
Foundations of Cryptography

Dr. Ashish Choudhury

Department of Computer Science

Indian Institute of Science– Bangalore

Lecture – 45

RSA Assumption

Hello everyone, welcome to this lecture.

(Refer Slide Time: 00:42)

So just to recap in the last lecture, we have seen Candidate Public Encryption Scheme, CPS-

secure Public Encryption Scheme, mainly El Gamal encryption scheme. In this lecture and

the next lecture, we will discuss another Candidate Public Encryption Scheme based on the

different heart problem, which we call as RSA assumption, which will lead us to another

public encryption scheme namely the RSA Public Encryption Scheme.

(Refer Slide Time: 00:58)

So to understand the RSA assumption, let us first try to understand the set ZN*. So ZN*

basically is a set of integers modulo N, which are co-primed to the modulus N, namely ZN*

is the collection of all elements b in the range {1,…,N-1} such that the element b is co-

primed to the modulus N. Namely, their GCD is 1. For example, the set Z10* is nothing but

the elements 1,3,7, and 9.

Because all these elements 1, 3,7, and 9, they are co-primed to the modulus 10, and it is easy

to see that if modulus N is prime, then the set ZN* basically consist of all the elements 1 to

N-1. So, a well-known fact from the number theory whose proof I am skipping is that the set

ZN* along with the operation multiplication modulo N constitutes a group and satisfies all

the axioms of the group.

So, for instance, I have drawn the matrix for the elements in Z10*, namely 1, 3, 7 and 9, and

the result of performing the operation multiplication modulo 10 for any pair elements from

the set, and now you can see that all the axioms of the groups are satisfied and that is why

this is a group. Moreover, a well-known fact from the number theory is that we have polytime

algorithms for computing the multiplicative inverse, which I denote by, a power -1, for any

element a in the set ZN*.

And there is a well-known algorithm for that, which we call as Extended Euclid’s GCD

algorithm, which we will discuss in one of our subsequent lectures, and the running time of

that algorithm is polynomial in the number of builds that we need to represent the modulus N.

(Refer Slide Time: 02:47)

So, let us next discuss Euler’s Totient Function, phi function. So the Euler’s Totient Function,

which is the denoted by the symbol phi(N) is basically the cardinality of the set ZN*, namely

it is the number of elements in the set 1 to N-1, which are co-primed to your modulus N.

Some of the well-known facts again borrowed from Number theory are as follows. If N is a

prime p, then the value of phi(p) is nothing but p -1.

Because there are exactly p-1 elements, which are co-primed to p. On the other hand, if n is

the product of 2 distinct primes, p and q, then phi(N) is nothing but p-1 times q-1. That

means, there are these many elements, namely p-1 times q-1 elements in the range {1,…., N-

1}, which will be co-primed to your modulus N. To verify that, let us take an example, say N

= 10, which you can write as the product of 2 and 5, where 2 and 5 are prime.

So your p is 2 and your q is 5, then we know that there are 4 elements in the set Z10*, so

phi(10) should be 4, and 4 is nothing but p-1, namely 2-1 multiplied by q-1, which is 5-1, and

finally another interesting property which we will use from the Number Theory is that, for

any element a in the ZN*, a to the power phi(N) modulo N is 1. That means, if N is a prime p,

then this phi(N) is nothing but p-1, so we get a to the power p-1 modulo p to be 1.

This property or this result is also called as Fermat’s Little Theorem, and we also get due to

this fact, the corollary that if you have any element a belonging to the set ZN*, then a to the

power x modulo N is exactly the same as a to the power x modulo phi(N) modulo N. That

means, in the exponent you can reduce the exponent x to x modulo phi(N). So the reason this

corollary issue is that, if your x is anyhow less than phi(N), then both L.H.S. and R.H.S. are

same, but if your x is more than phi(N).

Then to compute a to the power x modulo phi(N), what you can do is, you can rewrite a to the

power x as several batches of a to the power phi(N) in the exponent. A to the power phi(N)

depending upon the relationship between x and phi(N), and the last batch will have a to the

power x modulo phi(N) in the exponent, and everything in the base modulo N. Now, we

know that a to the power of phi(N) modulo N is 1, that means each of these batches, you have

full a to the power phi(N) modulo N.

We are going to give you the answer 1. So, all this batches are going to give you the answer

1, 1, 1,1 and 1 multiplied by 1 is going to give you 1. So, you are finally left with a last batch,

which has a to the power in the exponent, x modular phi(N). So, that is how we get this

corollary.

(Refer Slide Time: 06:03)

So, with all this mathematics in place, now let us try to understand the RSA permutation. So

this RSA permutation is a mapping from the set ZN* to ZN*, so the way this permutation is

defined as follows. Imagine, you are given an exponent e, which is greater than 2, such that

the exponent e is co-primed to your value phi(N). So, I stress it is co-primed to phi(N), not to

N. Now, a well-known fact from Number Theory is that if you have an e, which is co-primed

to phi(N), then you can find out the multiplicative inverse of that e modulo phi(N).

In general, if you have 2 numbers, say a and b, such that GCD of a and b is 1, that means, a

and b are co-primed to each other, then you can always find the multiplicative inverse of a

modulo b. So, my modulus in this case is phi(N), because e is co-primed to phi(N), and if e is

co-primed to phi(N), by using the Extended Euclid algorithm, I can find d where e and d

constitutes their mutual multiplicative inverses.

That means, e times d modulo phi(N), and d times e modulo phi(N) is 1. Now, the RSA

permutation is defined as follows. To go in the forward direction, the function is f sub e, and

to compute the value of f sub e on a value x where x is a member of ZN*, we basically

compute x to the power e and do mod N. On the other hand, the reverse direction function is

basically a function of d, namely, f sub d(y), and this function is basically if I want to

compute f sub d(y), I will compute y to the power d, and then perform mod N.

I claim here that the function F sub d is the inverse of the function f sub e and vice versa. So,

for that consider any arbitrary x here, belonging to ZN*, and say I map it to y, as per the

function f sub e, so my y is nothing but x to the power e, and now let’s see what we obtain by

reversing this value y as per the function fd. If I reverse this y as per fd, then I obtain x to the

power e mod N, and then whole raise to the power d mod N.

So I can take the overall mod outside, and I obtain that this is the same as x to the power e

times d modulo N, and by using the corollary that we have stated in the last slide, x to the

power ed modulo N in the exponent, I can reduce this exponent e times d to e times d modulo

phi(N). I know that e times d modulo phi(N), which is there in the exponent, gives me value

1, because I have chosen e and d such that they are multiplicative inverse of each other.

So, in the exponent, it is e times d modulo phi(N) reduces to 1, so hence I obtain that this x

times ed modulo N is nothing but x modulo N, and since I have chosen my x to belong to the

set ZN*. That means x is anyhow less than N, and if x is less than N, then x modulo N gives

you x (()) (09:18) happens at all. So this prove that your function fd and fe are mutually

inverse of each other.

I also prove here now that my function fe(x) is a bijection, and that means, it is a one-to-one

onto mapping. For that, let us consider an arbitrary pair of inputs x1, x2, from the set ZN*,

and say the resultant images of x1 and x2 as per the function f sub e, are y1 and y2. Now, if

y1 and y2 are same, that means, x1 to the power e modulo N, is same as x to the power e

modulo N, that means, if I raise both the sides to the exponent d, I get x1 times x1 to the

power ed modulo N is same as the x to the power ed modulo N.

This basically means that x1 is equal to x2, because x1 to the power ed modulo N, is nothing

but x1 and x2 to the power ed modulo N is nothing but x2. So that means, if I take an

arbitrary x1, x2 mapping to the same y, then basically I end up showing that x1 is equal to x2,

and hence I overall get that my function fe is a permutation here.

(Refer Slide Time: 10:32)

Now, let us discuss Resulted Assumption, which will be related to the RSA assumption,

which we will finally discuss. This is called a Factoring Assumption, and the intuition behind

this assumption is that, if you are given the product of two large arbitrary prime numbers, it

turns out that finding the prime factors is indeed a difficult task. This is a very widely known

well-studied problem studied over several centuries.

And till now, we do not have efficient polytime algorithms for factorizing a product of two

arbitrary prime numbers, if those prime numbers are chosen arbitrarily. So, this intuition or

the hardness of this problem is going to be formalized by an experiment, and for that

experiment, let us first define an algorithm, which we call as GenModulus algorithm. It

basically picks two random n-bit prime numbers, say p and q, and there are well-known

algorithms to pick random prime numbers.

I am not going into the exact details at how exactly you pick those two random prime

numbers, and poly of n time. You can refer to the book by (()) (11:38) for the exact

algorithm. Now, once p and q are chosen, you compute the modulus, namely N, which is the

product p and q. Now, the Factoring Assumption, with respect to the GenModulus algorithm,

is modeled as experiment, which we call as Factor Experiment, and the rules of that

experiment are as follows.

The challenger runs the GenModulus algorithm, generates the parameter N, p, and q, and the

challenge is thrown to the adversary, namely N, and the challenge for the adversary is to

come up with its prime factorization, namely p and q. So, it submits a pair of numbers, p dash

and q dash, and we say that the output of the experiment is 1, namely adversary has won the

experiment.

If indeed, the pair p dash, q dash is exactly the same as the prime factorization of your

modulus N, and we say that the Factoring Assumption holds with respect to our algorithm

GenModulus. If for every polytime adversary, the probability that the adversary could come

up with correct factorization of the modulus N, is upper bounded by some negligible

function. Notice that, there is always a guessing strategy by an adversary, it can guess some p

dash and q dash, and with non-zero probability, it may indeed with the correct factorization

of N.

(Refer Slide Time: 13:00)

What we want is basically that no polytime adversary should be able to do anything better

than that. That is basically the intuition of this experiment. Now, finally let us see the RSA

assumption here. So, it turns out that Factoring Assumption, even though it looks like a

candidate One-Way Function, that means that if I give you the product of two arbitrary large

prime numbers and challenge you to come up with the factorization.

Then that looks like a candidate One-Way Function. But just based on this candidate One-

Way Function, we cannot directly get a practically public-key cryptosystem. So, to get

around that, we introduce a related problem, which we call as an RSA problem, whose

difficulty is related to the hardness of the factoring problem. So, this RSA problem is

described with respect to another Parameter Generation algorithm, which we call as GenRSA.

So, what does GenRSA algorithm does is, it first runs the GenModulus algorithm and pick up

random primes p and q of size n-bits each, and multiples them to get the modulus N, and now

it computes the value phi(N) and it is computable because phi(N) is nothing but the product

of p-1 and q-1. Then this GenRSA algorithm picks an exponent e such that e is relatively

prime or co-prime to phi(N).

And since e is co-prime to phi(N), by running the Extended Euclid’s algorithm, the

multiplicative inverse d(e) modulo phi(N) can be computed. Overall, this GenRSA algorithm

now outputs N, p, q, e, and d. Intuitively, the RSA problem is, if you are given just a public

modulus N and the public exponent e, and the random element y from the ZN* set, then the

challenge for you is to compute the eth root of y modulo N without actually knowing the

actual value of d or without knowing the prime factorization of N.

I stress that the challenge is to compute eth root modulo N because if I just challenge you to

compute the eth root modulo N, because if I just challenge you to compute the eth root

without modulo N, that is very easy to do that. The challenge here is to compute the value of

eth root of the random y modulo N, which is formalized by this experiment which I call as

RSA inverse experiment.

The experiment is as follows, the challenger runs the GenRSA algorithm to generate the

parameters N, p, q, e, d are random-wise chosen from the set ZN*. Again, if you are

wondering that how picking up a random element from the set ZN* is possible in poly(n)

time, well it is possible, you can see the book by (()) (15:29) where the algorithm is given of

how to pick random elements.

Now the challenge for the adversary is to find out the eth root of this random y just based on

the knowledge of public modulus N and the public exponent e. So, it has to output a group

element say x and we say that adversary has won the experiment or the output of the

experiment is won, if and only if, x is indeed the eth root of random y modulo N, namely if x

to the power e modulo N is y. We say that RSA assumption holds with respect to this

GenRSA algorithm, if for every polytime algorithm participating in this experiment, the

probability that it can come up with the correct eth root of a random y is upper bounded by

some negligible probability.

(Refer Slide Time: 16:23)

Now, let’s try to compare the RSA assumption and Factoring Assumption, because on a high

level, they might look similar to you. So, on your left hand side you have the factoring

experiment where the challenge for the adversary is to come up with the prime factorize of

the public modulus N. On the right hand side, you have the experiment modeling the RSA

problem where adversaries are now given some extra information as part of its challenge,

namely, it is given the public exponent e and the random y from the set ZN*, and its goal is to

come up with eth root of random y modulo N.

It turns out that we can prove that if RSA assumption holds, then Factoring Assumption also

holds and this can be proved by contrapositive, namely, if you assume that factoring is

computationally easy, that means it is possible for a polytime adversary to come up with a

prime factorization p, q of a modulus N. Then, once you factorize your modulus N into its

prime factorization of p and q, then you can easily compute phi(N) because phi(N) is nothing

but p-1 times q-1.

And if phi(N) is computable in polytime and anyhow e is given to you, then by running the

Extended Euclid algorithm, you can yourself compute the multiplicative inverse of e, namely

d, and once you compute d, the eth root of y is nothing but y to the power d modulo N. That

means, this implication is indeed true. On the other hand, let’s try to consider the relationship

between the Factoring

Assumption and RSA, in the sense, can we say that if Factoring Assumption holds, then RSA

assumption holds and we do not have any answer for this. That means, we cannot prove that

if RSA assumption does not hold and the Factoring Assumption does not hold. It is a big

open problem because there might be a way to efficiently solve the RSA problem without

actually factoring your modulus.

Because one of the ways of solving the RSA problem might be to factorize your N and then

once the factorization is known, come up with value of d and so on, but that need not be the

only way to solve the RSA problem. There might be other ways to compute to solve the RSA

problem in polynomial amount of time without actually factorizing your modulus, and in that

sense, making the RSA assumption is a very strong assumption compared to making the

factoring assumption because difficulty wise, the factoring problem looks like a more

challenging problem, more difficult problem than solving the RSA problem.

(Refer Slide Time: 19:05)

So, finally let us discuss how exactly you can utilize your RSA Permutation as a Trapdoor

Permutation because in our next lecture, we are going to treat our RSA Permutation as our

Trapdoor permutation, and we will see that how we can formulate an instantiation of public

encryption scheme from this RSA Permutation. So, for that recall the definition of One-Way

Trapdoor Permutation.

So, it is a function from set fancy X to the set fancy X, which is easy to compute for any

input from the domain, but the difficult to invert from any random input from the co-domain,

until and unless you are given with special trapdoor information. So, this is formalized by

saying that more formally we have trapdoor permutation scheme over the set fancy X, which

consists of a Key Generation algorithm, a trapdoor function f, and its inverse.

Where the Parameter Generation algorithm will output a public parameter and a secret

parameter, the function f is basically, a keyed function, keyed by the public key pk and it

takes value from the set fancy X and it gives you an output from the fancy X set and it is a

Deterministic algorithm and the corresponding inverse algorithm is operated by a secret key,

so your secret key is basically acting as a trapdoor information here and using this trapdoor

information.

You can correctly invert any y from the codomain, namely the set fancy X. The correctness

property that we require from the trapdoor permutation scheme is that for every pair of

parameter generated by Generation algorithm, for every x from your domain, if you compute

the value of f with a public key on that input x, and say obtain the y output, and now if you

invert that y with the secret key sk.

You should get back the x, and a second requirement is the one in its requirement, which is

basically states that your function f should behave like a one-way function, even if an

adversary knows the value of the public parameter pk.

(Refer Slide Time: 21:09)

So, let us see how we can visualize the RSA permutation from the set ZN* to ZN* as an

instantiation of the Trapdoor Permutation. So, basically RSA Trapdoor Permutation consist

of three algorithms, the Parameter Generation algorithm is nothing but GenRSA algorithm,

namely, it picks uniformly random n-bit prime numbers, p and q, compute the modulus N,

and then compute the size of ZN*, namely phi(N).

It picks up the public exponent e, such that e is co-prime to phi(N). Since e is co-prime to

phi(N), by running the Extended Euclid algorithm, multiplicative inverse of e modulo phi(N)

is computed and the public parameters are N, e, and the secret parameters are N, d. The

forward direction function, namely the function f sub RSA, and operated with the public key

N, e is as follows.

To compute the value of this function f sub RSA on an input x basically you just output x to

the power e modulo N, and x to the power e modulo N can be computed in poly(n)time. We

will see later on how exactly this group exponentiation can be computed in polynomial in n

amount of time. On the other hand, if you have a trapdoor namely a secret parameter n, d and

if you want to invert any given y from a set ZN*.

Basically you have to compute y to the power d modulo N. So, let’s see whether this RSA

Trapdoor Permutation indeed satisfies the requirement of a generic Trapdoor Permutation

Scheme. So the correctness requirement states that, it should hold that x to the power e

followed by raising it to d modulo N, should give me by x and we already have approved that

indeed that is the case when we showed that the function f and the inverse RSA function are

inverse of each other.

On the other hand, the One-Waynes property from this RSA permutation, requires that

anyone who knows just the public parameter, namely say N, e, but does not know the

trapdoor information, say d, without the knowledge of the trapdoor information, it is difficult

to compute the eth root of any random y, and its turns out that indeed that is the case if the

RSA assumption holds with respect to your Parameter Generation algorithm that means.

If indeed the RSA problem is difficult to solve with respect to this RSA Parameter

Generation algorithm, then this so called RSA permutation can be viewed as an instantiation

of your Trapdoor Permutation. So, recall that in one of our previous lecture, we had seen that

how generically we can convert Trapdoor Permutation Scheme into a key agreement protocol

with weak secrecy notion.

And now if you instantiate Trapdoor Permutation by an RSA Trapdoor Permutation, then by

using the RSA Trapdoor Permutation, we actually obtain an RSA key-efficient protocol,

which gives you a weak secrecy notion, namely the resultant key is going to be known to the

sender and the receiver, and the adversary will not know the full key in its entirety. On the

other hand, there exist the discrete lock function that we had discussed earlier, it cannot be

reviewed as an instantiation of the Trapdoor Permutation.

Because we know the forward-direction function, namely say G to the power x can be treated

as your forward direction function, but we do not know what should be the corresponding

trapdoor information which we can use and invert back this function. That is kind of big

challenging problem which is there. On the other hand, in the context of RSA permutation,

we have the corresponding trapdoor associated namely the exponent d, which is the

multiplicative inverse of e, modulo phi(N).

So that brings me to the end of this lecture. In this lecture, we have introduced the RSA

assumption, and we have seen the relationship between the RSA problem and the factoring

problem. Thank you.

