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Hello everyone, welcome to this lecture in this lecture we will continue our discussion on the 

candidates cyclic groups for cryptographic purposes and in this lecture, we will introduce 

specifically the cyclic groups based on elliptic curves. S let us start with the discussion on elliptic 

curves based cyclic groups. So remember in the last lecture we had seen that if p and q are 

primes where p is of the form r times q + 1 and if we take all the rth residues modulo p then the 

resultant set which we do note as g constitutes a subgroup of Zp star and we can prove that this 

set g along with the operation multiplication modulo p constitutes a cyclic group. 

 

However, it turns out that for practical security we have to operate or select very large values of 

this prime p namely we have to ensure that the p is at least 2048 bit prime numbers which 

actually ends up ensuring that the resultant time of the sender and the receiver is also very slow. 

So what we are now going to do is in this lecture we will see cyclic groups based on the points 

on elliptic curves and these are basically alternative cyclic groups where the D log problem the 

CDH problem and the DDH problems are indeed believed to be hard. 



 

Most specifically if the size of prime that we are going to operate with is of size n best D log 

solver that we know for these groups is of order 2 to the power n/2 and that means its sufficient 

to operate with a prime number which is a 256 bit prime number for most practical purposes and 

that gives us a highly efficient instantiations of D log, CDH and DDH based crypto systems 

compared to instantiations based on prime model subgroups of Zp star right. 

 

So that is a plus point of this groups compared to the instantiations based on the prime order 

subgroups of Zp star. Another interesting property of the cyclic gross spaced on the elliptic 

curves is that it provides us with additional structures what we call as pairings which we are not 

going to discuss in this course. Because these are advanced concept but just for your information 

this additional structure which we call a pairing can be used to build highly advanced 

cryptographic primitives such as aggregate signatures, broadcast encryption functional 

encryption and so on. 
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So before going into the exact elliptic based cyclic group that we are going to use for the 

cryptographic purpose let us do a warmup and see how exactly elliptic curves over the real 

numbers look like. So let r be R be the set of real numbers and let a and b be 2 real numbers or 

constants publicly known such that this relationship whole namely 4 times a cube + 27 times b 

square is not 0. 



 

The reason for this constant will be clear soon and imagine we have such an a and b constant a 

and b consider this equation in x and y, y square = x cube + ax + b then if I plot the points on this 

equation or if I plot x, y value satisfying this equation right? and if you take all those x, y pairs 

which are real numbers satisfying this equation and along with that if I take a special point which 

I did not as o then the resultant set I call us e. 

 

So for instance if I take the curve or the equation y square = x cube - x and plot all the real x, y 

satisfying this equation then I obtained this curve in the same way if I take the curve y square = x 

cube - x + 1 and plot all the real x, y is satisfying this equation then I obtain this curve. So what e 

is basically once we have fixed the equation we take all the x, y real numbers which satisfies this 

equation and along with that a special point which we did notice as o and this special point o is 

called as the point at the infinity which is kind of an imaginary point which you can imagine 

sitting at the top of the y-axis and lying on every vertical lin. 

 

So you can imagine that every vertical line will eventually meet at a horizon at a single point and 

that point where all the vertical lines are going to meet is considered as the point at infinity 

which would be denote by this special notation o. So that is how I construct the set e now the set 

of points e that we have defined above is called a non-singular elliptic curve over the set of real 

numbers and why it is called non-singular. 

 

Because we have ensured the condition 4 a cube + 27 p square is not = 0 which is a necessary 

and sufficient condition to ensure that the resultant curve that we have defined here namely y 

square = x cube + ax + b has 3 distinct roots because it is an equation of degree 3 in x. However, 

if we do not ensure this condition namely 4a cube + 27 b square is not = 0 if we let it to be 0 then 

the corresponding curve or the set of points that we obtain is called a singular electric curve it 

will not have 3 distinct groups. 
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So that is the definition of elliptic curves. Now what we are going to do here is we are going to 

find a very sophisticated way of doing performing operation addition operation on the points on 

this elliptic curve. So imagine you are given a non-singular elliptic curve over the real numbers 

and we defined the additional operation on this points such that the way we are going to define 

the addition operation its satisfy all of our group axioms namely it will satisfy the closer property 

associativity property it will be insured. 

 

We have an identity element and an additive inverse for every point on the curve and which 

ensures that the set e along with the plus operation that we are going to define now constitutes a 

negative group. So the plus operation is defined as follows so we define the point at infinity to be 

the identity element that is our definition. So we define that if you we defined a + operation on 

any point p on this elliptic curve and a point at infinity to give the result as p.  

 

So if you take any point p which could be the point at infinity itself and to that point if you add 

the point at infinity the result is defined to be the point p itself. So that is a first property of the 

addition operation that we have defined here. On the other hand, if you are given 2 points p and q 

on lying on the curve e and say the coordinates of the point per x1, y1 and the coordinates of the 

point are x2, y2 and neither p nor q is the point at infinity then the way we are going to define the 

plus operation on these 2 points p and q is as follows.  

 



So we can have 3 of the possible cases depending upon the relationship that holds between the 

coordinates of p and q. So the first case is when x is not = x 2 in this case the way we defined the 

result of p + q is as follows. So we define L of x to be the line passing through the points P and 

Q. So its a straight line passing through the P and so you have the pictorial representation here 

and let R be the third distinct point which lies both on the straight line as well as on the elliptic 

curve right?  

 

So I am denoting the x and y coordinates of the third point to be x3, - y3 and I call that point to 

be r. So pictorial is say this curve the straight line passes through P and Q and it intersects the 

elliptic curve at the third point say at R whose coordinates I denote it as x3 and - y3. So in this 

particular example in the pictorial representation the y coordinate of R is actually positive but 

tetany not be always the case.  

 

So that is why I am just representing it as -y3 because if for instance if your Q would have been 

here then on passing the straight line or through P and Q it would have met somewhere here, and 

y coordinate of R would have been a negative coordinate. So irrespective of what exactly is the 

case. It is just a notational issue the third distinct point at which the line intercepts the elliptic 

curve is denoted as R and its x coordinate is x3 and the y coordinate is -y3.  

 

Now what we do here is we just reflect the point R along the x axis and if we reflect the point R 

along the x axis the x coordinate is going to be remained the same, but the y coordinate its sign 

will get changed. If it was – y3 it will become + y3 whereas if we would have been plus, then it 

becomes minus. And the result of P and Q the result of the addition of P and Q is defined to be 

that reflected point. So that is the way we defined the plus operation on points P and Q both 

neither P and Q are infinity point and x1 is not = x2.  

 

So now if we want to mathematically compute the exact value of x3 and y3 here is how we can 

compute it turns out that x3 and y3 are related to the coordinates x1, x2, y1, y2 by this 

relationship and here lambda is basically the slope of the straight line passing to the points P and 

Q and the slope of the line passing to the points P and Q comes through this formula and since 



we are in the case where x1 is not = x2 that means the denominator is not 0 and hence the 

lambda is well-defined.  

 

So that is a way operation P and the operation of addition now plus operation on points P and Q 

is defined for this case for the case where x 1 is not = x2 now let us take the second case where x 

1 = x2 but the y coordinates of P and Q are just opposite of each other right? So in this case what 

we do here is the line that we make pass through P and Q it basically ends up converging at the 

point at infinity right? 

 

So the idea here is also the same we actually pass a line pass into the points and P and Q and see 

where exactly it meets the elliptic curve. But in this case since the x coordinates of P and Q are 

same but only they are y coordinates are different in the signature in the in the sign the straight 

line passing through p and q basically meet the point at infinity at convergent pointed infinity 

and that is why we defined the P + Q operation in this case to give the result the point at infinity 

that means we can interpret 2 points x1, y1 and x2, -y1 where x1 and x2 are same to be the 

additive inverse of each other.  

 

Right whereas for the third case where x1 = x2 and y1 = y2 we have 2 sub-cases if y1 = 0 right? 

then we can interpret y2 to be =-y 1 because 0 and + 0 and - 0 as same right? so if y1 = 0 then we 

can interpret y2 to be = - y1 and then we basically come to the previous case where x1 = x2 and 

y1 is -y2. In that case the way we have defined the plus operation we get that the summation of P 

with the same point which is basically 2P gives you the point at infinity. 

 

On the other hand if y1 is not 0 that means say we have a point like this P and we want to add P 

to itself then the line passing through this point is defined in a different way the line here is 

basically the tangent to this curve E passing to the point P and we see where exactly the tangent 

touches the curve we call that point as say R and say the coordinates of R is x3 and -y3 which is 

the third point 2 of the points are P and the third point lying on the curve is R and what we do not 

do is we just reflect the point R along the x axis and that is the result of adding P to itself. 

 



So the result P + P, which is 2P in this case will be x3, y3 and mathematically again x3 and y3 

are exactly the same as it was defined for the case where x1 was not = x2 the only difference 

now is that the slope of the line is different here compared to the first case. Because in the first 

case the points P and Q are distinct points but here are the points P and Q are the same points and 

that is why the line is the tangent and the slope of the tangent is computed by this formula. And 

since y1 is not 0 right we are in the case where y1 is not 0 the denominator 2 times y1 is non 0 

and that is why the slope is well defined. 
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So that is the way we perform the addition operation for elliptic curves defined over the set of 

real numbers but as I said earlier for cryptography primitives we want to operate on a set which 

has a finite size that is why now what we are going to do is we are going to compute perform 

operations a little bit curves modulo prime number which will not have nice geometrical 

representations as we heard for elliptic curves over the real number but property wise we can 

extend the definition of the plus operation as we have done for the case of real numbers here as 

well.  

 

So here is how we define elliptic curves modulo a prime so let E be a non-singular elliptical over 

the state Zp basically what it means is we form an elliptic curve equation here namely the 

equation is y square =x cube + ax + b modulo P and we take all x , y elements or x , y pairs from 

the set Zp cross Zp and take all the elements of the form x,y where x is in the range 0 to P - 1 and 



y is also in the range 0 to P-1 which satisfies this equation and along with those x , y pairs we 

take the special imaginary point named the point at infinity. 

 

So as it was the case for elliptic curves defined what the set of real numbers the point at infinity 

serves as the identity element namely we defined that any non any point P belonging to the state 

E if we perform the plus operation with respect to the point at infinity then we get back to the 

same point P whereas if we have 2 points P and Q belonging to the set E which are not the points 

at infinity and say the coordinates of P are x1, y1 and x2 , y2 where x1, y1 x2, y2 are all 

elements of the state Zp then the plus operation is defined as follows. 

 

For the case where x1 = x 2 and y1 = - y 2 we define P + Q to be infinity this is exactly the case 

this is the same as in the case 2 for the elliptic curves over the real number. Whereas if otherwise 

if x1 is not = x2 or y1 is not = y2 then we define P + Q to be x3 + y3 where x3 and y3 are 

elements of Zp and where x3 will be this value and they will be lambda square - x1 – x2 of 

course everything modulo P and y3 will be lambda times x1 - x3 - y1 modulo P right and the 

lambda will be computed in a different way. 

 

For 2 sub-cases if P = Q then lambda is defined in this way namely 3x1 square + a multiplied by 

2,1 the multiplicative universe of the element 2 times y1 and this basically corresponds to this 

case that is how we have defined x3, y3 for the real number case and if P is not = Q then the 

lambda is basically the slope of the line passing to the points P and Q which basically is similar 

to the first case for the elliptic curves over the real number. 

 

And it turns out that all these operations that we are now performing here are with respect to 

multiplication all the plus operations and all the multiplications operation that we are performing 

here are modulo P when we are actually performing operation on the elliptic curves modulo P 

and if you see here the way we have defined lambda this is the element 2 times y1 - inverse is 

not 2/y1. 

 

That is not the case this should be interpreted as the element 2 times y1 and its multiplicative 

inverse which exists because we are performing modulo prime P operation and in the same way 



for the second case where lambda is of this form this x2 - x1 raised to power -1 is the 

multiplicative inverse of the element x2 - x1 modulo P which is also guaranteed to exist because 

x2 - x1 will be a non 0 value. So that is the way we naturally extend the definition of the plus 

operation for elliptic curves defined over modulo prime. 
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And for an illustration let us take this example say I perform all my operations on Z11. I take my 

curve to be equation x cube + x + 6 modulo 11 and I take my set E to be the set of all x, y 

belonging to the set Z11 cross Z11 satisfies this equation along with the point at infinity. So if 

you take all x, y belonging to the set Z11 cross Z11 and see which of them satisfies this equation 

then we obtain the set E to consist of these values all the pairs satisfies this equation modulo 11 

and along with that we have a point at infinity. 

 

So since the size of this E is a prime number namely we have 13 entities in this set E it follows 

from a basic fact from the number theory that the set E along with the plus operation that we 

have defined constitutes an adjective cyclic group and since the order of this group is a prime 

number every element in this group except the identity element which is the point at infinity can 

be treated as the can be taken as the generator for this group.  

 

So for instance we can take the element 2, 7 belonging to the set iii which is a non-identity 

element and you can verify that indeed it constitutes a generator namely different powers of this 



element 2,7 will give you all the elements of the state E. So 0 times g as per the definition it 

gives you the identity element namely the point at infinity and if we perform the operation 1 

times g, 2 times g, 3 times g then the way we have defined negative addition operation we will 

get back each of the elements from the state E namely the non-identity elements of the set E once 

that means the element 2,7 indeed constitutes a generator of the set E. 
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Now we have another candidate group namely the elliptic based cyclic groups and let us see how 

exactly the D Log problem, CDH problem and DDH problem will look like over this groups 

because in the description of the D Log, DDH and CDH problem that we had seen in the last 

lecture we assumed that underline group operation is the multiplicative operation but now we 

just want to recast those definitions in the elliptic based cyclic groups. 

 

So what you are given here is the given description of a cyclic group based on the points on the 

elliptic curve modulo prime and say the size of the group is a prime number q and you are given 

a generator that means different powers of g namely up to q – 1th power of g would have given 

you the all the set E. Then the D Log problem is as follows the challenger here picks a random 

index from the stage 0 to q – 1. 

 

And it gives g to the power alpha which basically is alpha times g which is nothing, but the 

element g added to itself alpha - 1 times and the challenge for the adversary is to find out the 



index alpha. There is a CDH problem is the challenger has picked 2 random points from the 

elliptic curve by picking the indices alpha times beta and computing alpha times g and beta times 

g and the goal of the advisory is to compute the Diffie Hellman function without knowing alpha 

and beta. 

 

And the DDH problem is the challenger prepares a triplet where the first 2 components are 

random points from the elliptic curve and the third component is either the output of the DH 

function the Diffie Hellman function with respect to the first 2 components or a random point 

from the curve and the goal of the adversary is to find out whether he is seeing a Diffie Hellman 

template or a non-Diffie Hellman template 
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So now we have seen the definition of elliptic curves for cryptography applications so the 

interest next question that we would like to answer is, is it the case that all ellipticals modulo 

prime suitable for cryptographic applications? So before answering that let us see an interesting 

result for elliptic curve based on elliptic curve modulo prime. So let p be a prime and say E be an 

arbitrary elliptic curve defined over Zp which could be a singular curve. 

 

Non-singular curve namely say E is the collection of all x, y pairs satisfying this equation along 

with the point at infinity then a very well-known bound which is called as Hasse bound gives 

you a lower bound as well as upper bound on the number of points which we have on this elliptic 



curve. So this is the lower bound and this is your upper bound and interestingly we have poly 

time algorithms polynomial in the number of bits that we need to represent a prime p which can 

give you the cardinality of the elliptic curve it can also pick you. 

 

We also have poly time algorithms for picking random points from the curve we also have poly 

time algorithms for adding 2 points and we also know how to generate an elliptic curve where 

the size of the elliptic curve is a prime number. So the next question that we would like to answer 

is that is the D Log, CDH and DDH problem computationally difficult to solve in every elliptic 

curve based cyclic group and answer is not really.  

 

So there are certain curves which we should completely avoid for instantiating primitives 

cryptographic primitives. So we cannot take the curves defined over Zp where the size of the 

curve or the number of points on the curve is exactly p which because there are well known 

algorithms for solving the D Log problems in those groups, so these such curves are called as 

anomalous curves. 

 

In the same way we should avoid curves where the size of the curve p + 1 which are called a 

super singular curves and we should also avoid curves where the size of the curve is p to the 

power k - 1 for a small group. All these curves are cryptographically we curves because as I said 

earlier the instances of D Log problem is very easy to solve in this group.  

 

That means if tomorrow you are proposing a new elliptic curve based modulo prime then we 

have to very rigorously analyze the security property of those elliptic curves before we take those 

elliptic curves and perform operations on those curves to instantiate any cryptography primitive 

say for example a Diffie Hellman protocol and it turns out that analyzing any newly proposed 

elliptical is a very challenging task. 

 

So an alternative that you can do is that you can trust and use any of the NIST recommended 

curves if for example P256 curve, curve 25519 which have been rigorously analyzed by NIST 

and they claim that they have not found any weaknesses in those curves in terms of solving the D 



Log problem that means there exists no polyatomic algorithms to solve the D Log problem for 

computing the D Log of any randomly given point on those curve. 

 

But you should trust the claim of NIST at your own risk and that is why when he any when a 

government when a government of any country tries to adopt any cryptographic primitive where 

the underlying cyclic group is based on elliptic curves then they become very skeptical of using 

or trusting the curves which are recommended by NIST because they believe that there might be 

some loopholes which only NIST knows. 

 

But it is not known in the public domain and that is why the government for such critical 

application pushes to come up with new curves and try to analyze those curves and use those 

curves for instance creating the cryptography primitives. But it turns out that for many practical 

purposes these curves are very popularly used for instantiating the elliptic curve and the cyclic 

groups for instance creating the cryptography perimeters. 

 

So that brings me to the end of this lecture just to summarize in this lecture we have introduced 

the second class of cyclic groups where we believe the D Log, CDH and DDH problem to be 

difficult namely the cyclic groups based on elliptic curves modulo prime. The advantage of these 

groups compared to the cyclic groups modulo Zp star modulo p is multiplicative modulo p is that 

here the best known algorithms for solving D Log problem is of the order 2 to the power N/2. 

 

So we do not have to operate with very large modelers namely 2048 bit modelers which was the 

case for cyclic subgroups of Zp star its suffice to set the model as size to be 256 bits and we get 

the same level of security as you could expect from AES 128 and not only that the cyclic groups 

based on elliptic curves gives you another additional structure which we call as pairings which 

can be used for constructing advanced cryptographic primitives. Thank you 


