
Foundations of Cryptography 

Prof. Dr. Ashish Choudhury 

(Former) Infosys Foundation Career Development Chair Professor 

Indian Institute of Technology-Bengaluru 

 

Lecture-05 

Limitations of Perfect Security 

 

Hello everyone, welcome to lecture 5. 

(Refer Slide Time: 00:30) 

 

So, the plan for this lecture is as follows We will see a candidate for perfectly secure encryption, 

which we call as one time pack and we will see the limitations that are imposed by any perfectly 

secure encryption scheme. 

(Refer Slide Time: 00:44) 



 

So, the one time pad encryption process, which is also called as Vernam cipher is very simple. 

Here the plain text space, the key space and a cipher text space are all l bit strings, where l is 

some system parameter which is publicly known to the sender to the receiver and to anyone who 

is using this system. The key generation algorithm is going to output a uniformly random key. So 

since the key space is set l bit strings, the key generation algorithm is going to output a uniformly 

random l bit key. 

 

The encryption algorithm is as follows. So it takes a plain text which is going to be an abit string 

and the key k generated by the key generation algorithm, which is also an bit string. And the 

ciphertext is a bit string, where the ciphertext is nothing but the XOR of the plain text characters. 

And the key characters bit by bit. And as you can see that this is a deterministic algorithm there 

is no internal randomness as part of this encryption algorithm. 

 

That means if you encrypt the same message I am using the same key k you are going to get the 

same ciphertext. The decryption algorithm is just a reverse operation of the encryption algorithm 

in the sensor takes a ciphertext which is going to be a bit string and the key k which is also going 

to be an bit string. And to recover the message the decryption algorithm just performs the XOR 

of the cipher text with the key k bit by bit. 

 



So just to recall, what exactly is an XOR operation, so the XOR operation operates with on 2 bits 

at a time and the output is defined as follows a both the bits are same, then the output is going to 

be 0. Whereas if the bits are different, and output is going to be 1, that is what is the XOR 

operation right. 

(Refer Slide Time: 02:30) 

 

So, in some sense, you can imagine that this encryption algorithm does the masking of the 

message with the key right. So the XOR operation has the effect of masking the message bit by 

bit with the bits of the key. Whereas the decryption operation you can imagine, it has the reverse 

operation of masking namely unmasking the effect of key from the ciphertext bit by bit. So, the 

important thing here is that since the XOR operation is kind of reversible here. 

 

You can mask the message using the key by performing the XOR operation. And to get the effect 

of unmasking, you just have to exhaust the key from the ciphertext to grid get back your 

message. So now let us prove that this Vernam cipher or one time pad is indeed perfectly secure. 

And we can prove it perfect security. It is perfect security as per any of the 3 definitions that we 

saw in the last lecture. 

 

So I am going to prove that Vernam cipher is indeed perfectly secure over the message space of l 

bit strings. And for this I am going to use the first alternate definition of perfect secrecy that we 

discuss in the last lecture. Namely, I am going to prove that the distribution of the ciphertext is 



independent of the underlying plaintext in any instance of Vernam cipher. For this we consider 

an arbitrary probability distribution over the plaintext space. 

 

And an arbitrary pair of messages m 0, m 1 belonging to the plain text sapcce as per that 

probability distribution which has a non zero probability of occurrence. And we also pick an 

arbitrary ciphertext, which has a non zero probability of occurrence. What I am going to prove is 

that for any m 0 m 1 that we have picked here arbitrarily and for any cipher text c which we have 

picked arbitrarily here, the probability that m 0 is encrypted in c. 

 

And the probability that m 1 is encrypted in c, r c, which will prove that Vernam cipher is 

perfectly secure. So now let us first try to compute the problem conditional probability that if 

your plaintext is m 0, what is the probability that the Vernam cipher is going to produce the 

ciphertext to be little c, right. So the probability that plaintext m 0 is going to produce the cipher 

text, little c is the same as the probability that the key which is used for encryption is district. 

 

Namely the key is XOR of m 0 and little c. And what is the probability that the which is obtained 

by running the key generation algorithm is indeed the XOR of m 0 and liuttle c. Well, it is 1 over 

to power l. Because, as per the syntax of our key generation algorithm. The key generation 

algorithm is out going to output a uniformly random key. So the probability that that uniformly 

random key which is obtained by key generation algorithm indeed satisfies the value XOR of m 

0 and little c is 1 over 2 power m. 

 

In the same way, the probability that the message m 1 is encrypted in the cipher text, little c is 

the same as the value of key which is used for encryption is the XOR of m 1 and little c. And 

again, since my key generation algorithm is going to output uniform random keys, the 

probability that my key is XOR of m 1 and little c is 1 over to power m. So since both these 2 

probabilities are equal after seeing a ciphertext, which is going to be a bit string. 

 

Adversary cannot pinpoint whether it is an encryption of m 0, or whether it is an encryption of m 

1. And hence adversary will be completely clueless. And that is why this encryption satisfies the 



definition of perfect secrecy. So we now have a candidate encryption scheme, which is perfectly 

secure. 

(Refer Slide Time: 06:17) 

 

So now you might be wondering that if we have a candidate scheme, which is perfectly secure, 

why cannot we afford to use it in practice. So now let us see some of the limitations which are 

imposed by the one time pad scheme. The first limitation which is imposed here is that he should 

be as large as the plaintext because the size of the key is as little l as well as the size of the 

plaintext is also little l right. 

 

This means that if you want to say encrypt 1 GB file, that means if the sender wants to encrypt a 

1 GB file, then it has to agree upon a key which is also of size 1 GB, right, which seems very 

impractical because in practice we aim to go for encryption process, where we can use a various 

little size key to encrypt long messages. So that is the first restriction which is imposed by 

Vernam cipher. 

 

The second limitation which is imposed here is that you cannot reuse the same key for 

encrypting more than 1 message. That means each instance of the encryption needs a fresh key. I 

stress here that when I say here that you cannot reuse the key, I do not mean that you cannot 

reuse the key in the next instance, what I mean here is that in each instance, you have to again 

run into an independent instance or a fresh instance of key generation algorithm. 



 

It is fine if the key that you are going to obtain in the next invocation of key generation algorithm 

which is same which you have obtained in the previous invocation. What is important here is that 

both this invocations of the key generation are going to independent outputs. So from the 

viewpoint of the adversary or an attacker who is intercepting ciphertext, he woould not be 

knowing that the keys which have been used whether they are same or whether they are 

different. 

 

From the viewpoint of the attacker, they are independent keys. So the second restriction, which is 

important here is you cannot retain the same key and keep on interrupting multiple messages 

using the same key. For instance, imagine a scenario where the sender is going to use or 

retaining the same key k for encrypting 2 different messages m 0 and m 1 in sequence. That 

means it has used a key k for encrypting first a message m 0 communicated the cipher text. 

 

And suppose it is again retaining the same value of key instead of again running the key 

generation algorithm. And it reuses the same key k for encrypting a next message m 1, and again, 

the ciphertext is communicated over the channel. And suppose adversary is aware of this fact 

that the same key has been retained and used by the sender to encrypt two messages m 0 and m 

1. So now what an attacker can do is the following. 

 

Since it has intercepted the cipher text c 0, as well as it has intercepted the cipher text c 1 and it 

knows the relationship between the message is m 0 k m 1 k, and c 0 c 1. Namely, it knows that c 

0 is the XOR of m 0 and k and it knows that c 1 is the XOR of m 1 and k. If it performs the XOR 

of c 0 and C 1, the effect of k is going to vanish, right because that is what is the property of the 

XOR operation. 

 

Because k will be exalted with k itself, which will give you 0. And as a result by performing the 

XOR of c 0 and C 1, the adversary is going to obtain the XOR of m 0 and m 1. So now you 

might be wondering what how much information is actually revealed by learning the XOR of m 

0 and m 1. And it turns out it is a significant amount of information. And that means we cannot 



claim the perfect secrecy for this kind of encryption process. We are the same case now retained 

for interrupting multiple messages. 

(Refer Slide Time: 09:48) 

 

So here is what during award winner, legendary computer scientist Michael Rabin has to say 

about one time pad, he says that you should never reuse a one time pad, it is like a toilet paper, 

because if you reuse it, things can get messy right, so you should never reuse the key for each 

instance of the one time pad Vernam cipher you need to run a key generation algorithm and 

obtain a fresh key for encrypting your next messages. 

(Refer Slide Time: 10:14) 

 



So these are the 2 restrictions imposed by Vernam cipher. Now, a natural question is whether 

these 2 restrictions are only with respect to one time pad or Vernam cipher, or are these 2 

restrictions inherent to any perfectly secure cipher. What we are now going to prove is that these 

two restrictions are inherent for any perfectly secure cipher, any perfectly secure cipher key 

should be as largest a plain text. 

 

And we will also prove that any perfectly secure cipher, each instance of the encryption needs a 

fresh key. 

(Refer Slide Time: 10:49) 

 

So let us first prove the first limitation here. So the theorem here is imagine you are given a 

perfectly secure cipher. It may not be one time pad, it could be anybody perfectly secure cipher. 

The theorem says that if the scheme is perfectly secure, then the key space has to be as large as 

message space, right. So, here is the proof, the proof is going to be by contradictions. So on 

contrary, imagine that even though my scheme is perfectly secure my key spaces less than my 

message space. 

 

That means a number of candidate cases less than the number of candidate plaintext. And for 

demonstration here as an example, I am assuming that my candidate plant text space consist of 3 

plain text and my candidate key space consist of 2 possible keys. So now you consider the 



uniform probability distribution over the message space, that means you consider a scenario 

where sender could have encrypted any of these 3 possible messages with equal probability. 

 

And you consider a ciphertext with whose probability of occurrences non zero right. So now, let 

me define the set m of c which is the set of all valid corruptions of the cipher text c, namely m of 

c consist of all plain text m from the plain text space, which I can obtain by decrypting the cipher 

text c under different candidate keys from the key space right. So, again in this particular 

example, if I try to decrypt the cipher text c, I have 2 possible keys. 

 

On decrypting cipher dexy by k 1 I will obtain 1 message and on decrypting cipher c by the 

second key k 2 I will obatian 2 message that means what I can say is that the cardinality of the 

set m of c is upper bounded by the cardinality of the key space because that is the maximum 

number of distinct descriptions you can obtain by decrypting the ciphertext c here, and since as 

part of my assumption, the key space cardinality is less than the message space cardinality what I 

obtained here is that the cardinality of m of c is strictly less than the cardinality of key space 

which is less than the cardinality of mexxy sapce. 

 

What it means here is that they are exist at least one message from the message space, plain text 

space, which can never lead to the ciphertext c that means on decrypting the cipher text, I will 

never obtain back that plain text. Again in this specific example, you can see that the decryption 

of c can never give you back empty. And that is a violation of the perfect secrecy condition 

because the perfect secrecy condition says that if you have a uniform probability distribution 

over the plain text space. 

 

Then for every cipher text c which occurs with non zero probability, it could should be an 

potential encryption of all candidate messages with equal probabilities or in other sense if I see 

the original definitions of perfect secrecy, what we have arrived here is the fact that we have at 

least one message is little m, where the probability of occurrence of the little m is non zero, but 

the conditional probability that triple m is encrypted in the ciphertext little c is 0. 

 



That means these 2 probabilities are not same. And hence that is a violation of perfect secrecy 

right. So, that means we have proved that in any perfectly secure encryption scheme, the key 

space has to be as large as the message space. 

(Refer Slide Time: 14:20) 

 

Now, what is the implication of this theory. Imagine your key space is the set of all possible 

strings of length x. That means, my encryption process supports encryption of expert strings. 

That means the key space is cardinalities nothing but 2 power x. And in the same way, imagine 

my encryption process supports plain text space of y bit strings that means the plaintext have to 

be y bit strings and as a result, the cardinality of my message spaces 2 to the power y. 

 

Now as per this theorem is my scheme is perfectly secure I need the cardinality of the key space 

to be at as large as the cardinality of the message space, that means 2 to the power x should be 

greater than equal to 2 to the power y. And as an implication of this, I get the fact that x should 

be greater than equal to y, that means the length of the key should be as large as the plaintext. 

That is the first limitation of any perfectly secure cipher, namely, the key should be as largest 

plaintext. 

(Refer Slide Time: 15:24) 



 

Now, let us prove the second limitation of any perfectly secure cipher. And I would not be 

proving it rigorously and formally, I will just give you a very high level detail of the proof here. 

So the theorem states that imagine you are given a perfectly secure cipher over the plain text 

space m and key space k, then each instance of the encryption process of this cipher should 

require an independent key to be generated by the key generation algorithm. That means you 

cannot retain the same key for encrypting more than one message. So now let us again try to 

prove this you using a contradiction. 

 

So imagine a scenario where sender retains the same key k for encrypting 2 messages m 1 and m 

2 in sequence right. So it has encrypted message m 1 producer ciphertext c 1 communicated over 

the channel, and then it has to use the same key k for encrypting a second message in the 

sequence. And again the ciphertext is communicated over the channel. And adversary has 

intercepted both the ciphertext and adversaries aware of the fact that the same unknown key k 

has been retained and used to encrypt both the messages m 1 as well as m 2. 

 

What we are going to prove is that if this something of this has happened, then you can never 

achieve perfect secrecy, right. So imagine 2 different sequences of plain text. The first sequences 

when the the first message is m 1 and the second message is also m 1 and in the second sequence 

m dash, the sequences of messages are m 1 and m 2, where m 1 and m 2 are different. And 



imagine that adversary has intercepted a cipher text consisting of 2 sequences of cipher text 

where the first cipher text is c 1 and the second cipher text c right. 

 

So, as per the requirement of perfect secrecy, if the adversary has obtained a sequence of 

ciphertext being c 1 and c 2, and if adversary has a prior information that this 2 sequences of 

messages, which could have been encrypted in c 1 c 2 could be either m 1, m 1 or m 1, m 2, then 

the requirement of perfect secrecy is that with equal probability the ciphertext sequence even 

comma c 2 should be any interruption of m 1, m1 as well as it should be a potential interruption 

of m 1, m 2 right. 

 

That means, if I consider the left hand side probability here then I have introduced here 2 random 

variables c 1 and c 2 in bold phase, which denotes the value of the first cipher text sequence and 

the second cipher text sequence. And in the same way, I have introduced 2 random variables, 

bold phase m 1 and bold phase m 2, to note the candidate first plaintext and the candidate second 

plaintext. So my claim here is that the probability that your left hand side probability and your 

right hand side probability can never be seen, which is a violation of perfect secrecy. 

 

Pictorially the requirement of perfect secrecy should be that it does not matter whether the first 

the first message sequence m 1, m 1 is encrypted or whether the second sequence of message m 

1, m 2 is encrypted using the key as per your encryption process with equal probability it should 

lead you to the cipher text sequence c 1, c 2, if at all your encryption processes perfectly secure. 

 

But if that is the case, that means imagine a scenario where indeed the message sequence m 1, m 

1 and a message sequence m 1, m 2, both leads to an encryption cipher text sequency c 1, c 2 

with equal probability under the same and key k, then it means a decrypiton error. Because that 

means that if you decrypt the cipher text c to using the key k, then it should be leading you back 

to the plain text m 1 as well as it should lead you back to the plain text m 2, which means that 

there is a correctness error in your encryption process. 

 

That means there is a decryption error in your encryption process, which is a violation of the fact 

that your encryption process is secure, because one of the requirements of any secure cipher is 



the correctness requirement, which demands that your description should be unambiguous, but if 

we are in a scenario like this, we are both the message sequence m 1 m 1 and message sequence 

m 1 m 2 leads to the same cipher text sequence c 1, c 2. 

 

That means if I just decrypt the ciphertext sequency c 2 it could lead me back to m 1 as well as it 

could lead me back to m 2. That means there is an ambiguity in the decryption of my original 

encryption process itself, which is a contradiction, this proofs informally by theorem that each 

instance of the encryption process should run of fresh instance of the key generation algorithm 

right. 

 

So that brings me to end of this lecture. Just to summarize. In this lecture we have discussed an 

candidate, perfectly secure encryption process, namely one time pad or Vernam cipher and we 

proved it is perfect secrecy. We also saw the 2 restrictions imposed by one time pad. And we 

argued that these 2 restrictions namely the key size being as largest a message and fresh key for 

each instance of the encryption are inherent to any perfectly secure encryption process. I hope 

you enjoyed this lecture. Thank you. 


