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Lecture – 52 

RSA Signatures 

 

Hello everyone, welcome to this lecture, so just to recap, in the last lecture we have introduced 

digital signatures, we have seen their formal definition. 

(Refer Slide Time: 00:40) 

 

In this lecture we will see an instantiation of digital signatures based on RSA function namely, 

we will first see plain RSA signatures and attacks that can be launched on plain RSA signatures 

and then we will see an instantiation of secure signatures based on RSA function which we call 

as RSA full domain hash.  
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So, let us start with plain RSA signatures and for this let me recall the RSA one way trap door 

permutation, we have the parameter, we first generate the parameters N, p, q here, modulus n is 

the product of p and q, it pick e and d, where e and d are multiplicative inverse of each other and 

then we set the public parameter to be N, e and the secret parameter to be N, d and our forward 

direction RSA function is x to the power e modulo N. 

 

And our reverse function is y to the power d modulo N and we have proved that both these 

functions are inverse of each other and we also consider it to be a candidate one way function, 

where the trap door is steady. Now, the plain RSA signature which we can obtain from this RSA 

one way trap door permutation is obtained by visualising or treating this inverse function as the 

signing function. 

 

That means, any entity who possess N, d can used the inverse function to compute the signature 

and using the forward direction function f to be the verification function more specifically, the 

plain RSA signature over the message space N star is obtained as follows. The key generation 

algorithm runs the Gen RSA algorithm to obtain the parameters N, e, d and now, the public 

parameter N, e is set as the verification key. 

 

Whereas, the trap door information namely N and d is set as the signing key, to sign a message m 

belonging to the ZN star, we basically compute m to the power of d modulo N, where d will be 



available with the signer and to verify a message, signature pair, what we compute first is the 

value of the RSA function on the signature component namely, we compute sigma to the power e 

modulo N and compare it with the received message. 
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If the comparison passes, then we accept a message namely be output 1, otherwise the output c, 

now we want to analyse the security of this plane RSA signature scheme and one might say that 

the following intuitive argument should prove that the plain RSA signature scheme is indeed 

unforgeable or secure. The argument here is that if I am an adversary and if I do not know the 

value of the signing key namely the value of the secret d. 

 

And if my goal is to forge a signature on a message m star on which I have not seen the signature 

in the past, then to forge a signature basically I have to compute the value of m star to the power 

d modulo N, where I do not know the value of d and one may argue that this is nothing but an 

instance of the RSA problem but since, if I assume that my RSA problem is difficult with respect 

to this Gen RSA function, then I can safely claim that this plain RSA signature scheme is secure. 

 

But it turns out that this intuitive argument is not correct, one of the reasons is that the RSA 

assumption of the RSA problem is difficult to solve only if m star is randomly chosen from ZN 

star, it does not say anything how hard or how easy, it is too difficult; how hard or how easy it is 

to compute m star to the power d modulo N without knowing the for any m belonging to ZN star.  



 

The second problem here in this intuitive argument is that the RSA assumption does not tell or 

does not guarantee anything about an adversary about the possibility of computing m to the 

power d modulo; about computing m star raised to the power d modulo N, given that adversary 

might have seen the value of several m to the power d modulo N for any m of its choice because 

remember, when we consider the forgeability game for the signature scheme, adversary is 

allowed to see a signatures of several messages of its choice. 

 

So, if adversary has submitted a message m, it would have seen the signature m to the power d 

modulo N and it might have seen the value of m to the power d modulo N for polynomial 

number of messages m and by seeing the value of polynomial number of values of the form m to 

the power d modulo N, where m is known to the adversary. The goal of the adversary is to come 

up with the forgery namely, m star raised to the power d modulo N. 

 

So, RSA assumption does not guarantee anything how hard or how easy it is for an adversary to 

come up with the forgery, given that it has seen the signature namely the output of the RSA 

function for several m of its choice in past. 
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Indeed it turns out that this plain RSA signatures, there are several; for this plain RSA signature 

there are several ways with by which the adversary could come up with the forge, so let us see a 



very simple attack which we call as no message attack. From the name it might look like that 

there is no message on which the adversary is producing the forgery but that is not the case, there 

is indeed a message on which the adversary is producing the forge signature. 

 

The reason why it is called no message attack will be clear to you soon, so the idea behind this 

attack is that to forge a valid signature; adversary need not always work in the forward direction. 

What I mean by that is if we consider the message space and the signature space of this plain 

RSA signature, both of them are the set ZN star and signature for a message m star can be 

produced by computing m to the power d modulo N. 

 

So, if the goal of the adversary is to forge a signature on a message m star, it has to basically 

compute m to the power d modulo N, that is one of the ways by which adversary can produce a 

signature and this I consider to be; this I call the as producing signature by walking in the 

forward direction but it turns out that adversary could come up or forge a signature by walking in 

the backward direction as well. 

 

Namely, what it can do is; it can first pick up a random signature or a random group element and 

treat it as a signature and then it can ask in its mind that what could be the valid or potential 

message from the message space for which the signature, for which the RSA signature would 

have been is picked up sigma star and it is easy to see that by picking a random signature sigma 

star, the corresponding message m star which would have produced to the signature sigma star is 

nothing but this picked sigma star raised to the power e modulo N. 

 

Because if indeed my m star is sigma star raised to the power e modulo N, then this m star, sigma 

star constitutes a valid RSA signature as per the RSA verification algorithm and to compute m 

star, adversary have everything at its disposal namely, it has sigma star, it knows the value of e 

and it knows the value of m and hence it can easily compute m star. So, basically here it is easy 

to see that by walking in the reverse direction, adversary could come up with a valid forgery 

even without any access to the signature oracle. 

 



It does not ask for the signature of any message of its choices, just because signature and 

produces a corresponding message. Now, the reason we call this as a no message attack is here 

the forgery is produced by walking in the backward direction, the adversary does not have any 

message to begin with for which it wants to generate a forgery but still as for the definition of 

forgery, the way adversary has computed m star, sigma star it is a valid forgery. 

 

It is a different discussion whether this m star which adversary has produced by walking in the 

backward direction indeed makes sense in the context of the application where the underlying 

signature scheme is used or not, right. 
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Now, what we are going to do in the next is we are going to see a serious attack where the 

adversary now has a concrete message and we will see how by using the help of the signature 

Oracle adversary can come up with the forgery on any message of adversary's choice against this 

play a RSA signature, right. 

 

So, again to recall in the no message attack, adversary has no control on the message with which 

it obtained by walking in the backward direction but a more real and more realistic attack 

scenario will be where adversary is a concrete message of its choice on which it wants to forge 

the signer signature. So, let me demonstrate an instantiation of the attack here, so as per this 



experiment signature forge experiment, the challenger would have thrown the challenge to the 

adversary namely, the verification key. 

 

And say the goal of the adversary is to compute the of forge the signature on the message m star, 

what it does is; it picks 2 message randomly from the set ZN star such that the product of m1 and 

m2 modulo N is m star and how it can pick m1 and m2 such that their product is m star, well it 

can first randomly pick m1 from the group ZN star which requires polynomial amount of time 

and then it can set m2 to be the value m star multiplied by multiplicative inverse of m1, that will 

given the required m, which again can be computed in polynomial amount of time. 

 

Now, what the adversary can ask is; it can ask for the signature Oracle access for the message 

m1 and m2, namely it asked the challenger to sign the messages m1 and m2 is basically, models 

of fact that in the real world adversary's goal is to forge a signature; signer signature on m star 

basically, it is now influencing the signer to sign the messages m1 and m2, right. So, as per the 

rules of the game, the challenger signs the messages m1 and m2. 

 

And now that the adversary combine these 2 signatures namely it let it multiply the 2 signatures 

modulo N and it submits the forgery m star followed by sigma star and my claim here is that the 

probability that the adversary here wins the game is 1, so sorry for the typo here, this 1 is coming 

down, so what I want to say here is that the success probability of the attacker that we have seen 

here is 1. 

 

This is because if you see sigma star, it is nothing but m1 raised to the power d modulo N 

multiplied by m2 to the power d modulo N because that is what is the value of sigma 1 and 

sigma 2 and if we do the mathematics, this turns out that sigma star is nothing but the value of m 

star raised to the power d modulo N which is nothing but the RSA signature on the message m 

star. 

 

So, now you have a concrete attack, we are using the help of the signature Oracle, adversary 

could come up with a signature on any message of its choice, which proves that this plain RSA 

signature is not secure. 
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So, now the question is can we design secure signature scheme based on the RSA function and 

answer is yes, we can construct what we call as RSA full domain hash signature and on a very 

high level, this might look like an instantiation of the hash and sign paradigm but actually, it is 

not a full-fledged implementation or instantiation of hash and sign paradigm. The idea here is we 

again want to transform the message bit string which we want to sign before sign using the RSA 

function. 

 

So, what we do is the actual message space which we can sign here or the other messages which 

we can sign could be arbitrary bit string, we map them to the element of ZN star by applying 

some transformation function which I call as H function and then the actual transform the 

message is signed using the RSA signature scheme that we had discussed now, the insecure RSA 

signature scheme. 

 

So, the key generation algorithm for this full domain hash signature is as follows; so we run the 

Gen RSA algorithm set sk to be the signing key or m, d to be the signing key and m, e to be the 

verification key and we make this transformation function H to be publicly known, the 

transformation function maps arbitrary length bit strings to elements of ZN star and now to 

compute the signature on the message m, which is an arbitrary length bit string. 

 



What we do is; we first compute H of m that is we map the bit string m to an element of ZN star 

and then we compute the value of inverse RSA function on the H of m, namely we compute H of 

m raised to the power d modulo that is our signature. The verification happens in a canonical 

way, namely if you are receiving a message, signature and if you want to verify it, what we first 

do is we compute sigma raised to the power e modulo m and we call it m dash. 

 

And we accept the message, signature only if and only if m dash is equal to H of m, which would 

be the case if everything has happened in a proper way, right. So that is an overall idea of this 

RSA full domain hash. Now, one might wonder that what are the necessary properties that we 

require from the underlying transformation H to ensure that the overall scheme is secure. I stress 

here that this full domain hash signature should not be considered as an instantiation of the hash 

and sign paradigm. 

 

Because for the security of the hash and sign paradigm, we need the fixed length signature 

scheme to be secure but a fixed length signature scheme which in this case is the plain RSA 

signature we have already proved it is not secure, however it turns out that we make some 

suitable assumptions for this underlying transformation function, then this overall way of 

hashing the message first. 

 

And then signing as per the insecure or the plain RSA signature gives us an overall secure 

signature scheme. So, let us discuss what exactly are the security properties that we require from 

the transformation function so, the list of the necessity; necessary properties is as follows; 

definitely, we require that the transformation function should be collision resistant namely, it 

should be computationally difficult for poly time adversary or an attacker to find out a pair of 

messages m and m dash such that the transformed m and the transformed m dash are same. 

 

Because if that is the case that means, if the adversary could come up with such a pair of m and 

m dash, then it can first ask for the signature on the message m and a signature on the message m 

dash will be exactly the same as the signature on the message m, so it could easily come up with 

a forgery. The second requirement from the transformation function is that it should avoid any 



kind of multiplicative or nice algebraic properties which we had exploited in the attack on the 

plain RSA signature. 

 

That means, it should not happen that we should have a triplet of the form m, m1, m2 such that 

the transformation of m is equal to the product of the transformation of m1 and the 

transformation of m2 because if it is possible for an adversary to find out such triplets in 

polynomial amount of time, then what adversary basically, can do is; it can ask for the signature 

on the message m1 as for this full domain hash. 

 

It can ask for the signature Oracle access for the message m2 as per this full domain hash and 

given that it can easily obtain a signature on the message m that could be its forgery, so we 

would like that this transformation should be such that it should has no such nice algebraic 

properties. We also need the one wayness property from this transformation property; 

transformation function namely, we require that it should be given an arbitrary x from ZN star; it 

should be difficult to find a message m such that H of m is equal to x. 

 

This is to prevent the no message kind of attack, right because if this one wayness property is not 

satisfied namely, if it is easy for an adversary to compute such an x and m such that H of m is 

equal to x, then again that adversary can launch the attack that we had seen in the no message 

attack, however it turns out the definitely these 3 properties are required but we do not know 

whether the list is exhaustive or not, whether we need any 4th property, 5th property and so on, 

right. 

 

So, we are kind of stuck now, so what we can do is; we do not care about whether the list is 

exhaustive or not, if we assume that the transformation function is modelled as a random oracle 

and if you are in the random oracle model, then we can give a complete security proof for this 

full domain hash signature. So, you can see that if we assume that if you are in the random oracle 

model, then definitely the 3 requirements that we have stated will be satisfied. 

 

And top of that the proof that the signature scheme is secure in the random oracle model takes 

care of the fact that no other attack can be launched; this no kind of attack can be launched in 



against this RSA full domain hash signature and the list of properties that we are going to obtain 

by assuming that my transformation function is in the random oracle model will be exhaustive. 

So, I am not going into the full details of the formal; full formal details of the proof that this 

indeed the signature scheme is secure in the random oracle model. 

 

If you are interested to see the full formal proof, you can refer to the book by Katz-Lindell or by 

the manuscript by Voynich, so that brings me to the end of this lecture, just to summarise; in this 

lecture, we have seen an instantiation of a secure signature schemes based on RSA function, we 

had first seen the plain RSA signatures and we have proved that it is not secure by demonstrating 

2 possible attacks and we had seen an instantiation of secure signature schemes based on RSA 

function in the random oracle model, thank you. 


