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Hello everyone. Welcome to this lecture. Just to recap, in the last lecture, we have seen the 

syntax of public key encryption scheme. So the roadmap for this lecture is as follows. In this 

lecture, we will see a candidate public encryption scheme namely El Gamal public key crypto 

system and we will prove formally its CPA security and we will end the lecture with some of the 

implementation issues, which we face while implementing El Gamal encryption scheme in 

practice. 
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So let us try to understand the intuition of El Gamal encryption scheme. So for that, recall the 

Diffie–Hellman key exchange protocol and for simplicity assume we are considering a 

multiplicative cyclic group. So the public parameter is the description of a cyclic group, a 

generator and the size of the group, which is q and Diffie–Hellman key exchange protocol 

basically says Sita and Ram, they want to agree upon a key. 

 

Each of them pick up their own contribution for the overall key. So Sita picks her contribution g 

to the power alpha, alpha is her contribution and she sends g to the power alpha to Ram and 

independently Ram picks his contribution beta and sends g to the power beta and overall key that 

is agreed upon k between the sender and receiver is g to the power alpha beta and we had 

formally proved the security of the Diffie–Hellman key exchange protocol. 

 

So now, consider the following encryption process. So sender and receiver first runs an instance 

of the Diffie–Hellman key exchange protocol to obtain a shared key, denoted by k, which is a 

group element and we know that if the DDH assumption holds in the underlying group, that 

means if the DDH problem is difficult to solve in the underlying group, then the agreed key k is 

indistinguishable from any random element of the group. 

 

Now imagine, Ram has a message, say plain text m, which is a group element, which it wants to 

encrypt and send it to Sita. So what Ram can do is, from the view point of Ram, Ram knows that 



by running the Diffie–Hellman key exchange protocol, Sita is also going to have the same key k 

and Ram also knows that if there is a eavesdropper, who has eavesdropped the communication 

between Sita and Ram, then from the view point of that adversary, the key k, which is available 

with Ram is kind of indistinguishable from any random element from the group. 

 

So what Ram can do is, to encrypt the plain text m, it can use the key to mask its plain task and 

since we are performing operations in the group to mask the plain text, what Ram can do is, it 

can compute, it can perform the group operation on the message and the key k and the result is 

denoted by c, which is also sent as part along with the message, which Ram would have sent as 

part of the Diffie–Hellman key exchange protocol, right. 

 

Now once Sita receives the messages from Ram, she is now receiving two elements from the 

group. The first element is Ram’s contribution as part of the Diffie–Hellman key exchange 

protocol, which Sita uses to generate the key k as per the steps of the Diffie–Hellman key 

exchange protocol. As once it has received the key k, to decrypt the cipher text, what Sita has to 

do is, she has to just cancel out the effect of key k or she has to unmask the key k. 

 

And to unmask the key k, what she can do is, she can just perform the group operation on the 

cipher text c and the multiplicative inverse of the element k. So since the element k is known to 

Sita and she knows the group description, she can compute the multiplicative inverse in 

polynomial time, which I denote by k inverse and if she performs the group operation on the 

cipher text c and k inverse, the effect of k and k cancels out. 

 

And Sita and sub getting the plain text m. Now, I claim here that the cipher text c, which is the 

group operation on the plain text and the key k is going to be independent of the underlying plain 

text m. I will prove this very soon, but for the moment assume that this claim is true. If indeed 

this claim is true, then this whole protocol, this whole process of encryption and decryption 

indeed looks like a candidate encryption scheme. 

 

Because if the distribution of the cipher text c is independent of the key k, then even after seeing 

the cipher text c, this adversary is unable to figure out what exactly is encrypted in c, whether it 



is an encryption of m0, m1, m2, it cannot figure out. So that is how, overall intuition of the El 

Gamal encryption scheme. 

(Refer Slide Time: 05:09) 

 

So I have written the blueprint of the encryption scheme that I had discussed in the last slide. 

Now the question is that how we can visualize the entire process that we have discussed just now 

as an instantiation of public key encryption scheme. Because remember as per the syntax of 

public key encryption scheme, we need to have a key generation algorithm, which would output 

the public key secrete key pair. 

 

We should have an encryption algorithm and we should have a decryption algorithm. So 

pictorially, we know that now we have a blueprint of an encryption process, but now we have to 

put everything into the syntax of public key encryption process and this process of visualization 

of above encryption process as an instance of public key encryption scheme was identified by 

Taher El Gamal. 

 

And that is why this encryption process that we are going to discuss now is called as El Gamal 

encryption scheme. So you might be wondering that how exactly it is different from this Diffie–

Hellman key exchange protocol, well, we are not doing anything apart from Diffie–Hellman key 

exchange protocol. So this part of the communication, which I have highlighted is exactly 

Diffie–Hellman key exchange protocol. 



 

But on top of that we are doing some additional communication from the sender’s side, which 

allows the receiver to decrypt the cipher text and recover back the plain text. So what we are 

going to do is, the entire encryption process that we have discussed till now visually, we can 

imagine it as an instance of public key encryption scheme as follows. So we can imagine that the 

receiver’s message here, namely Sita’s message as part of the Diffie–Hellman key exchange 

protocol is her public key. 

 

And we can visualize that as if, that is her contribution for the Diffie–Hellman key exchange 

protocol with every potential sender once for all. That means, the key setup algorithm that Sita 

can run here is as follows. As part of secret key, she can randomly pick an index alpha in the 

range 0 to q – 1 and she can make her public key to be g to the power alpha and it will be 

ensured that that is an authenticated copy. 

 

That means, indeed this is g to the power alpha generated by so called Sita. How exactly it is 

ensured, we will see or solve that problem later on, but for the moment assume that Sita has 

generated a secret key like that and she has computed public key to be g to the power alpha and 

made it available in the public domain. Then, we can imagine as if this is her contribution or her 

part of the message for the Diffie–Hellman key exchange protocol with every possible Ram, who 

would like to do a secure communication with Sita. 

 

Now, assume we have a so called Ram or a sender who wants to encrypt a plain text, say m, 

using the public key. So what Ram is going to do is, Ram is going to pick a random beta in the 

range 0 to q – 1 and now he is now going to compute two group elements. The first group 

element is c1, which is nothing but g to the power beta and a second group element c2 is 

basically the group operation be performed on the plain text and the key k. 

 

Where the key k is g to the power alpha times beta, which is obtained by raising the public key u 

to the index beta. So the two messages or the two elements which Ram is sending, can be 

visualized as follows. The first message, you can interpret as if it is Ram’s contributions or 



sender’s contribution for the Diffie–Hellman key exchange protocol, because if indeed Ram 

would have participated in an instance of the Diffie–Hellman key exchange protocol. 

 

C1 is the message, which Ram would have sent to Sita in response to the message g to the power 

alpha, which Sita has already sent and went offline. The second message c2 or the second group 

element c2, you can imagine as if it is masking of the plain text with the resultant Diffie–

Hellman key with Sita and Ram would have agreed upon using g to the power alpha and g to the 

power beta as the protocol transcript. 

 

So now if we imagine this encryption process by passing the messages from say, Sita and Ram 

like this, then it automatically fits into the framework of our public key encryption process. To 

do the decryption, what Sita has to do is, from the first group element, which Ram has sent, using 

that the public key that Sita has sent already to the so called Ram, Sita can perform her steps with 

Diffie–Hellman key exchange protocol and agree upon or retain the same key k. 

 

Which Ram has used for masking the message and once it recovers the key k, to decrypt the 

cipher text, it takes a second component of the cipher text, namely c2 and it performs the group 

operation on c2 and a multiplicative inverse of k to recover back the plain text. My claim here is 

that in this entire process, the distribution of the second component of the overall cipher text 

namely c2 is independent of the underlying plain text. 

 

So we will soon prove this fact, but now if we imagine this whole thing, like the way I have said, 

now you can see that we have now instance of a public key encryption scheme. 
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So now let us put the exact formal details of the El Gamal encryption process. So the plain text 

space and a public key space are both going to be the group and the secret key is going to be z 

sub q, namely it is going to be the z 0 to q – 1 and overall cipher text will consist of two group 

elements. So it is going to be a pair of elements from the underlying group. The key generation 

algorithm outputs a public key and a secret key as follows. 

 

The secret key is a random alpha in the range 0 to q – 1 and a public key g to the power alpha. So 

that you can imagine as if Sita is doing her part of the El Gamal or her part of the Diffie–

Hellman key exchange protocol with every potential receiver once for all. The encryption 

algorithm, which Ram is or any sender is going to follow for encrypting a plain text is as follows. 

The sender is going to pick a random beta in the range 0 to q – 1. 

 

And compute g to the power beta, that is going to be the first component of the cipher text and 

actual encryption of the message is the group operation performed on the plain text and the 

public key raised to the power beta. So pictorially, you can imagine that first component of the 

cipher text is nothing but sender’s contribution for the Diffie–Hellman key, which sender and 

receiver are going to agree upon. 

 

And the second component of the cipher text is the masking of the plain text with the Diffie–

Hellman key. Now the decryption operation is, you receive a cipher text consist of two group 



elements, right. So you first compute a Diffie–Hellman common key, which is going to be 

established between the sender and a receiver by raising the group element c1 to the secrete key, 

so that you also obtain g to the power alpha beta, find a multiplicative inverse of it. 

 

And perform the group operation with the second operation of the cipher text, so that effect of g 

to the power alpha beta vanishes and you end up with the plain text. So that is the formal syntax 

of the El Gamal encryption scheme. Now we want to prove formally that this El Gamal 

encryption scheme is indeed COA secure. As we have discussed in the last lecture, in the public 

key world, COA security, single message CPA security and multi message CPA security are all 

equivalent. 

 

So it is suffice to just prove the COA security of this encryption process. So as I am claiming 

over the last few slides, the distribution of the cipher text component c2 namely the group 

operation m with the Diffie–Hellman key k is going to be independent of the underlying plain 

text. That means, from the view point of a computationally bounded adversary, if it is c c2 then 

from its view point it could be any m group operated and any key and group operation being 

performed on that m and that key. 

 

And if that is the case, that means, if this claim is indeed true, then it automatically implies COA 

security intuitively because for each instance of the encryption algorithm in this El Gamal 

encryption scheme, the sender is going to pick beta randomly, right. it is not the case that it will 

pick the same beta every time and if beta is picked independently for each instance of the 

encryption, then it automatically means that the Diffie–Hellman key k, which is used for 

masking the message is also going to be independent for each instance. 

 

Because the overall Diffie–Hellman key is g to the power alpha times beta. So even if the alpha 

component in the resultant Diffie–Hellman key, which sender and receiver are using to do the 

encryption and decryption is same, it is the beta component which is triggering the randomness 

here and since beta is independently picked here, for each instance of the encryption, the overall 

Diffie–Hellman key k, which is used in each instance is independent. 

 



And now assuming that this claim is true that means the distribution of c2 is independent of the 

underlying plain text, we get the COA security. 
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So now let us formalize this intuition by a regress proof and before going into the proof, let us do 

a warm up here and consider a variation of El Gamal encryption scheme, mainly we are going to 

consider a perfectly secure variant of the El Gamal encryption scheme. I stress here that it is not 

the way we are going to implement the El Gamal encryption scheme and it is not the way we 

actually use the El Gamal encryption scheme. 

 

This variation of the El Gamal encryption scheme in the private key setting is just to make the 

proof simpler. So the modified El Gamal encryption scheme in the private key setting, I am 

denoting as pi tilde. It has its own key generation algorithm, encryption algorithm and decryption 

algorithm. The public parameters are the cyclic group, group description and a uniformly random 

group element g to the power alpha, where alpha is not known. 

 

So we can imagine as if it is some kind of set up, which has been done by a trusted third party 

and alpha is not known to anyone. Now since this is a symmetric key encryption process, the key 

generation algorithm is going to output a uniformly random key and the key is the element of the 

group. To encrypt a message in this variant of El Gamal encryption process, we compute two 

group elements, namely c1 and c2. 



 

Where c1 is some g to the power beta, where beta is randomly chosen from the set z sub q and a 

cipher text component c2 is basically the masking of the message with the key k. Since it is a 

symmetric key encryption scheme, we are going to use the same key k for decryption as well and 

to recover the plain text, we basically take the second component of the cipher text and perform 

the group operation with respect to the multiplicative inverse of the key. 

 

Notice that in this variation of the El Gamal encryption process, the first component of the cipher 

text, namely c1 and the publicly known u, they are not at all used for the encryption process and 

for the decryption process, but I am just retaining them, to ensure that the overall syntax of the 

cipher text that we are getting here looks like the same as we are going to obtain in the real 

instantiation of the El Gamal encryption scheme. 

 

Now I claim here that the scheme that this variant of this private key variant of the El Gamal 

encryption process is perfectly secure if my underlying plain text is the group g and this is 

because this private key variant of the El Gamal encryption scheme is exactly similar to the one 

time pad scheme over the group g. The only difference is that in the one time pad scheme, we 

perform the xr of the key with the plain text. 

 

But since we are in the group setting, we are going just replacing that xr operation by the group 

operation. More formally, assume that we have an arbitrary cipher text, say c1, c2 and say we 

consider a pair of arbitrary plain text, namely m0 and m1, which are group elements, because 

here my plain text space is the underlying group. I am going to show that indeed this encryption 

process satisfies the definition of perfect secrecy. 

 

Namely consider the probability that this arbitrary cipher text c1, c2 is an encryption of the plain 

text m0 and in the same way, consider the probability that this arbitrary cipher text c1, c2 is an 

encryption of m1. It turns out that this arbitrary cipher text c1, c2 is an encryption of m0 only if 

key generation algorithm would have produced a key, which is the group operation performed on 

c2 and the multiplicative inverse of f0. 

 



But since the key generation algorithm output’s uniformly random elements from the group as 

the key, it turns out that the key generation algorithm indeed outputs a key, which is same as c2 

group operation m0 inverse is 1 over the group size. Now by running exactly the same argument, 

we can claim that the probability that the plain text m1 is encrypted in the cipher text c1, c2 is 

exactly the same that my key generation algorithm outputs key, which is same as the group 

operation performed on c2 and m1 inverse. 

 

And the probability that my key is this, is 1 over the size of the group. That means, for any 

adversary, even if it is computationally unbounded, if it participates in perfectly 

indistinguishability experiment in the symmetric key setting or the COA experiment, then the 

probability that it can distinguish apart whether it is seeing an encryption of the group element 

m0 or whether it is seeing an encryption of the group element 1 is exactly half. 

 

That means, you cannot distinguish apart, with equal probability it is an encryption of m0 as well 

as encryption of m1 and that is why this modified or symmetric key variant of the El Gamal 

encryption process is perfectly secure. 
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Now let us turn to the COA security of the actual El Gamal encryption scheme that we have 

designed in the public key setting. So before going further, let us again remember what we have 

proved just now. So we have considered a variant of El Gamal encryption scheme in the 



symmetric key setting and here is the encryption algorithm. The encryption algorithm consists 

of, it produces two group elements c1, c2.  

 

Where c1 is some random g to the power beta and c2 is the masking of the message and apart 

from that, adversary also have a public information namely g to the power alpha, where alpha is 

not known to the adversary. So if I consider the view of the adversary, the adversary’s view 

basically consists of three probability distributions, namely he has an element g to the power 

alpha, where alpha is randomly chosen from zq. 

 

It knows the value of g to the power beta, where beta is randomly chosen from zq and it knows 

the masking of the message with the plain text where the key is chosen randomly from the 

underlying group and we have proved that this encryption process is perfectly secure. On the 

other hand, the actual El Gamal public key encryption scheme, that we have designed, there also 

the cipher text consists of two group elements. 

 

And second component of the cipher text is the masking of the message with the Diffie–Hellman 

key, namely g to the power alpha beta. So if I consider the adversary’s view in this real 

instantiation or the actual instantiation of the El Gamal encryption scheme in the public key 

setting, then its view is as follows. It knows the value of g to the power alpha, where alpha is 

unknown and uniformly random from the set zq. 

 

It knows the value of g to the power beta where beta is uniformly random from the set zq and it 

knows the masking of the message with the Diffie–Hellman key, where the Diffie–Hellman key 

is nothing but g to the power alpha beta and it belongs to the underlying group. Now if you see 

here closely, what exactly is differing here, if I consider the views of the two adversary here. The 

distribution of g to the power alpha in both the worlds or for the adversaries are perfectly the 

same. 

 

They are exactly indistinguishable. Here also alpha is random, here also alpha is random, not 

known to the adversary and adversary knows the value of g to the power alpha. In the same way, 

the distribution of g to the power beta in both the worlds are exactly identical. What is differing 



here is the nature of c2 that adversary sees in the symmetric key variant of El Gamal scheme and 

the distribution of c2, which adversary sees in the actual El Gamal encryption scheme. 

 

In the symmetric key world, the masking is with a uniformly random group element k, whereas 

in the public key El Gamal, the masking of the plain text is with the pseudo random key k, which 

is a Diffie–Hellman key g to the power alpha beta and if I assume that the DDH assumption 

holds in my underlying group, then we know that as per the Diffie–Hellman assumption, Diffie–

Hellman triplet and an non- Diffie–Hellman triplet. 

 

They are computationally indistinguishable from the view point of any computationally bounded 

adversary. That means, if my k is uniformly random, that means if I am in this case, then that 

case some g to the power gamma, where gamma is totally random, not related to alpha and beta. 

Whereas if I consider cipher text c2 as per the public key Diffie–Hellman key El Gamal 

encryption scheme, then my key k is nothing but g to the power alpha beta. 

 

So if my adversary cannot distinguish between Diffie–Hellman triplet and it cannot distinguish 

between a DH triplet and a non-DH triplet, then I can say that the distribution of the cipher text 

component c2, which adversary sees in both the worlds are also computationally 

indistinguishable and that will automatically prove that our El Gamal encryption process is COA 

secured. 
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So that is the formal statement which we are going to prove now. We are going to prove that if 

the DDH assumption holds in my underlying group, then the El Gamal encryption process is 

indeed COA secured and we formally established this fact by giving a reduction. So assume, you 

have a poly time adversary who can attack your El Gamal public key encryption scheme. Using 

that attack, we are going to design a DDH solver, a poly time DDH solver who can distinguish 

apart a Diffie–Hellman triplet from a non-Diffie–Hellman triplet. 

 

So it participates in an instance of the DDH experiment. The DDH experiment prepares a 

challenge for the DDH solver by giving him uvk, where u and v are random group elements and 

third component of the triplet is either g to the power alpha beta or it is a uniformly random 

element g to the power gamma depending upon whether the challenger has b equal to 0 or b 

equal to 1 and the task of the DDH solver is whether it is a DH triplet or a non-DH triplet. 

 

To solve that, the DDH solver invokes our attacker, who can attack the El Gamal encryption 

scheme and participates in an instance of the COA game and it sets up the public key to be u. it 

sets public key to be u. Now as per the rules of the COA game, the COA attacker will submit a 

pair of challenge plain text from the underlying group and this DDH solver is going to randomly 

choose one of those two messages and it prepares the challenge cipher text as follows. 

 



The second component of the triplet, which is given as the challenge to this DDH solver is set to 

be the first component of the cipher text and the actual encryption of the message is set as m sub 

b, masked with the third component of the triplet which is thrown as a challenge to the DDH 

solver. So now before proceeding further, let us try to understand what is happening in this 

overall reduction. 

 

If you see here that if this triplet is a non-DDH triplet, that means this case in some g to the 

power gamma, where gamma is not related to alpha beta, then the distribution of the cipher text 

c1, c2, which is given to this attacker against the El Gamal scheme has exactly the same 

distribution as if this attacker would have participated in the COA game against the symmetric 

key variant of the El Gamal encryption scheme. 

 

Because that is how this challenge cipher text would look like for the attacker in that experiment. 

Whereas, if the triplet that is given to this DDH solver is a DH triplet, then the distribution of c1, 

c2 that this adversary is seeing as exactly the same distribution as if this adversary would have 

seen by participating in an instance of COA game against the El Gamal encryption process. So 

we will come back to that fact again. 

 

So now this adversary has to identify whether it has seen an encryption of m0 or m1. So it 

submits its output b dash and response from the DDH solver is that it says that it is seeing a DH 

triplet, if and only if the adversary a sub eg has correctly identified whether it is m0 or whether it 

is m1, which is encrypted in the challenge cipher text c1, c2. So now let us analyse the advantage 

with how much probability this DDH solver is going to solve the random instance of the DDH 

problem. 

 

So I claim that if b is equal to 0, that means this triplet is a non-DDH triplet. Then the probability 

that my DDH solver outputs incorrectly namely it outputs b dash equal to 1 is exactly the same 

with which this COA attacker would have won the COA game against the symmetric key variant 

of the El Gamal encryption scheme and we have already proved that it is 1 by 2. 

 



This is because the case, if we are in the setting where b is equal to 0, then as I have already 

proved that the cipher text, which our adversary a sub eg is seeing, has exactly the same 

distribution as it would have seen by participating in an instance of COA game against the 

modified El Gamal encryption scheme. On the other hand, I claim that if my case is b is equal to 

1, then the probability that my DDH solver outputs b dash equal to 1 is exactly the same. 

 

That my adversary a sub eg wins the CPA COA game against the El Gamal encryption scheme 

and this follows from the fact that if we are in the case, where b is equal to 1, then that means the 

triplet that is given is a DDH triplet or Diffie–Hellman triplet, which means that the distribution 

of the cipher text, whichever adversary is seen is exactly the same as distribution of the cipher 

text that this adversary is seen is exactly the same as it would have seen by participating in an 

instance of COA game against the El Gamal encryption scheme. 

 

So in summary, what we are concluding now is that, if you see the distinguishing advantage of 

our DDH solver, then it is exactly 1 by 2 minus the probability with which our adversary could 

have won the COA game against the El Gamal encryption scheme. But since I am assuming that 

my DDH assumption holds in the underlying group, then I know that the distinguishing 

advantage of any DDH solver is upper bounded by some negligible probability. 

 

That means, if I reshuffle the terms, I end up showing that the advantage of my adversary a sub 

eg in winning the COA game against the actual El Gamal encryption scheme is half plus 

negligible and hence my El Gamal encryption scheme is indeed COA secured. 
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So now let us discuss some of the implementation issues, which we face when we implement El 

Gamal encryption process. So first thing here is that sharing public parameters in the context of 

El Gamal encryption scheme is safe. What I mean by that is, if you see each instantiation of the 

El Gamal encryption process requires the description of a cyclic group. It generates a group 

operation and so on. 

 

So by sharing public parameters, I mean that multiple receivers can use the same description of 

the group, the same generator, and so on with the only difference is that each of them working on 

its own public key and secret key. That means, if we have scenario where say we have three 

receivers, r1, r2, r3, then instead of using different cyclic groups, all the three receivers can 

operate on the same group, of course by using different public key and secret key. 

 

This is a very remarkable feature with respect to El Gamal encryption process, because later on 

when we will discuss RSA public key encryption scheme, in the context of RSA public key 

encryption scheme sharing public parameters, that means say the modulus, exact group on which 

we are performing the group operation and so on can lead to insecurity. Now the second concern 

here is that the El Gamal encryption scheme that we have discussed with respect to an abstract 

cyclic group. 

 



But when we are implementing it, we have to select a group, which we are actually going to 

perform the operations. So the candidate groups, which we use in practice to instantiate the El 

Gamal encryption process are as follows. We can either use the group based on the points on 

elliptic curves modulo prime or we can use the multiplicative subgroup, prime order 

multiplicative subgroup of the group Zp star.  

 

So these are two of the popular groups, which we use for instantiating the El Gamal encryption 

process, because we believe that the DH problem is indeed hard in both these candidate groups. 

The third issue here is the message space. So if you see the description of the El Gamal 

encryption process, the message space is nothing but the group element, but in real world 

application, I would like to encrypt messages, which are bit strings. 

 

So that we have now some kind of incompatibility. My actual plain text is a bit string, whereas 

my encryption process supports elements of groups to be encrypted. So I can remove this 

incompatibility in either of the two ways. The option 1 is, we can use some kind of reversible 

encoding to map bit strings to group elements and vice versa. So this is one way to remove the 

incompatibility, but this is not preferred. 

 

The second option to get rid of this incompatibility is to use El Gamal encryption process as a 

part of hybrid encryption scheme and what I mean by hybrid encryption scheme is that we use 

the El Gamal encryption scheme just to encrypt a random group element from the sender to the 

receiver and then we apply a key derivation function on that encrypted group element, because 

the same group element will be now decrypted by the receiver and that common group element 

can serve as a common key for the sender and a receiver. 

 

Now to derive a bit string as a key from that agreed upon group element, both sender and 

receiver can apply a key derivation function and once a key derivation function is applied, both 

of them receive a common bit string as a key, which can be now used as a key for a symmetric 

key encryption process. So that is what I mean by a hybrid encryption process, because it is a 

combination of both public key and symmetric key primitive.  

 



And it will turn out that for most of the public key crypto systems that we are going to discuss, 

we will face this compatibility issue again and again and a popular way option to deal with this 

incompatibility issue is to go for this option 2, namely use the public key encryption process as a 

part of hybrid encryption process. So we will touch upon these details in our subsequent 

discussions. 
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So now let me end this lecture with a very interesting feature of the El Gamal encryption process 

by showing that it is multiplicative homomorphic. So I am recalling retaining the description of 

the El Gamal encryption process and for simplicity again I am assuming that my underlying 

group operation is the multiplication operation, say multiplication modular p operation. So 

imagine, I am given with an encryption of some unknown plain text m. 

 

So I do not know the plain text m, but I know the public key and I have an El Gamal encryption 

of that unknown plain text m, which consists of two group elements, which I am denoting by c 

sub m1, 1 and c sub m, 2 and as per the syntax of the El Gamal encryption process, cm will have 

this property, so beta 1 is the underlying randomness used by the sender and in the same way 

imagine that I have an El Gamal encryption or cipher text of an unknown message m dash. 

 

Again consisting of two group elements, right. Now suppose I multiply the first component of 

both the cipher text and independently I multiply the second component of both the cipher text 



and this will produce two group elements, which will mathematically have the following 

property. The first group element will be nothing but g to the power randomness used in the first 

cipher text plus the randomness used in the second cipher text. 

 

And the second component will be the product of the two plain text multiplied by g to the power 

public key times the summation of the two randomness and if you look closely, this is nothing 

but you can imagine as if this is an El Gamal cipher text for the plain text m dot m dash under the 

randomness beta 1 plus beta 2 and that is why I say that my El Gamal encryption process is 

multiplicative homomorphic. 

 

The reason it is multiplicative homomorphic is that if I multiply two El Gamal cipher text, then 

even without knowing the underlying plain text. I stress I do not know the underlying plain text 

and underlying randomness beta 1 and beta 2, which are used individually, even without 

knowing the underlying plain text and underlying randomness, I end up getting an El Gamal 

cipher text of a related plain text, namely m times m dash under some unknown randomness, 

namely beta 1 plus beta dash. 

 

So this is kind of a very interesting property of El Gamal encryption process and later on we will 

discuss the CCA security or public key encryption process, namely El Gamal encryption process, 

we will come back and take this property again. So that brings me to the end of this lecture. In 

this lecture, we have seen a candidate CPA secure public key encryption process, namely El 

Gamal encryption process. Thank you. 


