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Hello everyone, welcome to this lecture. The plan for this lecture is as follows. In this lecture, 

we will introduce the definition of identification scheme, which is a well-known crytographic 

primitive and we will see an instantiation of identification scheme, namely we will see the 

description of Schnorr identification scheme based on the Discrete log assumption. In the 

next lecture, we will see that how using the Fiatt-Shamir heuristic, we can convert the 

Schnorr identification scheme into an instantiation of digital signature scheme based on 

discrete log assumption. 
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So let us try to understand the motivation behind the identification scheme. So, again let me 

take an example, which I stated during our first lecture. So, this is a well-known Sunderkand 

episode in Ramayana. So, Ram is in India and he is very disappointed. He is missing mother 

Sita, so he instructs his messenger that please go and pass my message to Sita that I am 

missing her.  

 

The messenger namely Lord Hanuman says as you wish my lord and then Ram says that 

since you are going to meet Sita for the first time, she may ask you to prove your identity. So 

you can take this ring as a proof because only Sita knows about this ring and the messenger 

takes the ring and he goes to Lanka and then he starts the interaction with mother Sita saying 

that I am the messenger of Lord Ram for you. 

 

But Sita is so scared there, so she is not willing to believe Hanuman, then she asked how can 

I trust you and prove your identity and Hanuman proves his identity by showing the ring 

which Lord Ram has given to Hanuman and once Mother Sita sees the ring, she accepts the 

identity of the messenger. So, in this example, the ring serves as a proof and confirms 

Hanuman’s identity and proof.  

 

 

The proof that Hanuman gave is shown in clear, but it turns out, that it is extremely 

dangerous to show proof in clear in the current age of Kalyuga where proof is very volatile 

and people may not trust each other. So, identification scheme is a cryptographic primitive, 



basically it is a n-interactive protocol between two entities, which allows a prover to prove its 

identity. 

 

In this example, Hanuman without revealing the secret credentials namely the ring. So, let us 

go into the formal details of identification scheme and we are interested in the constructing 

identification scheme in the public key setting, and more specifically we will focus on three 

round or commit challenge response identification scheme, but it is not necessary that your 

identification scheme should have three rounds. 

 

But we are interested in only studying the identification scheme consisting of three rounds of 

interruption, because later on we will see how we can construct signature schemes from 

three-round identification schemes. So an identification scheme consists of four protocols. So 

we have key generation algorithm, and we will have two algorithms, P sub 1 and P sub 2 for 

the prover who wants to prove his identity. 

 

And we will have an protocol or an algorithm for the verifier using which the verifier can 

verify the identity of the prover. So, the way we use an identification scheme is as follows. 

So, we have a prover and a verifier. The key generation algorithm will be run mostly by the 

prover and it will run the key generation algorithm to obtain a verification key and a secret 

key.  

 

The verification key will be available in the public domain to verify the identity of the so 

called prover whereas the secret key will be available only to the prover and using this 

identification scheme, the goal of the prover is to convince the verifier who is aware of the 

verification key that indeed the prover knows the corresponding secret key sk associated with 

this verification key vk and the way this happens is by a 3-round protocol. 

 

So during the first round, prover runs the algorithm P sub 1, which takes an input secret key 

and outputs commitment, which we denote by I, and the commitment is given to the verifier. 

The prover sends the commitment to the verifier and along with that the algorithm P sub 1 

outputs state information, which prover keys with itself. Now seeing the commitment, the 

verifier picks a challenge, which I denote by r. 

 



This challenge is selected from a challenge space and the challenge is picked uniformly 

randomly from the challenge space and on seeing the challenge r from the verifier, the prover 

has to come up with a response, and the response is denoted by s, which is computed by 

running the algorithm P sub 2, which takes the secret key sk, the state information and the 

challenge. 

 

On seeing the response, the verifier has to verify whether the prover has responded correctly 

in the response to the challenge r, with respect to the commitment I, which prover has 

committed at round 1 and to verify the verifier runs the algorithm V, which takes the 

verification key, the challenge and the response and the goal of the verifier is to verify 

whether the output of this algorithm V is equal to the commitment I or not. 

 

If the output matches the commitment I then we say that verifier accepts the identity of the 

prover, that means verifier is convinced that indeed prover is the person who knows the secret 

key corresponding to the publicly available verification key, whereas if this test that the 

output of the algorithm V should be equal to I fails, then the verifier is not convinced that the 

prover who actually participated in this protocol knows the corresponding secret key sk.  

 

So a successful execution in this protocol implies that the communication happened indeed 

with the intended prover and not an imposter. More specifically we require the following two 

properties from an identification scheme. So, the first property is the correctness property, 

which says that for every pair of key which you are key generation algorithm could output 

and every transcript, which is generated by running an instant of the identification scheme.  

 

The following should hold. If the verifier runs the verification algorithm with respect to the 

verification key and the r and s component of the transcript, it should give the I component of 

the transcript. That means the verification should be successful at the verifier side. So, that is 

the correctness property. The security property formally requires that an imposter or an 

eavesdropper who has eavesdropped an interaction between a prover and verifier polynomial 

number of the times should not be able to come up with accepting transcript and successfully 

get it accepted at the verifier side and this should hold. 

 

If my adversary is computationally bounded. So basically what it means is, if the adversary 

has seen polynomial number of conversations between an honest prover. An honest verifier 



and even after saying a polynomial number of conversations in the absence of the secret key 

sk and only with the knowledge of the verification key vk, it should not be possible for the 

computationally bounded eavesdropper to pretend as a prover and come up with an accepting 

conversation, which gets accepted at the verifier side. 
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So, we model this requirement as an in formal requirement by a security experiment. So in 

this experiment, which we call as the identification experiment, we have a computationally-

bounded adversary and the challenger and the description of the identification scheme is 

publicly known, so the challenger goes first and it runs the key generation algorithm, keeps 

the secret key with itself, and sends the verification key to the adversary. 

 

Now, what the adversary can demand is, it can demand for oracle access to the transcription 

service and this model adds the fact that in the real world, there might be an adversary who 

might have seen polynomial number of interactions, or polynomial number of instances of the 

identification scheme getting executed between an honest prover and an honest verifier. So, 

that adversary might have seen polynomial number of transcripts under the unknown key sk, 

which might be only available with the prover.  

 

So, to model that, we give the adversary here Oracle access to the transcript service, so to 

respond to this Oracle access, what the challenger has to basically do the following. So, it 

knows the verification key vk, and it knows the secret key sk as well, so it runs the instance 

of this identification scheme, simulating the role of the prover and the verifier in its mind. So, 



basically, it just runs the instance of this identification scheme as playing the role of the 

prover itself. 

 

Playing the role of the verifier itself and generates the corresponding I, r, s and that transcript 

is given back in response to the Oracle access service that the adversary has asked for and 

since the adversary could ask for Oracle access to the transcript service for a polynomial 

number of times, every time such an Oracle access or Oracle request come, the challenger has 

to generate a simulated transcript like this and given it to the adversary. 

 

Once the adversary is stringed by the same polynomial number of transcript, it tries to come 

up with a forged transcript and try to get it accepted by the challenger. So to do that, it 

pretends as if the prover and try to come up with the accepted transcript without even 

knowing the corresponding secret sk, so it submits a commitment, which I denote by I star. In 

response the challenger submits challenge, which I denote by r star, and in response to the 

challenge the adversary submits a response s star. 

 

This triplet I star, r star, and s star is a forged transcript, which the adversary is trying to 

produce with respect to this entire experiment and the definition of the experiment says that 

adversary is able to forge a transcript, which is denoted by saying that the output of this 

experiment is one, if and only if the verification algorithm v, run by the challenger with 

respect to the verification key, and r star component, and s star component is forged transcript 

indeed gives I star. 

  

That means, I star, r star, s star constitutes a accepting transcript, and our definition of 

security is we say that an identification scheme is secured if for every poly-time adversary 

participating in this experiment, the chance that it can win the experiment is upper bounded 

by some negligible function.  
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So, that is our definition of our identification scheme. Now, let us see we can come up with 

an instantiation of such a scheme and there is a well-known identification scheme due to 

Schnorr, and it is based on the following idea. So, basically prover in this identification 

scheme tries to prove its identity saying that it knows the discrete log of a publicly known 

value y under the base g, and to verify the claim of the prover, the verifier basically 

challenges the prover to show a random linear combination of the discrete log of y, where the 

random combiners for the linear combination will be selected by the verifier. 

 

So, the idea here is that indeed if prover knows the discrete log of y, then it should be able to 

produce a random linear combination of the discrete log of y with any other value from the 

corresponding range of the discrete log, and this whole interaction happens in the zero 

knowledge fashion in the sense that throughout interaction, it will be ensured that indeed the 

prover knows the discrete log of y to the base g, then the discrete log is not learnt by a 

malicious verifier. 

 

So, the key generation algorithm of this scheme is as follows. It outputs a verification key and 

the secret key, where the verification key is the description of a cyclic group of order q and a 

description of the generator and the random element y from the group where y is basically g 

to the power x, where x is selected from the set 0 to q - 1 and the verification key namely the 

discrete log of y, which is x will be available with the prover, whereas the verification key 

namely y will be available with the verifier. 

 



So, the prover goes first in this identification scheme and it commits a value k from the 

selected set Zq by computing g to the power k, so that is a random value which it gives to the 

verifier and the challenge picked by the verifier is a random value r, selected from the set Zq 

and to respond to the challenge, basically the prover has to come up with a linear 

combination of the discrete log x of the y. 

 

The value k which it has selected in the round 1 and the random linear combination here is r 

times x + k modulo q and to verify whether the response of the prover is correct or not, 

verifier has to verify whether g to the power s times y to the power minus r = I or not, which 

should actually be the case if indeed prover knows x and it has sent g to the power k during 

the first round. 

 

So, before going into the analysis of this identification scheme, let us see a definition here, 

we say a triple I, r, s where I is a group element, and r and s are elements of Zq is an 

accepting transcript if g to the power s, multiplied by y to the power minus r = I holds and the 

correctness property of the identification scheme are of Schnorr follows from the fact that 

indeed prover and verifier are honest and prover knows that discrete log of y. 

 

Namely it knows x, then the transcript generated by running an instance of the Schnorr 

identification scheme will indeed be an accepting transcript. So the verification at the 

verifiers end will be successful. So that proves the correctness property. Now, let us try to 

understand the security property here. So, we first consider an eavesdropper here and imagine 

prover and verifier are knowledged and there is an eavesdropper who has monitored 

polynomial number of executions of the Schnorr Identification scheme. 

 

So imagine it has eavesdropped upon one transcript, which is I, r, s, and I claim here by 

seeing the transcript not learned anything about the secret key sk, only the discrete log of y to 

the base g, which is x, and this is because if you see the distribution of the commitment 

namely the I, it is independent of x because the commitment I is g to the power k, where k is 

picked independent of x. 

 

In the same way, the r component of the transcript, it is completely independent of x and it is 

picked by the verifier, so it also does not reveal anything about the secret x. However, if you 

see the value s, then the value is r times s + k, so one might feel that by seeing s, the 



eavesdropper might learn something about x, but that is not the case here because the 

distribution of s here is independent of x because the k. 

 

Which is used in the linear combination compute s is independently and randomly picked by 

the prover, and if the prover is honest, then the value k, which is used in the linear 

combination, will be uniformly random and unknown to the adversary. That means by seeing 

the adversary, again cannot figure out anything about x and that means an eavesdropper who 

sees an accepting transcript I, r, s, it will not learn anything about the underlying secret x.  

 

What the adversary or the eavesdropper will learn just that the transcript I, r, s is an accepting 

transcript and its distribution is independent of x. So based on this observation, we make a 

very strong claim here that, we can say any eavesdropper can simulate an accepting transcript 

based on the knowledge of verification key itself. That means, it is as good as saying that 

even if no interaction happens between the prover and the verifier. 

 

The eavesdropper could well ahead come up with a probability distribution of the transcript, 

which would be seen by eavesdropping real conversation between the prover and the verifier 

and how can this be possible, here is the way the adversary or the eavesdropper could come 

up with a simulated transcript on its own without even eavesdropping the conversation 

between the prover and the verifier. 

 

So, what the eavesdropper could do is, it could randomly pick an r value and s value from Zq 

and then once it picks the r value and s value, it could set the I value g to the power s value it 

has picked, multiplied by y to the power minus r value that it has picked, and it turns out that 

if you compare the probability distribution of the real transcripts, and by real transcripts, I 

mean the transcripts, which are actually generated by real execution of this Schnorr 

Identification scheme where an honest prover and an honest verifier participates in the 

protocol. 

 

If we consider the probability distribution of the simulated transcripts, whereby simulated 

transcripts, I mean, the transcripts that are generated by the eavesdropper by this method, 

where it does not see the real execution of the protocol, but it comes up with the values of I, r, 

s using the method, which I have discussed just now. So if I consider the probability 

distribution of this two transcripts, they are exactly identical. 



 

This is because if you see probability distribution of the r value in the real transcripts and the 

probability distribution of the r value under simulated transcripts they are identical. In a real 

execution, r will be randomly picked from the set Zq, and in the simulated transcript also r 

values are also picked randomly from the set Zq. In the same way in the real transcript s is 

going to be a uniformly random value from Zq because k would have been chosen uniformly 

randomly by the prover. 

 

The same is true for the s value in the simulated transcripts and if you see the probability 

distribution of the I value in the real transcripts as well as the simulated transcripts in both the 

cases I = g to the power s part, multiplied by y to the power minus r part of the transcripts and 

this is true both for the real transcript as well as for the simulated transcript. So if you see the 

distribution wise, the way the transcripts would have been generated in a real execution of the 

protocol. 

 

The way the transcripts are generated by the adversary in its mind without actually seeing any 

conversation are exactly the same distribution. That means that just eavesdropping the 

communication between a honest prover and a verifier is not going to help the adversary to 

help anything about the underlying secret key x. Now here is a food for thought for you.  

 

Since I am claiming here that if eavesdropper could simulate and come up with an accepting 

transcript on its own without even knowing the secret key sk, does that mean that using the 

strategy, which the simulator is using or the eavesdropper is using to come up with the 

simulated transcript, it could forge an accepting transcript and participate in an instance of the 

Schnorr identification scheme and end up convincing an honest verifier that indeed it knows 

the x value, which is not exactly the case. 

 

It turns out that is not the case because the reason for that is if you see the simulation strategy 

here, the way adversary has come up with simulated transcript, it is fixing the r value and s 

value to begin with. That means it is guessing in its mind that this could be the r value or the 

challenge value, which the verifier would pick and only after fixing the r value and s value, it 

is coming up with its commitment I. 

 



So, if this strategy tries to participate in an execution of the Schnorr Identification scheme 

with an honest verifier, then the probability that indeed he is able to come up with an 

accepting transcript which gets accepted by the verifier is same as the challenge r tilde, which 

the adversary is thinking well ahead in its mind matches exactly the transcript which an 

honest verifier is indeed going to pick up during the real execution of the Schnorr 

Identification Scheme. 

 

But the probability that the simulated r value, which adversary is guessing in its mind well 

ahead matches the exact value of the challenger r which is going to be picked by the verifier 

is one upon the size of Zq set, namely its 1 upon q and if q is sufficiently large, then this is a 

very small quantitates a negligible function in the security parameter. So, that means this 

simulation strategy is not going to help the eavesdropper to win or forge or break this 

identification scheme. 

 

So what we have proved till now is that eavesdropping is definitely not going to help the 

adversary to break the security of the Schnorr Identification Scheme, so only where it could 

attack this identification scheme is follows, without knowing the secret key is that it has to 

interact with a honest verifier as follows. So it has to come up with some commitment with 

respect to some strategy that the adversary has in its mind, and once the verifier throws a 

challenge. 

 

It has to come up with a response s, such that g to the power s into y to the power minus r 

indeed equal to I and if we want the adversary should be able to break the security of the 

Schnorr Identification Scheme with high probability, then it should be the case that this 

adversary who is trying to break the security should be able to come up with its response s 

irrespective of what value of r is used as a challenge by the verifier. 

 

That means, what I am trying to say here is that once adversary has committed some value 

and submitted its commitment I, and if indeed that adversary is able to break the security of 

this identification scheme with very high probability, then it does not matter what exactly is 

the challenge. It could be r1, it could be r2, it could be anything. For any value of challenge, 

it could be possible for the adversary to come up with the responding responses such that g to 

the power s, responses multiplied by y to the power challenge minus r should be equal to the 

commitment of the adversary. 



 

That means, once the adversary has submitted its commitment, it does not matter whether the 

challenge is r1, corresponding to the r1 the adversary should be able to come up with s1 such 

that this property or this verification is successful or it does not matter whether the verifier 

throws the challengers r2, still it should be possible for the adversary that for the same 

commitment I and the challenge r2. 

 

The adversary should be able to come up with the corresponding response s2, such that the 

verification is successful under verifier’s end because if the adversary knows only to come up 

with the response for some specific values of the challenge, then that is not a good adversary 

strategy. The probability that the adversary is able to break the security of the identification 

scheme is not significantly high. 

 

Its significantly high only when irrespective of what is the challenge my adversary should be 

able to come up with the corresponding valid response, but if you see closely here, if 

adversary is able to come up with successful response si irrespective what is the value of ri 

that means if for the same commitment I. But for different challenges r1 and r2, my adversary 

is able to come up with the corresponding accepting responses s1 and s2, then by solving 

these two equations. 

 

We know that adversary actually knows how to compute the discrete log of the value y 

because if it indeed the commitment I, r1, and s1 is a accepting transcript. So is the case for 

the transcript I, r, and s2, then it means the discrete log of y is nothing but the product of s1 

minus s2 and the multiplicative inverse r1 minus r2 and since s1, s2 and r1, and r2 are all 

known to the adversary, that means the adversary actually knows to compute a discrete log of 

y, which goes against the assumption that discrete log of problems is difficult to solve in my 

underlying group. 

 

That means, if I make the assumption that discrete log problem is difficult to solve in my 

underlying group, then it is very difficult for any adversary to respond with S2 corresponding 

to the challenge r2, as well as to respond with the response s1 corresponding to the challenge 

r1. So, now let us try to formalize this argument through a concrete security reduction proofs, 

so the theorem which we want to prove here is that if the discrete problem log is difficult to 

solve in the underlying cyclic group. 



 

Then the Schnorr Identification Scheme is secure, and assume on a contrary, we have an 

adversary who can break the security of the Schnorr Identification Scheme with 6 significant 

probability, then we can use that adversary to come up with another adversary or algorithm, 

which can win an instance of discrete log problem, which can solve an instance of discrete 

log problem, with significant probability and here is how the reduction goes. 

 

So, the adversary which we want to construct is ADlog. It participates in an instance of the 

Dlog experiment, where it is thrown g to the power unknown x as a challenge and its goal is 

come up with the x. It invokes the adversary who can break the security of the identification 

scheme by the setting by the verification key of the identification scheme, so now this 

adversary could ask for oracle access to the transcript service as per the identification 

scheme, and the D log adversary does not know the secret key sk because the secret key x, 

but x is not known to this discrete log adversary. 

 

So you might be wondering that how exactly it is possible for this d log adversary to respond 

to this oracle queries to the transcript service of the identification scheme. But that is possible 

because in the couple of slides back, we had discussed that any eavesdropper could come up 

with a simulated transcript say I tilde, r tilde, s tilde, whose distribution will be exactly the 

same as an accepting transcript, which honest prover. 

 

An honest verifier would have generated by participating in a real instance of the Schnorr 

Identification Scheme. So, what our discrete log adversary could do is in response to this 

transcript oracle service, it could just come up with such simulated transcripts and respond 

back to the adversary. Now once adversary is sufficiently trained, it will try to come up with 

a forged transcript, so it submits its commitment I, and then in response these discrete log 

adversary throws a challenge r1. 

 

It sees the response of the adversary again is the identification scheme say s1, now what the 

discrete log adversary is going to do is, it is going to rewind the adversary who can break the 

security of your identification scheme, namely it asks the adversary that you please go two 

steps back to the step where you have submitted the commitment I. Now I want to test you 

with a new challenge say r2, which is randomly chosen from the set Zq, and this adversary 

against the identification scheme has to now respond corresponding to the challenge r2. 



 

So it responds with s2, and now what does discrete log adversary is going to do is, it checks 

whether I, r1, s1, is an accepting transcript namely it checks whether the first condition here 

holds and then it checks whether I, r2, s2 is an accepting transcript namely the second 

condition holds, and finally it checks whether the two challenges, which has picked randomly 

are different or not. 

 

If all these three conditions hold simultaneously for the discrete log adversary, then it submits 

or it computes the discrete log of y to be the product of s1 minus s2 and the multiplicative 

inverse of r1 minus r2 and since r1 and r2 are different, r1 minus r2 will be not zero, hence 

this multiplicative inverse modulo q will exist. Now, I claim that in this whole reduction the 

advantage of the discrete log solver that we have constructed namely the probability that it 

can solve or win the discrete log experiment is at least the square of the probability that the 

adversary against the identification scheme break the security of the identification scheme 

minus 1 over q. 

 

If I assuming that the discrete log assumption or the discrete log problem is difficult to solve 

in my underlying group, then I know that the probability in my left hand side here of the 

inequality is some negligible function and if q is also some exponential function in the 

security parameter, then I know that 1 over q is also some negligible function. So, if my left 

hand side is negligible function and 1 over q is also a negligible function, then it 

automatically implies that the advantage of the adversary against the identification scheme 

also has to be negligible. 
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So, now let us try to prove this claim formally. So for this I introduce some notation. So, let 

little omega denote the randomness used in this entire reduction except the challenge values 

r1, r2 which are picked by the discrete log solver. So, the little omega denotes the 

randomness used by the challenger in the discrete log experiment. It denotes the randomness 

used by the adversary against the identification scheme, and it also denotes the randomness 

used by the discrete log solver except for the randomness used to pick up the challenges r1 

and r2 in this whole experiment. 

 

Now, I used this quantity V of omega, r, and I say that this function V, omega, r = 1, if 

corresponding to the randomness little omega and corresponding to the challenge r, the 

adversary against the identification scheme could come up with an accepting transcript. If 

that is the case, then I say the output of the function v omega r is 1, otherwise it is zero and 

with respect to a fixed randomness omega, this quantity delta sub omega is defined to be the 

probability that the output of the function v with respect to the randomness omega over all 

possible challenge randomness r = 1. 

 

That is the quantity delta sub omega, so it is basically the probability of the adversary against 

the identification scheme coming up with an accepting transcript with respect to a fixed 

randomness little omega over all possible challenge randomness r, and then let me call this 

function delta of n to be the probability with which this adversary against the identification 

scheme can win the security game against the identification scheme in this reduction. 

 



So, as per our notations that we have introduced till now this delta of n is nothing but 

probability of all randomness little omega used in this entire reduction and the probability 

over all challenge randomness r, the probability that V of w of r, omega, r = 1, and if we 

expand it further, it is nothing but summation of all randomness little omega, that what is the 

probability that omega has the randomness used in this entire experiment, entire reduction 

except for the challenge randomness and with respect to that fixed randomness little omega, 

what is the probability that delta sub omega. 

 

So that is the way we expand our function delta of n. Now, if you see this entire reduction, 

our discrete log solver can successfully extract out discrete log x only if these three 

conditions hold namely I, r1, s1 is an accepting transcript, and I, r2, s2 is an accepting 

transcript and the challenges r1 and r2 are different where the challenges r1 and r2 are 

randomly chosen by the discrete log solver. 

 

So, we can formally state that the probability that our discrete log solver can solve the 

discrete log is the probability that if you take the probability of all randomness little omega 

and all challenge randomness r1 and r2, V of omega, r1 = 1. This captures the fact that I, r, 

and s1 should be accepting transcript and V of omega and r2 should be 1. This captures the 

fact that I, r2 and s2 should be accepting transcript and r1 should be different from r2. This 

captures the third condition.  

 

So now what we have to do is just basically we expand this probability expression because 

this probability are overall candidate randomness little omega, challenge randomness r1 and 

challenge randomness r2. So, by using the rules of probability if I solve, then this quantity r1 

not equal to r2, I can replace by the probability r1. I can take this probability of omega, r1 and 

r2 inside and then I can substitute this AND condition by this subtraction condition and what 

I can do is. 

 

I know that this thing that probability that my challenge randomness r1 and r2 are different is 

1 over q because both r1 and r2 are picked randomly from the set Zq and now what I can do 

is, I can expand this first quantity and the second quantity with respect to r1 and r2 and fixed 

omegas, and once I fix omega, these two events of V of omega, r1 should be 1 and V of 

omega, r2 should be 1, they are independent of each other, because r1 and r2 are picked 

independently by the discrete log solver. 



 

So, if I fix the randomness omega, and take the omega inside and try to expand with respect 

to the randomness r1 and r2, the inequality here then basically I get that the above inequality 

turns out to this thing and now I can apply the well-known Jensen’s inequality, which I am 

not stating here. You can use any standard reference to find out formula for Jensen’s 

inequality, what I can do is I can take the square here inside the expression probability of 

randomness omega to happen here. 

 

If you now see that this entire big bracket here, the square of this big bracket is nothing but 

delta of n, that is what the definition of delta of n, delta of n is nothing but the probability 

with which the adversary against the identification scheme can win the game here in the 

reduction and that is what the claim we wanted to prove. We have proved that the advantage 

of the discrete log solver here is greater than or equal to the square of the advantage of the 

adversary of the identification scheme minus 1 over q. 

 

If q is some exponential function in the security parameter, then it is 1 over q is negligible 

and as per the assumption that is advantage of the discrete log solver should be some 

negligible function that proves that the square of the advantage of the adversary against the 

identification scheme also should be negligible. So, that brings me to the end of this lecture. 

Just to summarize, in this lecture we have introduced identification scheme, which is a well-

known cryptographic primitive and we have seen an instantiation of identification scheme 

based on discrete log assumption namely the Schnorr Identification Scheme. Thank you. 


