and 198. And if I substitute that linear combination in this last equation I end up getting 

that 18 is represented as a linear combination of 252 and 198, that means my Bezout’s 

coefficients are 4 and - 5. So in this demonstration actually to find out the Bezout’s coefficients I 

did a back tracking but in the actually Euclid’s algorithm you need to only the forward pass, you 

do not need to do a back track into, do the bookkeeping and find out the Bezout’s coefficients. 
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So how exactly this Extended Euclid’s GCD algorithm will be useful. So it will be useful to 

compute multiplicative inverse modulo N. So recall how did; the way we define multiplicative 

modulo N operation. So a into b modulo N is define to the reminder of a and b; a into b modulo 

N and recall that we define an integer b to be the multiplicative inverse of a modulo N if the 

product of a and b modulo N gives you 1. 

 

And we use the notation b = a inverse to denote the multiplicative inverse of a modulo N and 

basic fact here is that if b is multiplicative inverse of a modulo N then a is also the multiplicative 

inverse of b modulo N and it turns out that if indeed we have one multiplicative inverse of a 

modulo N, namely if you have b such that a times b modulo N is 1 then so is b + any multiple of 

the modulus N.  

 

That means it does not matter whether you add multiples of modulus N to b or you subtract 

multiples of modulus N from b or let them also will be the multiplicative inverse of a modulo N 

and this is because of the fact that a times b+ - k times N and so finally giving you a b modulo N; 

and since b is multiplicative inverse of a modulo N, a times b modulo N is nothing but 1. That 

means if at all if multiplicative inverse exists then they are infinite in number.  
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Now the question is when exactly can we say that multiplicative inverse of number a modulo N 

exists. So there is a well - known result in number theories which says that, if you are given a 



modulus big N and an integer a then the multiplicative inverse of a modulo N exists if and only if 

a co-prime to n namely if the GCD of a and n is 1 and we can prove the sufficiency part of this 

theorem. I will not go into the necessary; proof of the necessity of this condition here. 

 

I will prove that indeed it suffice if a is co - prime to N to find out the multiplicative inverse of a 

modulo N and that can be computed using Bezout’s theorem. So imagine a is relatively prime to 

N that means GCD of a and N is 1. That means since a GCD of a and N is 1 that means if I run 

the extended Euclid’s algorithm I can find out Bezout’s coefficients namely the linear combiners 

s and t, such that the GCD of a and N namely 1 can be expressed as the linear combination of a 

and B using the combiners s and t. 

 

And now if I take mod N on both the sides of this equation then on the right side I obtain one 

modulo N and 1 modulo N will give me 1. But my left - hand side namely a times s + N times t 

modulo N will give me a times s modulo N because N times t modulo N will give me 0 because 

it is the multiple of N. So what I obtain by taking mod N on both the sides is that I obtain the 

relationship that a times s modulo N = 1 which shows that s is actually the multiplicative inverse 

of a modulo N. 

 

And that is how we can obtain the; or you can compute the multiplicative inverse of a number a 

if it is co-prime to N. So that brings me to the end of this lecture. Just to summarize and this 

lecture we just discussed on a very high-level some of the basic; some of the important facts 

from number theory which we used extensively during our discussion on public-key 

cryptography. Specifically, we saw; discussed about modular arithmetic.  

 

We saw a poly time algorithm to computer modular exponentiation which is a key operation 

which we perform in any public - key cryptosystem or any encryption algorithm in the public-

key cryptosystem. We also discussed about a Primality testing, properties of prime number. And 

we also discussed about Extended; GCD Extended Euclid’s Algorithm to computer the GCD of 

two numbers and to computer Bezout’s coefficients will be useful to computer multiplicative 

inverse of numbers. Thank you. 


