
Foundations of Cryptography

Dr. Ashish Choudhury

Department of Computer Science

Indian Institute of Science– Bangalore

Lecture – 47

Hybrid Public Key Cryptosystem

Welcome to this lecture. The plan for this lecture is as follows.

(Refer Slide Time: 00:36)

In this lecture, we will introduce Hybrid public-key encryption scheme and we will introduce

KEM/DEM paradigm, and we will see an instantiation of CDH-based KEM in the Random-

oracle model and DDH-based instantiation of KEM in the standard model.

(Refer Slide Time: 00:49)

So, let’s start with the motivation of Hybrid Public-Key Ciphers and before doing that, let us

compare the public-key encryption scheme with a secret-key encryption scheme. Imagine, we

are given a public-key encryption scheme, pi pub, and we are given a symmetric encryption

scheme, pi priv, then if we consider the public-key encryption scheme, the key agreement is

not at all a challenge.

That is what the whole motivation for the both the public encryption process. If I am a

receiver, it is suffice for me just to announce my public-key in the public domain. Anyone

who wants to encrypt a message and send it to me, it can pick my public key, encrypt the

message and send it to me. On the other hand, we had seen that key agreement is the biggest

challenge in the symmetric key domain.

Until and unless the common key is established between the sender and the receiver, we

cannot use any of the symmetric key parameters. If we consider the public-key encryption

scheme, the downside there is the message space has to be a finite group or a finite algebraic

structure, which most cases is the group, which is kind of a restriction because, in practice,

the message space should be a set of bit string.

On the other hand, the message space in the symmetric keyword are binary strings. We do not

require any sophisticated algebraic structure from the underlying message space for the

overall security of my symmetric key encryption schemes. If we consider public-key

encryption schemes, they are computationally very heavy because we have to perform

modular exponentiations or instance in RSA function in El Gamal encryption scheme.

Performing modular exponentiations is very computationally expensive and heavy compared

to the encryption process, decryption process that we use in symmetric key encryption

scheme, which are superfast and performs operations which are of XOR operations. In the

same way, the public-key encryption scheme, the cipher text expansion is huge, for instance,

if you see the El Gamal encryption scheme.

The plain text that you want can encrypt is a single group element, but the cipher text consists

of two groups elements and padded RSA, the amount of message, which you end up

encrypting is very short compared to the amount of randomness that you are actually

padding. On the other hand, in the symmetric key world, cipher text expansion can be as

minimally as possible using any of the so called secure modes of operation of block ciphers.

So, now we can see have both pros as well as cons of public-key encryption scheme,

symmetric encryption schemes, and what we can do is, we can think of somehow combining

these two processes in a generic fashion and obtain a hybrid kind of encryption process where

in the hybrid encryption process, which we call as Enc sub Hyb. The sender picks a random

key for the symmetric key encryption scheme and encrypts it using the public-key encryption

process, namely it encrypts the random key k, which it has selected and encrypts it using the

public key of the receiver and once the plain text is available with the sender.

The actual encryption of the plain text happens using a symmetric key encryption process

using the random key, which has been picked by the sender. If we do this, what is happening

here is basically the entire efficiency of the hybrid encryption process becomes almost that of

the symmetric key encryption process because the actual message which we are encrypting

gets encrypted using a symmetric key encryption process.

The extra pay load that we are paying here is to encrypt the symmetric key which is used for

encrypting the actual plain text using a public key encryption process. R1 in principle is

syntactically this whole hybrid process is still will be considered as an instantiation of public

key encryption process because the key for the symmetric key encryption which the sender is

using is getting encrypted by a public key encryption process. So, that is what is the overall

motivation for designing Hybrid Public-Key Ciphers.

(Refer Slide Time: 5:01)

To make my point more clear, let us consider an instantiation of Hybrid El Gamal public-key

Cipher. So, let me recall the syntax of Hybrid El Gamal public-key cipher, say Seetha wants

to say to set up for her public parameter, her public key and secret key, so the public

description, which is available to everyone is the description of the cyclic group, the

generator, and the size of the group.

To do the key setup, what Seetha does is, you can imagine that she does her part of Diffie-

Hellman key exchange protocol once for all for every potential Ram. For every potential

sender who wants to encrypt a message and send to Seetha. So, she picks her random alpha

from the set ZQ namely 0 to q-1, and that is a secret key and a public key, which is g to the

power alpha, which is available in the public domain.

And this if you can imagine as Seetha’s contribution for the overall Diffie-Hellman key,

which she wants to establish with every any potential sender in this world. Now imagine

there is a sender, which has a plain text m, which it wants to encrypt and now this plain text is

a bit string, it need not be an element of group. So, unlike the El Gamal encryption process

where the actual plain text, which sender could encrypt and send to Seetha should be an

element of group, now the plain text is a bit string.

Now, to encrypt this plain text m, what the sender does is, it picks a random element from the

group which are noted by m cap and it encrypts this message m cap using the El Gamal

encryption process. So, it computes the cipher text c1, c2 where c1 can be interpreted as

sender’s contribution for the Diffie-Hellman key exchange protocol, namely g to the power

beta, where beta is a randomly picked, and c2 is the actual encryption of this random m cap

using the common Diffie-Hellman key g to the power alpha beta.

Now, that is not the encryption of the message, so till now what sender has done basically the

c1, c2, the sender has sent to the Seetha is an encryption of the random m cap, but the goal of

sender is to encrypt the plain text m, so what we do here is we assume that apart from the

description of the cyclic group generator group order and so on, we assume that we have a

description of a key derivation function H publicly available and assume that the key

derivation function maps the elements from the group g to the key space of the symmetric

key encryption scheme.

That sender is now going to use. So now, what sender is going to do is, senders know that by

sending c1, c2, to the Seetha. Sender knows that Seetha also will end up getting the common

key g to the power alpha beta and assuming the DDH assumption is true in the underlying

group, this key g to the power of alpha beta is going to be a random element from the group

from the view point of a computationally bounded adversary.

So what sender can now do is, it can derive our bit string key for the symmetric encryption

process by applying a key derivation function to this random element m cap and that key is

used to now encrypt the plain text m, which is a bit string and that is a actual encryption of

the plain text m, which sender wants to encrypt. The decryption at Seetha’s end has happened

as follows.

So for decryption, Seetha also needs to recover the same m cap, which sender has used to

derive the symmetric key k and m cap can be obtained by decrypting c1, c2 as per the syntax

of El Gamal encryption scheme and once m cap is recovered by Seetha, what Seetha can do,

she can also apply the same public key available key derivation function on m cap and once

m cap is recovered, she can decrypt the c component of the cipher text as for the decryption

algorithm or the symmetric key encryption process and recover m.

So, that is how you can interpret a hybrid version of El Gamal public-key cipher. So

pictorially what is happening is here that as I said earlier c1, c2 is the public key encryption

of the symmetric key, where is the c component here is the actual private key encryption of

the plain text. However, if you pause here for a moment, the above idea of encrypting the

random group element by sender and deriving a key from it is an overkill.

So, what is happening here is sender is using a random group element m cap, encrypting it as

a whole using El Gamal encryption process, and then deriving that m cap for symmetric key.

So that is an overkill here. A close observation tells you that it is suffice for the sender to just

send g to the power beta. It need not have to send c2. It is suffice for the sender to just send g

to the power beta.

Because the sender knows that if it sends g to the power beta, which can be reviewed as if it

sender is sending his part of the Diffie-Hellman key exchange protocol message, then it

knows that by sending g to the power beta, both Seetha and Ram will end up agreeing all g to

the power alpha beta and assuming DDH assumption is true in the underlying group. We

know that g to the power alpha beta will be random in the view point of the adversary.

Hence the key k can be derived from the g to the power alpha times beta instead of deriving

the key from the random element m cap, because if we do this instead of using the approach

that we have seen till now, we do our saving here. We need not have to pick the random

element m cap and we do not need to encrypt m cap, hence we do not need to send c2, and

overall size of the cipher text will get significantly reduced and that will also lead to saving in

the bandwidth as well, because if we do not need send the c2 that means we do not need to

send an extra group element to encrypt the message.

(Refer Slide Time: 11:22)

Even though we have seen an instantiation of Hybrid El Gamal cipher here, it turns out that

this approach is an overkill. So what we are going to do now is now motivated by the

discussion here that, it is suffice for the sender here to just send g to the power beta and a

derive a key g to the power beta, what we are going to do is we are now going to derive a

new primitive, which we call as Key-Encapsulation mechanism or KEM and then we will see

that how we can get more efficient Hybrid encryption using this KEM.

So, to make my point clear the naïve way of Hybrid encryption that we have seen now is just

in the context of Hybrid El Gamal is as follows. So, at the encryption end what we were

doing is the sender was picking a random key for the symmetric key and it was getting

encrypted by the public key of the receiver to derive the cipher text c, which can be

considered as an encryption of the symmetric key.

And actual encryption of the message was done using the key k and this was kind of a two-

stage approach, where we were first choosing our random symmetric key and then using it for

the public key encryption process. More efficient approach will be done using a primitive,

which we are going to define it soon which we call as key encapsulation mechanism where

both these two things are done in a single shot in a single state.

And the advantage here is that not only it is conceptually simpler, but in many cases it is

more efficient and to understand that how exactly KEM is going to be efficient compared to

this two stage approach, you can see what we have seen just now in the context of Hybrid El

Gamal. The naïve way of implementing El Gamal senders was picking a random m cap

deriving the key and m cap was whole encrypted using the El Gamal encryption process.

But later we argued that the sender need not have to do that. It can carry out Hybrid

Encryption even by just sending g to the power beta to the receiver. So, this key

encapsulation mechanism or KEM is key space is a collection of three algorithms. It will

have a Key Generation algorithm, which will output a public key and a secret key, and it will

have an encapsulation algorithm, which takes no plain text as an input.

It has an external input, namely the public key pk, but apart from that it does not take any

plain text, and it has a internal randomness and it gives you two outputs. It outputs a key from

the key space and it outputs an encapsulation of the key, which we call as c. The de-

capsulation algorithm takes an encapsulated key, which I denote as c, and the secret key sk,

and it de-capsulates the key, which is hidden there or encapsulated in the c end, and it gives

you back the encapsulated key as the output namely key k.

So, I stress here that encapsulation algorithm and the de-capsulation algorithm have

completely different goals and properties compared to encryption and decryption algorithm

of a public key encryption process. As you can see here, the encapsulation algorithm does not

take any plain text. Even without taking any plain text, just based on internal randomness, it

gives you an output key k, and an encapsulation of that key k, which I denote as c.

But that c should not be taken as an encryption of k and in the same way, the de-capsulation,

it does not take a cipher text 2 for decryption. It takes a c it has to de-capsulate and it has to

take out the key k, which is hidden there in the c. So, it turns out that the naïve way of

coming up with KEM is to just take any public-key encryption scheme and the encryption

encapsulation algorithm can be as follows.

Internally, we generate a random group element and encrypt it as per the public key

encryption process that can be the encapsulation process. In the same way, the analog is

decapsulation process can be decrypt the group element that we have just we have encrypted

using the public key encryption process, but it turns out that, we can have more efficient

instantiation of encapsulation and de-capsulation.

Now, assume for the moment we have such an encapsulation and decapsulation mechanism,

then instead of doing the naïve way of Hybrid Encryption, we can do on Hybrid encryption as

follows. The sender can run the encapsulation algorithm using the description of the public

key and it will obtain the encapsulation of the key and key k, and key k is used to encrypt the

plain text using the symmetric key encryption process to obtain the cipher text c dash.

And overall cipher text will be the encryption of the c dash plain text along with the

encapsulation of the key k, which is used to encrypt the plain text, but the key k will not be a

part of this cipher text. So, the symmetric key encryption scheme, which we are now using in

this modified way of doing Hybrid encryption is called as a data-encapsulation mechanism or

DEM. So, now we can see we have two kind of encapsulation happening. One capsulation is

for encapsulating the key and that will be denoted by c, and we will have the encapsulation of

the actual data, which we will denote as c dash.

(Refer Slide Time: 16:30)

So, now let us define the COA and CPA security of key encapsulation mechanism, so

imagine we have given a key encapsulation mechanism and when I say that it achieves COA

security, which actually means security in the public-key domain, then we require the

following should be ensured. Imagine, there is a receiver who has run the Key Generation

algorithm of the m caps KEM.

And it has made the public key available and say there is a sender, which picks the public

key, runs the encapsulation algorithm under the public key and obtains the output c, k and the

encapsulation of the key c is sent to the receiver and say there is an (()) (17:10) the

encapsulation of the key, basically we require that even after knowing the description of the

encapsulation process, de-capsulation process and while (()) (17:25) who has computationally

bounded from its view point.

The encapsulation c should be independent of the actual k, which is encapsulated in c, and

this is modeled by a COA experiment played between a computationally bounded adversary

and a challenger and the challenger does the following. It runs the Key Generation algorithm,

obtains pk, sk and runs the encapsulation algorithm and obtains the output c, k, and now it

prepares the challenge as follows.

It tosses a fair coin. If the coin tosses 0, then it picks k cap randomly from the key space of

the key encapsulation mechanism. On the other hand, if the coin tosses 1, then the key cap is

said to be same k, which is encapsulated in c and now the challenge for the adversary is as

follows. The adversary is given the public key, the encapsulation c and k cap and the

challenge for the adversary is to identify whether k cap is related to c or not, whether k cap is

the same key, which is encapsulated in c namely b equal to 1 or whether k cap is a totally

independent element independent of the key, which is encapsulated in c, namely b equal to

zero.

This exactly models the requirement, which we wanted to capture or ensured by a secured

key encapsulation mechanism. So the adversary outputs a b, namely it tells whether k cap is

generated as per the method b=0 or whether b=1, and the rules of the game here is that we

say that the adversary has won the game meaning that the output of the experiment is won, if

and only if b dash equal to b, and we say that our key encapsulation mechanism is COA-

secure if for every polytime adversary.

There exist a negligible functions such that the probability of the adversary winning the game

is upper bounded by half plus negligible probability or equivalently saying that, the

distinguishing advantage of the adversary is negligible, namely it does not matter whether k

cap is generated as per method b = 0 or as method b=1, the output of the adversary should be

almost the same except with negligible probability in both the cases.

The reason I am calling it COA security as well CPA security because since we are in the

public key world, and the public key is explicitly given to the adversary, that the adversary

need not have to get any encapsulation oracle service from the challenger. It can run the

encapsulation algorithm using the public key pk on its own on any randomness, and generate

any kind of c, k.

Our goal is to ensure that even if it has got encapsulation of oracle service explicitly, still it

should not be able to figure out whether k cap is related to c or not. Now, what we are going

to discuss here is a very interesting result. We are going to show that, if you are given a key

encapsulation mechanism, which is COA-secure, then combining it with any symmetric key

cipher, which is COA-secure, you can obtain a CPA-secure Hybrid encryption process.

So, imagine you are given a key encapsulation mechanism, and you are given a symmetric

key encryption process, and say we combine these two primitives to obtain a Hybrid

encryption process is as follows. So, the Key Generation algorithm or the Hybrid process

basically runs the Key Generation algorithm or KEM, and outputs the public key and secret

key. The encryption algorithm of the Hybrid process takes a plain text m and the public key

pk, and internally it does the following.

It runs the encapsulation algorithm obtained k, c, and using the key, it runs the symmetric key

encryption algorithm on the plain text m, and obtains the cipher text c dash, and the overall

cipher text is the encapsulation of the key and the encapsulation of the data, namely c, c dash

and the decryption happens in the hybrid process analogously, namely if you have the secret

key s, k and a cipher text c, c dash.

Then you first de-capsulate the encapsulation of the key, and obtain the encapsulated key k

and then using the key k, you decapsulate the c dash component of the cipher text, by running

the decryption algorithm of the symmetric key encryption process and output the m as the

plain text. What we are going to formally prove is that if your KEM is COA-secure and if

your symmetric key encryption process is COA-secure.

Then this overall way of combining and obtaining a Hybrid encryption process is going to

give you a public key CPS-secure Hybrid encryption process and this is quite surprising

because what we are trying to prove here is that COA-security in the symmetric key world

when combined with a COA-secure KEM gives you a CPS security in the public key domain

and this is surprising because in the symmetric key world we have seen that COA security

and CPS security are not equivalent.

The intuition behind this theorem is as follows. If you see the encryption process of this

hybrid encryption scheme, every time I want to encrypt the same message m using the public

key pk. I am going to use a different encapsulated key because my encapsulation algorithm is

going to be COA-secure or CPS-secure. It will not produce the same k again and again, and

since my encapsulated key is going to be different, that means the private key encryption

which I am using inside this Hybrid encryption process is using a fresh key for each instance

of the encryption process.

So that is the overall intuition behind the proof of this theorem, that means, to instantiate this

framework, to instantiate the symmetric key part of encryption and the decryption, we can

just use any string cipher. So, let us try to prove this theorem, and before going into the proof

of this theorem, let us first see how exactly the instantiation of the CPA game against this

hybrid encryption process will look like.

Imagine, we have an adversary A who is polynomially bounded, then CPA game and COA

game to be more specific, remember in the public key world, COA and CPA security are

same, so the rules of the game will be as follows. The challenger will run the Key Generation

algorithm namely the Key Generation algorithm of the encapsulation mechanism obtain the

key pair pk, sk, the public key pk will be given to the adversary, which basically gives the

adversary encapsulation oracle surveys on any input of its choice.

Adversary submits a pair of challenge plain text m0, m1. One of them is randomly encrypted,

used decided for encryption. To encrypt the challenge plain text, the challenger runs the

encapsulation algorithm under the public key, obtain the encapsulated key k, and

encapsulation of the key c, and then using the encapsulated key, it runs the symmetric key

encryption algorithm to encrypt the challenge plain text mb and obtain the cipher text c dash.

And now the challenge cipher text for the adversary is the encapsulation of the key and the

actual encryption of the message mb. The challenge for the adversary is to identify whether it

is seen c*, which is encryption of m0 or m1, and it will submit its output and our goal is to

show the following. Our goal is to show that for any polytime adversary participating in this

experiment, the distinguishing advantage of this experiment is upper bounded by some

negligible function, and we are going to prove that using Hybrid argument.

The reason we are going to use Hybrid argument is that we are now having two primitives

which are involved here. We are using KEM as well as symmetric-key encryption process

and hence we cannot directly reduce the overall security of the Hybrid encryption process to

the security of any of this underlying primitives. Remember, our goal is to prove this claim,

namely the distinguishing advantage of the attacker is upper bounded by some negligible

function.

We now to prove this claim, what I do here is I consider two versions of this

indistinguishability game, the CPA indistinguishability game depending upon whether the

challenger has used message m0 for encryption or whether the challenger has used message

m1 for encryption. So, we can imagine that this COA game against the Hybrid encryption

process can be viewed as a combination of two experiments, which I denote as H sub 0 and H

sub 1 and each of these experiments can occur with probability 1/2.

In the experiment H sub 0, it is basically the version of the COA game where the challenger

has picked up the message m0 for encryption and the experiment H1 is the instantiation of the

COA game where the challenger has picked the message m1 for encryption, and since our

goal is to prove this claim namely the distinguishing advantage of the attacker is negligible,

our goal is to show that of from the view point of the attacker H0 and H1.

These two experiments are computationally indistinguishable, that means, with almost equal

probability, adversary is going to output 0 in experiment H0 as well as the experiment H1.

We have to prove that what we are going to do is, we are going to introduce two hybrid

experiments here, which I denote as H dash sub 0 and H dash sub 1, and H dash 0 is almost

the same as the experiment H sub 0.

The only difference here is that the message m0 is now encrypted using a completely random

key from the keyspace of the symmetric key encryption process, instead of using the key k,

which was encapsulated in the encapsulation c in the experiment H0. In the same way, if I

consider the experiment H dash sub 1, it is different from experiment H sub 1 in the sense,

that here a totally independent random key is used for encrypting the message m1, compared

to the experiment H1 where the key k, which was used to encrypt the message m1, was

encapsulated in the encapsulation.

So, these are the differences in the experiment H dash sub 0 and H dash sub 1. Now, my

claim is that experiment H0 and experiment H dash sub 0, they are computationally

indistinguishable from the view point of any computationally bounded adversary, namely I

claim here that if I take the absolute difference between the probability of the adversary a

outputting 0 and experiment H0, and outputting 0 in the experiment H dash 0, it is upper

bounded by negligible probability and this is because of COA security of the underlying key

encapsulation mechanism.

Namely, I can formally prove that if my underlying key encapsulation mechanism is COA-

secure, then it does not matter whether my challenger uses totally independent key from the

key space of the symmetric key encryption scheme for encrypting the message or whether it

is using a key, which is generated by running a key encapsulation KEM. From the view point

of the adversary, that C dash could be an encryption produced by both kind of case.

It cannot distinguish a part whether it is seeing C dash of type H0 or whether it is seeing c

dash of type H dash sub 0. We can formally prove that by reducing the security by the COA

security of the underlying KEM. I am not going into the exact proof of that. I will leave those

details for you as an assignment. Now, if I consider the experiment, H dash sub 0 and H dash

sub 1, I can say that they are computationally indistinguishable from the view point of any

polytime adversary and this follows from the COA -security of the underlying symmetric-key

cipher.

Namely, if my underlying symmetric-key cipher is COA-secure, then it does not matter

whether the adversary is seeing an encryption of m0 or the adversary is seeing an encryption

of m1, it cannot distinguish apart. The rest of the information that adversary is seeing namely,

pk, c, c dash and so on, their distribution are exactly same in the experiment H dash sub 0 and

H dash sub 1.

So, basically I can say that this experiment H0 dash and H1 dash, they are basically the two

versions of the COA indistinguishability game for the underlying Symmetric-key Cipher and

if my underlying COA Symmetric-key Cipher is COA-secure, then I know that from the view

point of this computationally bounded adversary a, the experiment H0 dash and H1 dash are

same.

Finally using the same argument, which I used to show the computational indistinguishability

of H0, and H0 dash, I can say that the experiment H1 and H1 dash, they are computationally

indistinguishable because it follows from the COA security of the underlying KEM. Now, by

using the triangle inequality, I can end up showing that if I sum these three inequalities, I end

up showing that if I take the difference of the adversaries advantage or adversaries probability

of outputting 0 in H0 and H1, then that is upper bounded by the summation of three

negligible probabilities.

We know that by closure properties of negligible function, summation of any three negligible

function in the security parameter is also a negligible function, which ends up showing that

experiments H0 and H1, they are computationally indistinguishable, which proves that we

now have a generic construction of CPA-secure Asymmetric-key Cipher.

(Refer Slide Time: 31:47)

So, now let’s see an instantiation of KEM based on Diffie-Hellman problems, so the public

set of pair is the description of generator of a cyclic group, group order and so on and apart

from that, we have the description of our key derivation function mapping the groups element

to the key space of the underlying symmetric-key encryption process. To do the key setup,

basically receiver runs her part of the Diffie-Hellman key exchange protocol.

So she picks her random alpha as a secret key and a public key is g to the power alpha and

now to do the key encapsulation, basically any sender has to do the following. It will run his

part of the Diffie-Hellman key exchange protocol namely compute random beta and pick a

random beta and compute g to the power beta and now map the element g to the power alpha,

beta to an element of the key space of the symmetric encryption scheme by running the key

derivation function, so that will be the encapsulation of the key.

The decapsulation happens as follows. What the receiver does is, it runs her part of the

Diffie-Hellman key exchange protocol to compute the agreed upon key, namely g to the

power alpha and beta and apply the key derivation function on that derived group element to

obtain back the key, which was encapsulated in c. This is basically the same thing, which we

have discussed during the instantiation of our Hybrid El Gamal encryption process.

Now, it turns out that security of this KEM depends upon the underlying properties of the key

derivation function and appropriate DH problem. If we are in the Random-oracle model,

namely if we assume that this key-derivation function is modeled as Random-oracle, and if

you assume that the CDH problem is difficult to solve, then we can prove that this KEM is

CPS-secure.

And the intuition for that is if the adversary has not queried for the value of the Random-

Oracle on the input g to the power alpha, beta, then the resultant output k is random from the

view point of the adversary because that is what is the property of Random-oracle. Now,

what is the chance that the adversary would have queried for g to the power alpha beta, given

that it only knows the public key g to the power alpha and encapsulation of the key namely g

to the power beta.

Well, that is precisely the probability, which it can solve an instance of the CDH problem and

that is why if we assume that the CDH problem is difficult to solve, this construction is

secure in the Random-Oracle model. On the other hand, if you want to make a stronger

assumption, namely if you are assuming that the DDH problem is difficult to solve in your

group, then we do not require this key derivation function to be modeled as a Random-oracle.

We can just model special type of function. This is because the DDH assumption says that

even if there is a polytime adversary, which has seen the public key g to the power alpha and

encapsulation of g to the power beta, the resultant g to the power alpha beta could be any

random element from the view point of the computationally bounded adversary. Now, it is

suffice for the underlying key derivation function to be a special type of function, which

distributes the group element almost evenly among the elements of the key space of the

symmetric key encryption process.

What I mean by that is, if I consider if this is my group g, and if this is my set fancy K, and

the number of elements, which map to a candidate element from this key space, the number

of group elements which map to this one candidate element from this key space should

almost be the same. There should not be any bias in the distribution or in the mapping by

which this function H is mapping the elements of the group to the elements of the key space

of my symmetric key encryption process.

If I assume that my underlying key derivation function has that kind of smoothing effect, then

it is suffice for me to just remain in the standard model and claim the security of this key

encapsulation mechanism, just based on the DDH assumption. Now, you can see the

importance of assumptions that we are making throughout this course. Same construction

here can be proved secure in with weaker harder assumptions, namely CDH assumption.

But with a more powerful properties from the underlying hash function, namely assuming it

is acting as a Random-oracle whereas if you do not want to model your underlying hash

function as a Random-oracle. You want to model it as a special type of smooth distributing

function, then you need to have a more powerful hardness assumption in your underlying

group, namely you need to have the DDH problem difficult to be solved in your underlying

group.

So, that brings me to the end of this lecture. Just to summarize in this lecture, we have

introduced Hybrid encryption process and we have discussed the CPS-security of Hybrid

encryption process. We also saw a generic construction of how to combine a CPS-secure or a

COA-secure key encapsulation mechanism along with any COA-secure security encryption

process and get an overall CPS-secure Hybrid encryption process. Thank you.

