
Foundations of Cryptography

Dr. Ashish Choudhury

Department of Computer Science

Indian Institute of Science– Bangalore

Lecture – 46

RSA Public Key Cryptosystem

Hello everyone. Welcome to this lecture.

(Refer Slide Time: 00:34)

Just to recap in the last lecture, we had introduced the RSA assumption. So, we will continue

our discussion with RSA assumption, specifically the road map for this lecture is as follows.

We will see a generic construction of a public-key cryptosystem from any given One-Way

Trapdoor Permutation. We will see how we can instantiate this framework whereby using the

RSA Trapdoor Permutation to get the RSA public-key cryptosystem, which we also call as

the plain RSA public-key cryptosystem. We will see several attacks on the plain RSA public-

key cryptosystem. Then, we will see the COA or CPA-secure variant of RSA public-key

cryptosystem.

(Refer Slide Time: 01:18)

Finally, we will end the lecture with some implementation issues which we face when we

implement RSA in practice. So, let us begin our discussion with a generic framework

regarding how we construct a Public-Key Cryptosystem from any One-Way Trapdoor

Permutation. So, just to recall what is a One-Way Trapdoor Permutation scheme is. It is a

collection of 3 algorithms.

We have a Parameter Generation algorithm, which outputs a public parameter and a secret

parameter, which you can call as public key and secret key, then the function f is a two input

function. It takes the public key pk, and the input from the domain fancy X and it gives you

an output from the set fancy X and it is always a Deterministic algorithm. On the other hand,

an inverse function, it is said to input a function taking the secret key sk, and input from the

co-domain, which you want to invert, and it gives you an output from the domain of the

function f.

And also this is a Deterministic algorithm. We need two properties from any One-Way

Trapdoor Permutation Scheme. The first property is the Correctness property, which requires

that for every pair of keys output by the Parameter Generation algorithm and for every input

x, if you compute the value of f(x), and then you compute the inverse of that function with

respect to the secret key sk, then you should get back the output x.

The second property which is the Security property is the one when its requirement. It

demands that your function f sub pk should be a one-way function against a computationally-

bounded adversary even if the adversary knows the description of the public key and steps of

your function f. Now, given such One-Way Trapdoor Permutation Scheme, our goal is to

construct a Public-Key Cryptosystem, which has a Key Generation algorithm, encryption

algorithm, and decryption algorithm over the plaintext space, namely the set fancy X, and this

is done as follows.

So the Key Generation algorithm of your encryption process will be basically to run the

Parameter Generation algorithm of your Trapdoor Permutation Scheme and obtain the public

key and secret key pk, sk, and we set the pk as the encryption key, and we set sk as the

decryption key. To encrypt a plain text m with respect to the public key pk, what we do is, we

just compute the value of the function f with the key pk on the input m.

So, sorry for the typo here. This x should be m because we want to encrypt the plain text m.

So this is a typo here, so if we want to encrypt a plain text m, then we evaluate the value of

the function f using pk as the public key on the input m, and the resultant output, which I

denote as y is considered as the cipher text. On the other hand, if we want to decrypt a cipher

text using a secret key sk, then what we have to do is, we have to call the inverse function of

the Trapdoor Permutation Scheme on the input c using the secret key sk to recover back the

plaintext x.

(Refer Slide Time: 04:24)

So, let us instantiate this framework using the RSA One-Way Trapdoor Permutation. So,

remember in the last lecture, we have seen that RSA Permutation can be considered as a One-

Way Trapdoor Permutation Scheme and the details of the RSA Trapdoor Permutation

Scheme are as follows. So the Parameter Generation algorithm for the RSA Trapdoor

Permutation is as follows. It runs the GenModulus algorithm and outputs primes p and q of

size m-bits and modulus N, where N is the product of p and q.

Then it computes the value of phi(N), namely the size of the set ZN* where phi(N) will be

the product of p-1 x q-1. Then it selects e, which is greater than 1 such that e is co-prime to

phi(N) and since e is co-prime to phi(N), we can compute the multiplicative inverse of e

modulo phi(N), which we denote as d and once we compute all these values, then the public

key pk is said to be N, e whereas the secret key sk is said to be N, d.

The RSA function, which takes an input x from the set ZN* is computed as follows. To

evaluate the values of the RSA function, using the public key N, e, we basically compute our

output x to the power e modulo N, and x to the power e modulo N will also be an element of

ZN*. On the other hand, if you want to invert the RSA function on some input y belonging to

ZN* using the secret keys N,d, then we basically output y to the power d modulo N.

So, that is what is the RSA One-Way Trapdoor Permutation Scheme assuming the RSA

problem is difficult to solve with respect to the GenRSA function, then we have proved, we

had seen in the last lecture that we can use this RSA Trapdoor Permutation as a candidate

One-Way Trapdoor Permutation. Let us instantiate the framework that we had seen in the last

slide by using the RSA Trapdoor Permutations.

So we get what we call as RSA Public-Key Cryptosystem over the plaintext space ZN*. So,

the Key Generation algorithm for the RSA Public-Key Cryptosystem is UV lambda GenRSA

algorithm of the RSA Trapdoor Permutation, and we set N, e to be the encryption key and we

set N,d as the decryption key. So the receiver will know N and d to decrypt a cipher text

whereas the public key N, e will be available in the public domain.

If there is a sender, which wants to encrypt a plaintext m using the public key N, e then it has

to basically compute the RSA function on the input m, which is nothing but the computing

the value of m to the power e modulo N. On the other hand, if a receiver receives cipher text

c, then using the secret key N, d, it can decrypt a cipher text c, it has to basically compute the

inverse RSA function and output y to the power d modulo N. So, the correctness of this RSA

cryptosystem follows from the correctness of the generic framework that we have discussed

in the last slide.

(Refer Slide Time: 07:33)

Now, let us focus on the security of the RSA cipher that we have just constructed and

imagine that we have a receiver, which runs the Key Generation algorithm of the RSA cipher

that we have discussed, obtains the public parameter N,e and a secret parameters N,d, and it

makes its public key N, e available in the public domain, and say there is a sender, which has

a plain text m belonging to ZN*.

Which it wants to communicate to the receiver, then as per the syntax of the RSA Encryption

Scheme, it computes a cipher text, which is m to the power e modulo N and cipher text is

communicated to the receiver and assume we have a polytime or computationally bounded

(()) (08:17) the cipher text. Now, one might be wondering that whether the following security

argument is sound or not.

We can say that if there is an adversary who has (()) (08:29) the cipher text c and its goal is to

recover the underlying plain text m, which is encrypted in c, then basically it has to solve an

instance of RSA problem because this adversary only knows that description of N, e and he

does not know the underlying m, and he does not know the secret key d. So, recovering m

from c is equivalent to solving an instance of RSA problem.

And hence if you assume that the RSA assumption holds with respect to the GenRSA

algorithm that the receiver has run, then we can argue that this scheme should be secured, but

it turns out that this informal argument is completely flawed here. There is intuition that

recovering the underlying plain text from the cipher text is equivalent to solving an instance

of RSA problem is completely a flawed argument and there are many reasons for doing that.

There are many reasons behind this flaw. The first major flaw is that if you look closely into

the RSA assumption, it holds only if the underlying m, which is encrypted in c, is uniformly

randomly chosen from the set ZN*, which may not be (()) (09:38) in practice. In practice,

sender might have any kind of plaintext belonging to ZN*, which might be encrypting and

producing the cipher text c whereas for RSA assumption, we need that underlying m should

be a random element from the ZN*.

The second flaw here is that, even if you assume for the moment that sender is encrypting

messages, which are random elements from the set ZN*, and hence the RSA assumption

hold, the whole encryption process that the sender is using now is deterministic. There is no

internal randomness, which is there as part of the encryption algorithm. That means, if the

same sender wants to encrypt the same message m multiple times using the same public key

N, e.

Then it will end up getting the same cipher text c and throughout this course, we have

regressively analyzed that how unsafe it is to use a deterministic encryption process. We can

never hope that an encryption process can be CPS-secure if we are using the Deterministic

Encryption process. These are the two security flaws, which are there with the so called RSS

cipher that we have designed.

(Refer Slide Time: 10:51)

It turns out that apart from this short coming that your RSA encryption process is

deterministic, we can show several attacks on the Plain RSA Cipher, so assume for the

moment, we are using the RSA Cipher where the sender wants to encrypt random messages

from ZN*, and we do not want a semantic security, namely, we do not aim for

indistinguishability-based security. It suffice for us if adversary does not learn the entire

plaintext by (()) (11:25) upon the cipher text.

That is a notion of secrecy that we are aiming for right now, but for the moment assume that.

It turns out even if we go for this weaker notion of secrecy, namely all or nothing kind of

secrecy, then there are several attacks which can be still launched on the Plain RSA Cipher.

So, the first class of attacks is basically what we call as encrypting short messages using

small encryption-exponent e.

So, it turns out that for many practical instantiation of RSA, we set the public exponent or the

encryption exponent e to be 3 to ensure that our encryption process is fast because if you see

the encryption, encryption is basically compute the eth power of plaintext modulo N, and if I

set e to be 3, then my encryption process will be very fast. It is fine that if I set e to be 3, then

my d will be very large and my decryption process running time will be slow.

But we can have some kind of tradeoff and for most of the many practical instantiation, this is

a common click, which is used to make the encryption process fast. Now, assume we are

using an instantiation of RSA, where we have set e to be 3, and say we are consider an

application where the underlying messages are random elements from ZN*, but the

magnitude of m is strictly less than the eth root of the modulus N.

And if you are wondering that what kind of applications encounters such kind of m, if later

on we will see the Hybrid RSA encryption. Then the size of the modulus that we typically use

is of size 1024 bits, and the message that we would like to encrypt to the Hybrid RSA

encryption will be roughly a 300-bit uniformly random bit string and we will set e to be 3. If

that is the case, then the cipher text will be m3 modulo N.

But since my magnitude of m is strictly less than the cube root of m, m to the power e or m to

the power 3 modulo N will be equivalent to the integer cube and the effect of mod N will not

take place at all and if adversary is aware of the fact that we are using an application with

underlying plain text, it is magnitude is strictly less than the cube root of modulus N, then it

also will be aware that the underlying m, which has been encrypted.

Its cube is actually contained in the cipher text c, namely the integer cube not the modulo

cube, and it is very easy to recover the underlying unknown m from the c by just finding the

integer cube root of the cipher text c, which can be computed in poly of the size of modulus

N amount of computation.

(Refer Slide Time: 14:14)

So that is our first class of attack, and we can have many other kinds of attack possible on

Plain RSA Cipher, so imagine for the moment that we are considering an application where

the same message needs to be encrypted and sent to multiple receivers. So, imagine if we say

we have 3 receivers, receiver 1, 2, and 3 each of it has his own modulus N1, N2, and N3

respectively.

But each of them is using a same public exponent say 3, and of course a different decryption

exponent d1, d2, and d3 where d1 is the multiplicative inverse of 3 modulo N1, d2 is the

multiplicative inverse of 3 modulo N2 and so on. So, the public key, which is available in the

public domain are the respective public keys of the 3 receivers and imagine that we have a

sender, which has a random message belonging to ZN1*, as well as ZN2*, as well as ZN3*

randomly chosen and say it wants to encrypt and send a same message to the 3 receivers.

So, it will compute C1, which will be the m3 modulo N1, C2, which will be m3 modulo N2

and so on. Now, assume that this modulus N1, N2, and N3, they are pair-wise prime. If not

suppose for instance, the GCD of Ni and Nj is not 1, they are not co-prime to each other, that

means there exist a common factor of Ni and Nj, then using that common factor, it is

computationally easy to factorize either the modulus Ni or Nj and say for instance if Ni is

factorizable, and since Ei is also publicly known and if we know Ni’s factors.

We can compute the value of phi(Ni) and once we know phi(Ni) and Ei, we can compute the

value of di in polynomial amount of time and if di is computable, then any encryption which

is intended for the ith receiver can be decrypted by the adversary. So, it is safe to assume for

the moment that pair wise, all the modulus N1, N2, and N3, they are co-prime to each other.

Now, let me define a bigger modulus N*, which is the product of all the three modulus here,

namely N1, N2, and N3, and since my underlying plaintext m, which is the sender has

encrypted belongs to ZN1*, as well as ZN2*, as well as ZN3*, that means m is strictly less

than N1, it is strictly less than N2, it is strictly less than N3, that means the integer m3 will be

strictly less than the bigger modulus N* and now what I can do is since my modulus N1, N2

and N2, N3, and N1, N3 they are co-prime to each other.

I can invoke a very nice result from the Number Theory, which we call as the Chinese

Remainder Theorem, which says that if your individual modulus N1, N2, and N3 they are co-

prime, then it is possible to compute the integer value m3 in polynomial amount of time,

polynomial in the size of the respective modulus N1, N2, and N3 such that the recovered m3

basically satisfies the system of following modular equations.

So, you are given the value c1, which is some integer m3 modulo N1, where m3 is not

known, and you are given c2, which is same unknown m3 modulo N2 and you are given the

value of c3, which is the same unknown m3 modulo N3, and if your N1, N2, and N3, the

respective modulus they are co-prime to each other, then what basically the Chinese

Remainder Theorem says is it is possible to recover that unknown m3 in polynomial amount

of computation.

Then, by applying the Chinese Remainder Theorem, an adversary who has (()) (18:12) these

three cipher text c1, c2, c3, can apply the Chinese Remainder Theorem, and recover the

unknown m3, and once the unknown integer m3 is recovered, it can find out the exact m. So,

again this is another attack, which is possible on the Plain RSA Cipher even if we assume that

a sender’s message, which is a randomly chosen value from the underlying ZN* set. It turns

out that there could be several other possible attacks, which can be launched on the Plain

RSA encryption process.

(Refer Slide Time: 18:48)

So, this brings us to the concept of what we call as Padded RSA public-key cryptosystem and

basically the general idea here is that, we have seen already that the Plain RSA encryption

process is a Deterministic Encryption process. There is no internal randomness hidden and if

there is no internal randomness, then we can never hope to achieve CPS security.

So, the idea behind the Padded RSA encryption process is that we tried to append some

random bit-strings to the plaintext bits, which we want to encrypt and convert everything into

a group element in the set ZN*, and then we apply the RSA function for encryption. On the

other hand, the decryption end, we will chop off the random bit strings, which we have added

to the plain bit strings before encryption and then that will be the recovered plaintext.

So, pictorially what we are trying to do here is the following. So, imagine that a receiver has

done the public key setup. It has made its public key N, e publicly available where the size of

the modulus N is little n-bits. Then, the idea here is that the Padded RSA encryption process,

it will take another parameter l and the size of the plain text, which is Padded RSA encryption

process will support will be of size n-l-1 bits, that means.

You can encrypt any message in the set 0,1, raise to the power n-l-1 bits, and the remaining l

bits are reserved for randomness, so before encryption, imagine you have a message m, along

with that you pad little l bits of randomness, which will be uniform randomness and you will

be left with 1 more bit, which we by default keep it as 0. If we do padding like that, and if we

ensure that the resulted bit string, which will be of now length l bits, which we denote as m

cap, we interpret it as an element of ZN*.

So, it might be possible that the resultant m concatenated with the randomness that we have

appended, may not lead you to an element of ZN* and if the resultant element is not an

element of ZN*, then it might look like that the RSA encryption function and RSA

decryption function they need not be mutually an inverse function of each other. However, it

turns out that even if the resultant m cap is not an element of ZN*.

But it belongs to ZN, it is suffice for us to apply the RSA function, but the encryption end

and to apply the RSA decryption function at the decryption end. The Correctness property

will still hold if the padded M when interpreted as a group element does not belong ZN*, but

rather belong to ZN. The Correctness property that is there with respect to the RSA forward

direction function and inverse function will still hold.

We will prove that at the end of this lecture, but for the moment assume that the padded

message N, which I denote by m cap is an element of ZN* and then once we have m cap, we

encrypt the message m cap or the group element m cap, we apply the RSA function, compute

m cap raise to the power e modulo N, and at the decryption end, the receiver who has the

secret key N, d. It will apply that RSA inverse function, namely it will compute c to the

power d modulo N and it will recover the group element m cap.

And since it knows the value of l, l here is a system parameter, it will be known both to the

sender as well as the receiver and it will be publicly available. So, what the receiver can do is,

it can parse the recovered m cap as 0 followed by a plain text of length n-l-1 bits followed by

a randomness of l bits and it can simply ignore the randomness part and the remaining n-l-1

bits is considered as the recovered plain text. So, as I said here, l is the publicly known public

padding parameter, which is available both to the sender, receiver, and to any third party.

Now, it turns out that an adversary who is aware of the value l can launch a Brute-force

attack over the amount of randomness or over the actual randomness, which has been padded

at the sender’s end before encrypting the message and complexity of the Brute-force attack is

basically order 2 to the power O, 2 to the power l because there could be 2 to the power l

number of candidate values of r, and overall those candidate randomness adversary has to

perform a computation of order 2 to the power l.

That automatically implies that if your l is too short, that means the amount of randomness

slot that is available in your version of padded RSA is too short for instance, it is of order log

of l, then it is computationally easy to recover the underlying m because a Brute-Force of the

order 2 to the power log n is equivalent to a computation of order n, which is polynomial in

the security parameters.

So too short size of l is dangerous. On the other hand, if you reserve a huge amount of slot for

the randomness, but little slot for the actual plain text, which you want to encrypt, then you

can hope for a possible CPS security for the resultant instantiation of the padded CRSA, but

the disadvantage will be that the actual message that we are going to encrypt, namely the

actual bit string of length n-l-1 will be very short.

So, we have a kind of trade-off here and it turns out that there several practical RSA

standards, which are available in the literature with different values of l, but unfortunately

most of them do not have any kind of security proofs. However, we will use this blue print

and we will later return to the CCS-secure versions of RSA public-key cryptosystem, where

we will retain this blue print and they are also the idea will be that we will take the actual

plain text, which is a bit string appended with some random pad.

Then convert everything either as an element of ZN*, or an element ZN, and encrypt it as per

the RSA function, and the decryption end, we do the reverse operation. The kind of padding

that we use that will ensure that we get a CCA-secure version of RSA public-key

cryptosystem.

(Refer Slide Time: 25:18)

Finally, let me end this lecture with something related to the message space of ZN and for

that let me first state a property from the well-known theorem from Number Theory, which I

will not prove, which we also call as Fermat’s Little Theorem, and what Fermat’s Little

theorem basically says that if p is a prime, then for every integer a, which is not divisible by

p, namely for every integer a such that a modulo p is not 0, then a to the power p-1 modulo p

is 1. This holds for every integer a, which is not divisible by the prime p.

Now, what we are going to prove using this Fermat’s Little theorem is that imagine if you

have a modulus N, which is the product of two distinct primes p and q, that means you are

phi(N) is nothing but the product of p-1 and q-1 and say you have two integers e, d such that

e and d are multiplicative inverse of each other modulo phi(N). That means, ed modulo

phi(N) is 1.

Then what we are going to show is that for every x in the set ZN, x to the power ed modulo N

is going to give you x, equivalently this means that x to the power ed minus x is completely

divisible by n. That is what we are going to prove. It is easy to that these two conditions are

equivalent. If indeed, x to the power ed modulo N is x, that means, when I divide x to the

power ed/n, I get the remainder x.

That means, if I subtract the remainder x from x to the power ed, then the resultant number

will be completely divisible y. Before I go into the proof of this theorem, what exactly is the

significance of this theorem. The significance here is the RSA function and its corresponding

inverse function will work even if I have an x, which is not a member of ZN*, but rather a

member of ZN.

That means if you go and see the padded RSA where we are padding the bit string, which we

want to encrypt with a random pad and trying to interpret it as an element of ZN*, I said that

it may not be an element of ZN*, because to be an element of ZN*, the resultant element

should be co-prime to your modulus N, but that need not be the case here. Your m cap need

not be your co-prime to N, but that is fine.

This theorem says that even if you encrypt such m cap using the RSA function and try to

decrypt it using the RSA function, you will get back the right m cap. Of course, remember

that we have reserved the first bit in the pirated RSA to be 0, which automatically ensures

that m cap is definitely less than the modulus N and hence it is an element of ZN. So, let us

proceed to prove this theorem.

So we take case 1, so what basically we are going to do in this proof is we are going to prove

certain properties with respect to x modulo p, and symmetrically we are going to prove

similar properties with respect to x modulo q, and then we will combine these two properties

to arrive at the proof of this theorem. So, let us first consider case 1, where we are going to

see the properties of x modulo p.

And we can have two subcases here, if x modulo p is 0, that means if x is completely

divisible by p, then so is x to the power ed, and if x to the power ed is divisible by p and if x

is also divisible by p, then it implies automatically that x to the power ed minus x is also

divisible by p. So, that is sub case 1 and sub case 2 here is when x modulo p is not zero, that

means x is not completely divisible by 0.

And in this case, I can invoke my Fermat’s Little theorem, and I can say that x to the power

p-1 modulo p is 1, and now what I am going to do is, I am going to use the fact that ed

modulo phi(N) is 1. Remember, my ed modulo phi(N) is 1, and also my phi(N) is the product

of p-1 and q-1 and that means, I can rewrite my e times d as some multiple of p-1 times q-1

namely some k times (p-1) (q-1) +1.

Because ed gives the remainder 1 when divided by phi(N), and now what I can do is if I want

to find out the value of x to the power ed modulo p, I know that ed is nothing but K times p-1

x q -1 +1. So, I can rewrite x to the power ed, modulo p as x to the power p-1 whole raise to

the power K times q-1, and this +1 will contribute another x modulo p, so that is what x to the

power e modulo p will be and I know that x to the power p-1 modulo p is 1.

That means this thing is nothing but 1, and 1 raise to the power K times q-1 is going to give

me 1 only. That means, this entire first bracket is going to give me 1, so that means I can say

that x to the power ed modulo p is nothing but x modulo p. That means with respect to x

modulo p in subcase 1, if x is already divisible by p, then I can say x to the power ed minus x

is completely divisible by p.

And in the second sub case also, I am establishing that even if x modulo p is not 0, I have

established a x to the power ed modulo p, is same as x modulo p. So, that means both x to the

power ed and as well as x gives us the same remainder on divided by p, and as a result I can

say that their difference, namely x to the power ed minus x is completely divisible by p. It

does not matter whether x is divisible by p or not, I have established here that x to the power

ed minus x is completely divisible by p.

And symmetrically, I can do the same argument for x modulo q as well. So with respect to x

and q, I have 2 subcases. If x is already divisible by q, then so is x to the power ed, and hence

I can easily conclude that x to the power ed minus x is completely divisible by q. On the other

hand, for the case when x is not divisible by q, I can apply Fermat’s Little Theorem here, and

I can say that x to the power q-1 modulo q is 1.

And then using the similar argument that I have used for the case of module x and p, namely I

can use the fact that ed is K times (p-1) (q-1) +1, and then I can rewrite x to the power ed as x

to the power q-1 whole raise to the power k times p - 1, multiplied by x modulo q. I know

that since x to the power q-1, I know that overall it turns out to only x modulo q, that means

that x to the power ed, as well as x gives me the same remainder on divided by q.

And hence I can say that x to the power ed minus x is completely divisible by q. So these are

the properties that I have established now, that means I have shown that x to the power ed

minus x is individually divisible by prime p as well as by prime q. Since my primes p and q

are distinct, it automatically implies that x to the power ed minus x is also going to be

divisible by n, because n is my product of p and q and that establishes this theorem.

(Refer Slide Time: 33:01)

Now, let us see how we can apply the Chinese Remainder Theorem for fast RSA Encryption

and Decryption because this is a common crypt, which we use during the real-world

instantiation of RSA function, so if you see the RSA encryption function and decryption

function, then both of them requires modular exponentiation. To encrypt, we need to perform

a compute x to the power ed modulo n, and to decrypt we need to perform cipher text raise to

the power d modulo n.

Now even though we have not yet discussed the best known algorithms for computing

modular exponentiation, if time permits, we will discuss one of such algorithms in our

subsequent lecture, it turns out the best known algorithm for performing modular

exponentiation, modulo l-bit integer that requires amount of time, which is c times l cube,

where c is some constant.

That means, if my modulus N is of size l bits, then to perform both RSA encryption as well as

decryption function, I need to perform c times n3 operation. Now, what Chinese Remainder

theorem says is since l is a product of 2 primes p and q, where the two factors p and q are co-

prime to each other, then basically the Chinese Remainder Theorem gives you a bijection

namely a one-to-one on two mapping from the set ZN* to the Cartesian product of the set

ZP* and ZQ*.

Remember ZN* is basically the set of all integers in the range 1 to N-1, which are co-prime

to N, in the same way ZP* is basically the set 1 to p-1. Basically, the set of integers in the

range 1 to p-1 which are co-prime to p, but since p is prime, the set ZP* is nothing but the

entire set 1 to p-1 and in the same way, the set ZQ* is the entire set 1 to q-1. So what a

Chinese Remainder Theorem does is, it defines a very nice bijection from the set ZN* to the

Cartesian product of ZNP* and ZQ*, where any element little a, belonging to the set ZN*.

It is mapped to the following pair of elements. You take the remainder of a modulo p, and the

remainder of a modulo q. That will be the representation of the element a belonging to ZN*

in the set ZP*, and the set ZQ* respectively, and not only that what Chinese Remainder

Theorem basically shows is, tells you that if you are performing some computation in the set

ZN*, say if you are evaluating the value of f(a) modulo N.

Then the same computation you can carry over individually ZP* and ZQ* and you will get a

representation of the result of f(a) modulo N. That means instead of performing f(a) modulo

N, you can perform f(a) modulo p and f(a) modulo q, and that resultant pair of elements can

be considered as the representation of your result f(a) modulo N. So, that is how you can

interpret this Chinese Remainder Theorem bijection.

That means, if I consider a decryption function for the moment, I am assuming that my public

exponent e is 3, that takes care of the encryption part of the RSA function. RSA encryption

process will be very fast, if I set my e to be 3, but my problem will be my decryption. I want

to speed up my decryption process. Since, my decryption function requires me to compute y

to the power d modulo N, by applying the Chinese Remainder Theorem.

The element y to the power d modulo N, which is an element of ZN* can be interpreted as a

pair of elements, one from ZP* and another from ZQ*, where the representation from ZP*

will be y to the power d modulo p and representation from ZQ* will be y to the power d

modulo Q. Now, since y is relatively prime to p, as well as relatively prime to q, and if indeed

that is the case, it turns out that we can prove that y to the power d modulo p is same as y to

the power d modulo p -1 modulo p.

That means, in the exponent, I can reduce my exponent, d to d modulo p-1, and I call this

value to be y sub p, and the same holds for y to the power d modulo q as well. That is, in the

exponent, I can reduce the exponent e from d to d modulo q-1 and let me call this value to be

yq. That means, this y to the power d modulo N can be written as or expressed as the pair of

elements y sub p, y sub q as for the Chinese Remainder Theorem.

That means, if you know how to compute y sub p and y sub q, then using the Chinese

Remainder Theorem, you can obtain the result y to the power d modulo N. That is what

Chinese Remainder Theorem ensures for you. Now let us try to analyse how fast it is to

compute y sub p and y sub q. Before going into that, let me tell you that since d is known to

the receiver who is going to run the decryption algorithm, and p-1 is also known to the

receiver.

Because it knows the factors p and q, so d modulo p-1 can be pre-computed by the receiver

and can be stored once for all, and same holds for d modulo q-1 as well. So d and q are also

known to the receiver or to the person who is going to run the decryption algorithm and

hence d modulo q-1 can be pre-computed in advance by the receiver. Now, it turns out that

using the Chinese Remainder Theorem, computing y to the power d modulo N requires you

to perform two times c and q/8 or n3/4 times computation.

This is because, while N is the product of two primes p and q, and my size of N is roughly of

n bits, since n is the product of p and q, that means the size of prime factors p and q that we

are using here is roughly of size n/2 bits each. That means, to compute y to the power d

modulo p-1 modulo p or the value yp, I need to perform a modular exponentiation, where the

size of the modulus is n over two bits.

And by using the best known algorithm that will require me to perform computations of order

c times n3/8 and similarly to compute y sub q, I need to perform computation of order c and

q/8, and if I sum these two things. I get that the total computation that I need to perform to

compute y sub p and y sub q will be two times c and q/8, which is basically c times n3/8, and

this is simply 25% saving compared to the naïve way of performing or calculating y to the

power d modulo N directly.

If instead of computing y to the power d modulo N directly, we use this indirect approach

where we compute y sub p, y sub q, ZP*, and ZQ*. Then combine it to obtain the result y to

the power d modulo N, basically end up saving 25% of computation and this is a very

common thing that is used in the practical instantiations of the RSA decryption algorithm.

(Refer Slide Time: 40:25)

Now, let me end this lecture by showing you some more attacks on RSA, namely I want to

show you that how dangerous it could be to share public parameters across multiple users in

the context of RSA cryptosystem. So, I am going to show you one of the simplest possible

attack, which we call as common modulus attack, there are other sophisticated attacks, which

are also possible.

But I am not going to discuss them, and this is kind of very different compared to El Gamal

encryption scheme, where we have seen in the context of El Gamal encryption scheme,

sharing public parameters, namely sharing the description of the group, description of the

generator across multiple receivers, that means it is fine. If multiple receivers use the same

cyclic group to instantiate their El Gamal encryption scheme, the same generator to

instantiate your El Gamal encryption scheme and so on, but when it comes to RSA.

It might be extremely unsafe to share public parameters across multiple users. So, the attack

here is as follows. Assume a company, which is using the same modulus N for each of its

employee. That means, every time a new employee joins the company, you can imagine that

the company retains the same modulus N for the employee, but what it does is, it generates a

fresh independent public exponent ei for that user, corresponding decryption di for that user

such that ei and di are co-prime modulo N.

So for the moment, assume we have 3 employees in the organization, the first employee has a

secret decryption key d1. The second employee has its secret decryption key d2, and in the

same way, the third employee has a secret decryption key d3, and we know that property wise

ei and di, they are multiplicative inverse of each other modulo phi(N). Now, it turns out that

again by using a well-known fact from Number Theory, we can prove that, if we are given

the modulus N, and ei, di such that ei and di are multiplicative inverse of each other.

So I beg your pardon here, it should not be e1 times d1 here, it should be ei times di, that is a

typo here. So, if you know the modulus N, if you know the value of ei, and we know the

value of di such that ei and di are multiplicative inverse of each other, modulo phi(N) where

phi(N) is not known to us, then we can compute a value of phi(N) in poly of size of modulus

N time. That means, for instance employee 1 is considered here.

Since it knows its public exponent e1, as well as decryption exponent d1, but it does not

know the unknown value of phi(N), by using this fact from the Number Theory, and using

that algorithm, it can compute in polynomial amount of time, the value of phi(N), and once

phi(N) is computed by the employee 1. Since it knows the value of e2, namely the public

exponent public key of the second employee, and it knows the modulus N, then by using the

same result from Number Theory, it can compute d2.

And in the same way it can compute the value of the decryption exponent of the third

employee as well, and once it knows the value of d2 and d3, then any private communication,

which is happening between the second and the third employee using RSA encryption

scheme. Even if it is a padded RSA encryption scheme, which is randomized for the moment

assume that, since the value of d2 and d3 is known completely to the employee 1.

It can completely find out what exactly is happening between employee 2 and 3. So, that

shows that how unsafe it might be if we end up having multiple users having the same

modulus N. It is highly, highly dangerous. So, that brings me to the end of this lecture. Just to

summarize, in this lecture, we have seen that how we can instantiate a public-key encryption

scheme from any One-Way Trapdoor Permutation.

And we have shown that how we can instantiate using the RSA Trapdoor Permutation, and

get what we call as Plain RSA Cipher, but Plain RSA Cipher cannot be used in practice

because first of all it is not randomized, and secondly we cannot directly reduce its security to

the RSA problem. We have seen how we can make RSA randomized encryption process by

doing padding, and we have seen that how we can speed up the RSA decryption function

using Chinese Remainder Theorem, Thank you.

