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Lecture – 42 

Cryptographic Applications of the Discrete Log Assumption 

 

Hello everyone, welcome to this lecture. So just to recap we have seen till now we have seen 

various cryptographic assumptions. 

(Refer Slide Time: 00:36) 

 

In the context of cyclic groups namely the D Log assumptions, CDH assumption, DDH 

assumptions and we have also seen candidate cyclic groups where we believe that those 

assumptions indeed hold namely those problems are indeed difficult to solve. In this lecture we 

will see some cryptographic applications of the discrete log assumption namely we will see 

provably-secure compression function in the standard model. 

 

And we will also see that how based on discreet log assumption we can design provably-secure 

commitment scheme in the standard model. So remember we had already seen instantiations of 

compression function and also instantiations of commitment scheme based on hash function. But 

their proof were not in the standard model in the sense the proofs were given in the random 

article model which makes very strong assumption from the underlying hash function.  

 



But in this lecture we will see that how we can instantiate compression function, commitment 

schemes and give proofs without making any unconventional assumptions. 
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So just to recall the D Log problem and the D Log assumption. The D Log problem is you are 

given the description of a cyclic group the group operation and the generator and you are given a 

random element from the group. Your goal is basically to come up with the discrete log of that 

random element in polynomial amount of time and the D Log assumption states that we say that 

the D Log assumption holds in that group if no poly time algorithm can solve the D Log 

challenge except with negligible probability. 

 

And now we knows at least 2 candidates group where the D Log problem is believed to be hard 

and only we can use the groups Zp star with underlying operation being multiplication modulo p 

or we can take a prime order subgroup of Zp star or we can take the group to be the group based 

on the points on elliptic curves modulo p and underlying operation being the plus operation. So 

we will assume a multiplicative group but whatever we are going to discuss in this lecture the 

steps can be simply modified or the steps of those cryptography primitives can be simply 

modified for a cyclic group where the underlying operation is addition. 

(Refer Slide Time: 02:43) 



 

So let us see the first application namely constructing fixed-length collision-resistant 

compression functions. And for that let me recall the way we have constructed arbitrary length 

compression functions or hash functions using the Merkle-Damgard transformation. So what the 

Merkle-Damgard transformation does for you is? It takes an arbitrary input and gives you a fixed 

size hash for that. 

 

And for that we transform the input into a padded input to ensure that every block of the message 

is a multiple of n bits. And then we do a chaining here we compute a hash chain where in each 

iteration we take a current block of the message and the output of the previous hash or the output 

of the previous instance of the compression function. And then again apply an instance of the 

fixed size compression function and overall output of the hash function is taken as the output of 

the last instance of the compression function. 

 

And we have proved that if the underlying compression function little h is collision resistant that 

means in poly time it is difficult to come up with a collision for the fixed size compression 

function. Then the resultant hash function that we obtained by applying this Merkle-Damgard 

transformation is also collision resistant. 

 

Now the question is how we construct this fixed-length collision resistant compression function? 

Which takes 2 inputs namely an input of size l + n bits which can be passed as 2 inputs 1 of size l 



bits and another of size n bits and gives you an output of n bits and we know 2 approaches for 

this 1 approach is based on number-theoretic assumptions which we are going to see in this 

lecture. But however they are not used practically. 

 

The construction that we are aware of and which we have proved to be secure is based on block 

ciphers namely Davies-Meyer construction. However, the security proof of that construction was 

in the namely in the random oracle model. So in this lecture we are going to see the construction 

based on the number theoretic assumptions whose security can be given just based on that 

discreet log assumption. 
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So what we are given here is? We are given the description of a publicly known cyclic group 

where the group operation is a multiplicative operation that is with this is without loss of 

generality and we are given a publicly known generator. And as a setup we are also given a 

uniformly random element from the group whose discrete log was not known to anyone. So this 

is a 1 time setup which we assume is done by a trusted entity not by an adversary. 

 

But once this setup is done we can use this setup for polynomial amount of time or polynomial 

number of instances. Now using this setup our goal is to design a collision resistant function 

which I call as HDL or H sub DL based on the discrete log function. And it takes a pair of input 



where the first input is from the set Zq and another input is from the set Zq and output is going to 

give and output is going to be a element from the group. 

 

And a security namely the collision resistance of the construction that we are going to design 

should be based on the D Log assumption. So you can interpret function HDL that we are trying 

to construct as a function which takes 2 inputs of size n - 1 bits by encoding n - 1 length bit 

strings to elements of Zq. This is because I am assuming here that the size of q is n namely the 

number of bits that I need to represent q is n. 

 

So there exists certain groups where I do not need to do encoding naturally every n - 1 length bit 

string can be map to an element of Zq. But if that is not the case I can do some kind of encoding 

and I can encode every n – 1 length bit string as an element of Zq. So we can imagine that this 

function HDL which we are interested to compute takes an input of overall size of 2 times n - 1 

bits which can be passed as 2 chunks of n - 1 bits each. 

 

And again which are mapped to 2 respective elements of Zq and suppose the elements of the 

group are encoded as l-bit strings then it turns out that if 2n - 2 > little l then we can view this 

function HDL which we are going to construct as a collision resistant function and indeed there 

are several cases where indeed 2 and – 2 > l. 

 

For example, if we take G the group G to be a prime order subgroup of Zp star where p is say 2 

times q + 1 namely it consists of all quadratic residues. Then your l is nothing but n + 1 because 

the size of p will be more than the size of q. And in that case clearly 2n - 2 > l and hence if 

instantiate HDL on this group this particular group of prime order subgroups of Zp star based on 

quadratic residues then the resultant HDL function can be viewed as a compression function. 
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So before going into the construction of the compression function let us see an definition here. 

So remember as part of setup you are given a uniformly random element h from the group apart 

from the generator as well. Now we define what we call as the representation of a group element 

relative to the base g and h. So for any group element u belonging to the group G. We say a pair 

alpha, beta from the set Zq any pair of element alpha, beta from Zq is called as a representation 

of the element u relative to the base g and h. 

 

If the relationship u = g to the power alpha h to the power beta holds. So again I stress this whole 

discussion is with respect to the assumption that my underlying operation is a multiplicative 

operation. But again all these definitions and discussion can be carried over for the cyclic group 

where the underlying operation is additive group. So we have the definition of a representation of 

a element with respect to the relative to g and h. 

 

Now with respect to these definitions we have certain facts here. The first fact is that if you take 

any element u from the group G then there exist exactly q number of distinct representations of 

the same element u relative to g and h. What that means is that? If you fix any arbitrary beta 

from the set Zq then corresponding to that fixed beta there exist a unique alpha from the set Zq 

such that the relationship g of alpha = u times the multiplicative inverse of h beta holds. 

 



And that is why for 1 beta you will obtain a corresponding alpha 1 which will be a representation 

where such that alpha 1, beta 1 will be a representation of u. In the same way if you fix another 

beta say beta 2 that will imply another alpha 2 such that alpha 2, beta 2 is the representation of 

same element u and so on. So like that how many betas you can fix. You can have q number of 

betas because the range of beta and the is the set Zq. 

 

And that is why the range of corresponding alphas is also Zq and that is why you have exactly q 

number of distinct representations of any element u. So that is the first fact. The second fact is 

that if you are given 2 distinct representations for the same element u then you can extract out the 

discrete log of the random element h to the base g why that? So imagine you are given 2 distinct 

representations of the same element u say alpha, beta is 1 of the representations and alpha dash, 

beta dash is another representation both representing the same element u relative to g and h. 

 

That means these 2 equations hold and says alpha and beta and alpha dash and beta dash are 

distinct. That means pair vice alpha, beta is different from alpha dash, beta dash. Now if this both 

this relations hold then I can do the substitution and obtain that g to the power alpha - alpha dash 

is same as h to the power beta dash – beta. And now I claimed that beta dash - beta is non 0 

because if beta dash - beta is 0 then h to the power 0 is 1. 

 

And h to the power 0 is 1 that means the identity element which is possible only if alpha - alpha 

dash is also 0 which automatically implies that alpha = alpha dash and beta = beta dash which is 

contradiction to the assumption that alpha, beta is different from alpha dash, beta dash. That 

means beta dash - beta is non 0 and since it is non 0. 

 

Then I can always compute the multiplicative inverse of beta dash - beta which I denote by delta 

modulo q and given beta dash and given beta the inverse namely the value delta modulo q can be 

computed in poly n time. They are exist well known algorithms for computing this value delta 

which I am not discussing here. But you have to believe me that if beta dash - beta is non 0 then 

the multiplicative inverse of beta dash - beta namely delta modulo q exist which can be 

computed in poly time. 

 



So if we can compute delta in poly time and if we are given g and if we are given alpha and 

alpha dash then we can clearly see that g to the power alpha - alpha dash and in the exponent 

multiplied by delta will give you the value h which means that the discrete log of h to the base g 

is nothing but alpha - alpha dash multiplied by delta modulo q. 

 

So that means if someone can give you 2 distinct representations for any element u from the 

group G then using that element algorithm or using the pair alpha, beta and alpha dash, beta dash 

we can compute the discrete log of h to the base g as well. And that forms the basis of computing 

our compression function or constructing our compression function that we are interested in 

okay. 
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So the construction of the collision resistant compression function is as follows. So as a setup we 

are given a uniformly random element and to compress the input pair alpha, beta as per this 

function H of DL. What we have to do? Basically we have to compute the value g to the power 

alpha, h to the power beta that is the overall output. And I claim here that if the D Log 

assumption is true in the underlying group G that means that the D Log problem is indeed 

difficult to solve in poly time in the underlying group g. 

 

Then indeed this function H sub DL is a fixed-length collision resistant function Why? So this is 

because finding a collision for this function H of DL means coming up with 2 distinct 



representations for some element u from the group related to g and h and as we have seen in the 

last slide if we have 2 distinct representations for some group element then it automatically 

means we know how to compute the discrete log of random h to the base g which goes against 

the assumption that the discrete log problem is difficult to solve in the group. 

 

So let us formally establish this whole implication by a reduction here. So imagine we have a 

polytime discrete we have a polytime algorithm who knows how to find collision in the function 

H sub DL. Using that algorithm, we construct another algorithm which can solve an instance of 

discrete log problem in the group G. So this adversary is sub DL. It participates in an invocation 

of the discrete log experiment with respect to the group G.  

 

Then as part of the challenge for that experiment the challenger of the discrete log experiment 

picks a random x and gives the challenge h which is g to the power x and the of this adversary is 

sub DL is to extract out this x. What it does is? It invokes the adversary h A sub HDL and 

participates in an instance of the collision resistance experiment and as part of that experiment 

what it does is?  

 

It creates a setup where the group description is the same group G where the adversary is sub DL 

wants to solve the discrete log problem and as a part of setup h is given as the public setup where 

h is uniformly random. So you see that h that is thrown as a challenge to the discrete log solver is 

used now as a setup for this HDL sub function. Now as per the property of this collision finder 

algorithm it can come up with a collision namely it comes up with a hash value u which has 

which could be the hash value of alpha, beta as well as the hash value of alpha dash, beta dash. 

 

Such that alpha, beta and alpha dash, beta dash are different but their hash values are u. And as 

per the description of HDL function since the hash of alpha, beta and a hash of alpha dash, beta 

dash is u that means this relationship holds. So now what this adversary is sub DL does is as 

soon as it sees that adversary AH sub DL is giving a collision by using the mathematics that we 

had seen in the last slide.  

 



It ends up computing the discrete log of h to the base g namely it computes alpha - alpha dash 

multiplied by the multiplicative inverse of beta dash - beta modulo q. And you can see that the 

running time of the adversary A sub DL is exactly the same as the running time of adversary AH 

sub DL and relationship wise, we can say that the probability that the D log solver wins its 

experiment namely it wins the instance of the discrete log experiment is exactly the same as the 

probability with which the collision finder algorithm wins the collision finding algorithm against 

the HDL function.  

 

But since we are assuming that the D Log assumption holds in our group g then we know that for 

any poly time algorithm. The probability that it can win an instance of discrete log in the group g 

is negligible that means the left hand side probability is always upper bounded by a negligible 

function that automatically implies that probability in the right hand side of the expression is also 

bounded by a negligible probability. So that establishes the fact that the function HDL that we 

have constructed indeed constitutes a collision resistant compression function. 
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Now let us see the second application of applying the discrete log assumption. So here we are 

now going to instantiate a commitment scheme where the proof will be in the standard model 

and just to recall a commitment scheme is a scheme or a cryptographic primitive involving 2 

entities are namely a sender and a receiver and it is 2 phase protocol. In the commit phase sender 

invokes a protocol commit or com and the opening phase an open protocol is executed. 



 

So in the commit phase the sender has a message m from some message space which it wants to 

commit to the receiver and to do that sender basically computes the fixed length commitment of 

the message which I denote by c and it sends the commitment c to the receiver R. And the 

security property that we require from this com protocol is that if the receiver is a bad guy and 

computationally bounded then by seeing the commitment it should not learn what exactly is 

committed inside c. So from its viewpoint the c should view like a sealed envelope. It cannot see 

what exactly is the message which has been kept inside the commitment. 
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The second protocol is the opening protocol which implements the opening phase where sender 

released a message by providing some kind of opening information and once the opening 

information is provided or verifies opening information and opens the sealed envelope and based 

on certain criteria it either accepts or rejects the value which is reveal now in the opening phase. 

and the security property that we required here is that if the sender is bad and the receiver is 

honest then it should not be possible for a corrupt sender to open a commitment c in 2 different 

ways namely it should be binded to whatever it has committed in the commit phase.  

(Refer Slide Time: 19:22) 



 

So before going into the construction of the commitment scheme in the standard model let me 

also recall how we model the hiding property and the binding property. So the hiding property is 

module by the hiding experiment where the adversary submits a pair of message from the 

message space and one of those messages is committed randomly by choosing some uniform 

randomness from the randomness phase by the challenger. 

 

And challenge commitment is c star which could be either a commitment of m0 or a commitment 

of m1 with equal probability and the challenge for the adversary is to identify whether it is 

seeing a commitment of m0 or whether it is seeing a commitment of m1. And we say that output 

of the experiment is 1 or adversary wins to experiment if it can correctly identify whether it is 

seeing a commitment of m0 or m1. 

 

And a security definition is we say that a commitment scheme or commitment protocol com 

satisfies the hiding property. They have the probability of any polytime adversary within this 

experiment is upper bounded by half plus some negligible probability or stated otherwise it does 

not matter whether the c star is a commitment of m0 or whether c star is a commitment of m1. 

The output of their adversary should almost be the same say b dash = 1 except with negligible 

probability. 

 



And a way we have formalized the binding experiment. Binding requirement is by the binding 

experiment where adversary simply submits a commitment c and a pair of message, randomness 

m s and another pair of message, randomness the m star, s star such that m, s such that m and m 

star are different but still the commitment of m with respect to the randomness s and a 

commitment of m star with respect to the randomness s star turns out to be the same value c and 

we say that the algorithm com has binding property. 

 

If the probability that any polytime adversary could come up with a pair of different messages 

committing to the same commitment is upper bounded by a negligible probability. So now what 

we are going to do is? We are going to see a very nice commitment scheme which is called a 

Pedersen’s commitment scheme which provides you the hiding property, binding property and 

its security is just based on the D Log assumption. 
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So the public setup that is given as part of the commitment scheme is the description of the 

cyclic group, the group order and uniformly random group element from the group whose 

discrete log is not known to anyone. So this is like a trusted setup done by a trusted third party 

and it is done once followed. Once it is done we can use it to instantiate or invoke polynomial 

number of invocations of the commitment scheme. 

 



And in the commitment scheme in the Pedersen’s commitment scheme the message space is 

basically Zq. That means the sender would like to commit any value in the range 0 to q - 1 and 

the randomness space is also going to be the set Zq. So the commitment phase or the com 

protocol is as follows. So suppose sender wants to commit a value alpha which could be any 

value in the range 0 to q - 1 to commit that sender picks a uniformly random beta from the 

randomness space namely Zq. 

 

And it computes the commitment function which I denote as PedCom of the value alpha under 

the randomness beta which is nothing but g to the power alpha h to the power beta. And I denote 

that commitment by this notation. So c denotes the commitment and its subscripts alpha and beta 

denotes that this is a strength or a group element which is a commitment of some unknown value 

alpha with respect to the randomness beta. 

 

So in the subscript the first component denotes a value which is committed and a second 

component denotes that randomness which is used to compute that commitment. The opening 

phase is straight forward. So imagine receiver has an existing commitment available with it 

which it has obtained in a commitment phase and say sender has committed alpha with respect to 

the randomness beta. 

 

Now it provides the opening information which I denote by alpha dash and beta dash. If sender is 

honest and alpha dash will be same as alpha and beta dash will be same as beta. Whereas if the 

sender is corrupt and if it wants to reveal a different message in the existing commitment then it 

might submit alpha dash beta dash different from alpha, beta to verify whether the revealing 

information or the opening information is correct or not. Receiver does the following. 

 

It recomputes the commitment with respect to the provided alpha dash beta dash namely it 

computes g to the power alpha dash x h to the power beta dash and compare it with the existing 

commitment that it has. If it matches, then it outputs alpha or outputs 1. Basically it accepts alpha 

dash otherwise it rejects alpha dash. So now what we are going to prove here is that if the D Log 

assumption is true in the underlying group underlying cyclic group then the PedCom function 

that we have defined here satisfies the binding property. 



And this simply follows from the fact that if you see closely than the PedCom function that we 

have defined here is exactly the same as the compression function H sub DL that we have 

defined just previously. That means breaking the binding property of this Pederson commitment 

function is equivalent to coming up with a pair of values alpha beta and alpha dash beta dash 

right. Such that commitment function PedCom when it computed on alpha beta and when 

evaluated on computed on alpha dash beta dash gives you the same value as C alpha, beta. 

 

And that means basically one knows how to find out a collision for the function H sub DL and if 

one knows how to compute or find collisions in the function H sub DL with significant 

probability in polynomial amount of time then we know how to compute the discrete log of this 

random h with respect to the base g in polynomial amount of time with significant probability. 

But that goes against the assumption that discrete log assumption is true in the underlying group. 

 

So that means if at all the binding property is broken then we know the discrete log problem is 

also easily solvable in the group which is against the assumption that the discrete log problem is 

difficult in my group. So that proves you a binding property. 
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So now let us try to prove the hiding property. So remember the goal of the hiding protocol is a 

hiding the goal of the hiding property is that if the sender is honest and if the receiver is 

malicious then by just looking into the commitment C alpha, beta C sub alpha beta it cannot find 



out whether it is seeing a commitment of m0 or whether it is seeing a commitment of m1 namely 

if we see the hiding experiment played with respect to the Pedersen’s commitment scheme then 

here is how the hiding experiment would look. 

 

The adversary might submit a pair of messages say alpha 0 alpha 1 and the challenger would 

have randomly picked any of those 2 messages for committing and to commit it picks a uniform 

randomness beta and compute separators and commitment of the message alpha sub beta alpha 

sub b. And a goal of the adversary is to find out whether it is seeing a commitment of alpha 0 or 

whether it is seeing a commitment of alpha 1. 

 

So what we can prove now is that this Pedersen commitment scheme satisfies the hiding property 

even against a computationally unbounded adversary. And this comes from the fact that this 

Pedersen commitment function is exactly the same as the compression function H sub DL and 

what it means is that the commitment that the adversary is seeing it has exactly q number of 

distinct representations relative to g and h. 

 

And each of these presentations are equally probable. That means for every candidate alpha sub 

b whether it would be alpha sub 0, alpha sub 1, alpha sub 2 or any alpha from the message space 

there exist a unique randomness say beta sub b such that the commitments that adversary is 

seeing could be the commitment of the message alpha sub b under that randomness beta.  

 

But actual randomness which is used by the sender or which is actually picked by the challenger 

in the hiding experiment is randomly chosen from the set Zq which means that the probability 

that alpha 0 is committed in this commitment C sub alpha b beta and the probability that the 

commitment that adversary is seeing could be the commitment of message. Alpha 1 is exactly 

the same with probability 1/q the commitment that adversary is seeing could be the commitment 

of alpha 0 and with the same probability it could be the commitment of alpha 1. And this holds 

even if my adversary is computationally unbounded that proves the hiding property. 
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So I would like to end up this lecture with another interesting feature of this Pedersen’s 

commitment scheme which we call as the homomorphism property. So I am retaining the 

commit phase and opening phase of the commitment Pedersen’s commitment scheme. And this 

Pedersen’s commitment scheme is linearly homomorphic. What exactly I mean by that is? 

Imagine you are given a commitment of some unknown alpha with respect to an unknown 

randomness beta 1. 

 

So you just know the commitment but you do not know what exactly is the value which is 

committed and what is the corresponding randomness? And in the same ways imagine you are 

given a commitment of another unknown alpha 2 under with respect to an unknown randomness 

beta 2 and say you know public constant c1 and c2 belonging to the set Zq. 

 

Now the way Pedersen commitment function is defined if we take the commitment of alpha 1 

and raise it to c 1 then it turns out that we basically ends up getting a value which can be treated 

as the commitment of the value c1 times alpha 1 under the randomness c1 times beta 1. In the 

same way if you take the second commitment namely the commitment of the unknown alpha 2 

and raise it to the known c2. 

 

Basically we end up getting Pedersen commitment value which can be treated as a Pederson 

commitment of the value c2 times alpha 2 with respect to the randomness c2 times beta 2. I 



stress here that you are just basically performing operations on the commitment by performing 

those operations on the commitment you are getting something which can be treated as 

commitment of some another value. 

 

And now if I take these 2 computed commitments basically I end up getting a value which can be 

treated as a Pedersen commitment of the value c1 times alpha 1 + c2 times alpha 2 with respect 

to the randomness c1 times alpha 1 + c2 times beta 2. What it means that any linear function of 

the committed values can be computed locally by just performing some operations on the 

commitments. 

 

That means even though you do not know what exactly is alpha 1? What exactly is alpha 2? If 

someone has committed alpha 1 and given you the sealed alpha 1 and a sealed alpha 2 in the 

form of commitment. And if you want to perform a sealed commitment of some linear function 

of alpha 1 and alpha 2 namely a function of the form c1 times alpha 1 + c2 times alpha 2 where 

the linear combiners of the linear function namely c1 and c2 are known to you.  

 

Then even without knowing alpha 1 and alpha 2 and a randomness beta 1 beta 2 you could 

perform operations on the commitment itself which will end up giving you the Pedersen 

commitment of some linear function of the unknown underlying values and that is what we mean 

by the linearly homomorphic property. So it turns out that this linearly homophobic property of 

the Pedersen commitment scheme can be exploited in advanced cryptographic primitives like 

secure multi-party computation. 

 

So that brings me to the end of this lecture. Just to summarize in this lecture we have seen the 

applications of discrete log assumption namely we have seen an instantiation of fixed length 

compression function and we have seen an instantiation of commitment scheme namely 

Pedersen’s commitment scheme and a security of both these primitives are in the standard model 

and their security can be proved based on the discrete log hardness assumption. Thank you. 


