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Hello everyone. Welcome to this lecture so the plan for this lecture is as follows. We will 

introduce some candidate cyclic groups where we believe the DDH problem, CDH problem 

under discrete log problems are indeed difficult to solve. So namely we will introduce the 

prime order cyclic groups.  
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So let us begin our discussion with the importance of good cyclic groups. So remember that 

in the last lecture we have seen the definition of the DLog assumption, CDH assumption and 

DDH assumption. So if we are designing any cryptographic primitive whose security is based 

on the hardness of these problems then we need to appropriately choose the underlying cyclic 

groups. 

 

Because if the underlying cyclic groups that we use to instantiate the cryptographic primitive 

(()) (01:18) these problems are easier to solve then the resultant cryptographic primitive will 

no longer be secured. So now the interesting question is for which cyclic groups or for which 

candidate cyclic groups indeed this problem namely the DLog problem, the CDH problem or 

the DDH problem are indeed difficult to solve right.  

 

So remember in the last lecture the concrete steps of the Diffie–Hellman Key Exchange 

Protocol were given assuming that we are operating on a group where the DLog, CDH and 

DDH problem are indeed difficult, but now our question is how exactly we find those groups. 

So there are 2 popular choices of cyclic groups or candidate cyclic groups where we believe 

that these problems are indeed difficult to solve.  

 

The first choice is the groups of prime order namely groups where the number of elements is 

some prime number. However, it turns out that not all the prime order cyclic groups are 

appropriate for cryptographic applications. In fact, we will see some candidate prime order 

cyclic groups where DLog problem, CDH problem, DDH problem are indeed very easy to 

solve. 

 

But it turns out that we have other types of prime order cyclic groups where we strongly 

believe that DLog, CDH, DDH problem are indeed difficult to solve. The second choice (()) 

(02:38) of picking the candidate cyclic groups is the group based on the point on elliptic 

curves right. So in this lecture we will consider the groups of prime order based on certain 

properties.  

 

In the next lecture we will see the cyclic groups based on the points on elliptic curves and 

then we will compare these 2 types of groups which one is better to instantiate the 

cryptographic primitives whose security is based on the hardness of DLog, CDH and DDH 

assumption.  
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So before we proceed further let us see the appropriate cyclic groups for cryptographic 

applications namely which cyclic groups we should avoid for instantiating cryptographic 

primitives whose security is based on DLog, CDH and DDH assumption. So we start with the 

multiplicative group namely the set Zp* where Zp* consists of the element 1 to p – 1 and my 

underlying operation is multiplication modulo p.  

 

So remember multiplication modulo p is defined as follows. If you want to perform the 

multiplication modulo p of 2 numbers a and b from the set Zp* then you perform the integer 

multiplication a, b and take the reminder by doing a mod p operation which ensures that the 

resultant reminder is in the set 0 to Zp*. It turns out that this set Zp* along with this 

multiplication modulo p operation constitutes a cyclic group of order p – 1. 

 

Why of order p – 1 because the elements in this set Zp* are the element 1 to p – 1 so it has p 

– 1 number of elements and since p is prime p – 1 cannot be prime that is why the order of 

this group is a non prime number and we can prove that this group is a cyclic group and we 

have efficient algorithms for picking a generator for this group given the factorization of p – 

1. So remember the Diffie–Hellman key exchange protocol steps that we had seen in the last 

lecture the public set up that we need there is the description of the group. 

 

Whereas part of the description of the group the details of the generator should also be 

publically known. So we need polytime algorithm for picking the generator and when I say 

polytime algorithm I mean polynomial in the number of bits that we need to represent the 



element of the set Zp*. So we have polytime algorithms efficient algorithm for picking 

generators for this group given that you are knowing given the factorization of p – 1. 

 

So that is also a + side of this group. Also it believe that the DLog problem is indeed difficult 

to solve in this group provided p is sufficiently large so that is also a good news with respect 

to this group, but the problem here is that DDH problem is not hard in general in this group 

and that means we cannot use this group to instantiate the Diffie–Hellman Key Exchange 

Protocol.  

 

Because remember for the security of the Diffie–Hellman Key Exchange Protocol namely for 

the strong privacy of the Diffie–Hellman Key Exchange Protocol we need that the DDH 

problem should be difficult to solve in the underlying groups. So if I use Zp* along with the 

operation multiplication modulo p as my underlying cyclic group and perform operations as 

per the steps of the Diffie–Hellman Key Exchange Protocol. 

 

Then it is not guaranteed that the resultant key exchange protocol satisfies the notion of 

strong privacy because it is not guarantee that the DDH problem in this specific group is 

hard. So that means this group is suitable only to instantiate those applications or those 

cryptographic primitives whose security is just based on the DLog assumption and not on the 

DDH assumption which is not the case for the Diffie–Hellman Key Exchange Protocol. 

 

So that is the bad news with respect to this group. So that means you can see now the groups 

Zp* with operation multiplication modulo p may not be suitable group to instantiate the 

Diffie–Hellman Key Exchange Protocol it is an inappropriate cyclic group. Now consider the 

additive group. So the previous group Zp* with the operation, multiplication modulo p was a 

multiplicative group. 

 

Now consider an additive group where my set is Zp consisting of the element 0 to p – 1 and 

my operation is addition modulo p where addition modulo p on element a and b is defined as 

follows. You perform the integer addition of a and b and take the reminder with respect to the 

modulo p that is a way we define addition of a and b modulo p. So with respect to this group 

the following facts are known. First of all, this group is known to be a cyclic group and that 

too of prime order. 

 



Because the number of elements in the set Zp is 0 to p – 1 namely it has p number of 

elements where p is prime and it is known to be a cyclic group so that is a good news and 

another interesting property of this prime order group is that every element except the identity 

element is generator and this is not only specific to this group. This property holds with 

respect to any group which has a prime order.  

 

The fundamental fact which comes on a abstract algebra is that if you have a group whose 

order is prime namely it consists of prime number of elements then any element from that 

group except the identity element of that group is a generator. So picking generator is not at 

all going to be a sophisticated task. If we operate or if we perform operations in this group 

you can pick any element except 0 that is bound to be a generator.  

 

However, the most unfortunate part or the most unfortunate fact with respect to this group is 

that the DLog problem is very, very easy to solve in this group. In poly amount of time you 

can compute the DLog of any randomly chosen element from this set with probability 1. So 

what exactly will be an instance of the DLog problem in this group right. So you pick a 

random index alpha in the set 0 to p – 1 because your group is of size p. 

 

And you compute alpha times g where g is the publically known generator and say the 

resultant output is u and the challenge for u is to compute this unknown alpha such that alpha 

times g modulo p would have given you u. So what are known what are the things known to 

you, you are knowing g here, you are knowing u here and you know that everything is related 

modulo p here and your goal is to find out alpha here.  

 

It turns out that we can easily compute alpha here by multiplying both the side with the 

multiplicative inverse of g and multiplicative inverse of g modulo p can be computed in 

polynomial amount of time and if you multiply both the sides with multiplicative inverse of g 

then the effect of g and g cancels out and what you are left with is alpha and hence you are 

obtaining the value of alpha namely the discrete log of u to the base g in polynomial amount 

of time.  

 

So I am not giving the full details of the discrete log solver for this group, but that is the 

overall idea. So even though this specific group has some nice properties namely it is a prime 

order cyclic groups picking generator is not a difficult task. The most unfortunate part here is 



that the DLog problem is very, very easy to solve and that automatically implies that the 

CDH problem is easy to solve. 

 

And which automatically implies that DDH problem is also easier to solve in this group. So 

that means this group cannot be used at all to instantiate any cryptographic primitive whose 

security is based on the hardness of DLog problem, CDH problem, DDH problem.  
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So now let us another group which is quite appropriate to instantiate cryptographic primitives 

based on the security of DLog and CDH and DDH problems and this group is basically prime 

order cyclic sub group of the group Zp* with the operation multiplicative modulo p. So let p 

and q be primes publically known such that p is related to q in this form namely p = r times q 

+ 1 where r is also publically known. 

 

And then let me define a set G to be the set of all element of the form h to the r module p 

where h belongs to the set Zp*. So pictorially what I am doing here is you imagine the 

elements in this bigger circle as the elements of Zp* and Zp* has p – 1 number of elements 

because my underlying operation is multiplication modulo p. What I am doing here is in the 

set G big G I am just collecting some smaller I am collecting a subset of elements from Zp*.  

 

Namely I am collecting all the rth residues modulo p. Why rth residues because I am taking h 

from Zp* raising it to the power r and taking modulo p and that is why the resultant can be 

viewed as rth residue modulo p. For instance, if r = 2 then basically G consists of all the 



elements which are perfect squares modulo p because I will be collecting elements of the 

form h square mod p where h belongs to Zp*. 

 

Whereas if r would have been 3 then G basically consists of all the elements which are 

perfect cube modulo p and so on. So in general if G is some h to the power r then G is the set 

of all rth residues modulo p so that is the way I am computing this set G here and very 

interesting results from number theory is which I am not going to prove here explicitly states 

that the collection G or the subset G which is or the set G which is the subset of Zp* along 

with the operation multiplicative modulo p constitutes a group of order q. 

 

Namely the set G will have q number of elements and since I have selected q to be a prime 

that means the order of G is a prime and we can prove that if you perform the operation 

multiplication modulo p on the elements that we have selected in the set G then it satisfies the 

group axioms. Namely we can prove that the elements in G can be expressed as the powers of 

the generators where the indices of the powers will be in the range 0 to q – 1.  

 

For some generator little g belonging to the set big G and moreover the important interesting 

property that we obtain here is that since my set G or group G has prime order every element 

in this set G except the identity element will be a generator for the subgroup which I have 

picked. Why I am calling it subgroup because the elements in the set big G is a subset of the 

elements in Zp*. 

 

But the operation in this set G namely multiplication modulo p is the same as the operation in 

the bigger group namely Zp* that is why I am calling it as a subgroup. So since the order of 

this subgroup is prime every element from this subgroup will be an identity element will be a 

generator except the identity element. Moreover, for the subgroup that I have chosen here we 

have efficient algorithms for picking random elements as well as for performing group 

exponentiation.  

 

So remember if you recall the steps of the Diffie–Hellman Key Exchange Protocol they are 

sender and receiver have to pick random elements from the underlying group over which they 

are performing the operations. So for that we need to have efficient algorithm, polytime 

algorithms for picking random elements from the group and it turns out that if I set my group 

to be the set of all rth residues modulo p. 



 

Then I have efficient algorithm for picking random elements from that group and you (()) 

(14:37) performing group exponentiation and it turns out that DLog, CDH, DDH all this 

problems are believed to very, very hard for sufficiently large values of p and q if I pick my 

subgroup g to be the set of all rth residues modulo p okay. 
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So let us see an illustration of prime order cyclic subgroup of Zp*. So imagine p = 11 where p 

11 is a prime numbers so I can express 11 in the form 2 times 5 + 1 and Z11 * basically 

consists of the element 1 to 10. So if I take my q to be 5 then p and q are related as 2 times 5 

+ 1 so I can take my r to be 2 and what I can do is I can set my set G to be all the perfect 

square modulo 11.  

 

Namely I take all the elements h from the set Z11* raise it to the power 2 and do modulo 11 

and the resultant output is my collection G. So what I have done in this table is I have taken 

all the elements from the set Z11* and the resultant squares and if I take the resultant squares 

I obtain my set G namely my set G consists of the elements 1,3, 4, 5, 9 and you can see in this 

tables that under the square the elements 1,3, 4, 5, 9 are repeated twice right. 

 

So 1 square gives me 1 and so is 10 square gives me 1, 2 square gives me 4 so does 9 square, 

3 squares gives me 9 and 8 square gives me 9 and so on. This is because any perfects square 

namely an element in the set big G will have 2 square roots because it is a square residue 

right. So it will have 2 square root modulo p and if one of the square roots is A then the other 

square root will be – A and – A here is nothing but p – A. 



 

So for instance if I take the element 9 which is an element of G then it has 2 square roots 

because it is a result of 3 square so that is why 3 is one of the square root and similarly 9 is 

the result of 8 square modulo 11 and that is why 8 is also one of the square roots of 9 right 

and it is easy to see that the subset 1, 3, 4, 5, 9 along with the operation multiplication 

modulo 11 constitutes a group of order 5. 

 

You can verify that in the same way for the same example where p = 11 I can take my q to be 

2 and accordingly r will be 5 and now if I focus on the fifth residue modulo 11 namely the 

collection of all h to the power 5 module 11 where h belongs to Z level* then I obtain the 

subset 1, 10 and this subset 1,10 it can be seen to we can see that it actually constitutes a 

cyclic group of order 2. 

 

Because it has 2 number of 2 elements and it has the identity element and 10 is the generator 

okay. So that is a illustration here but I have not prove the generic results namely if I take p 

and q to be on the form p = r times q + 1 then the set of all rth residues gives you a cyclic 

group. I am not proving that you can see any of the standard references for number theory for 

the proof of that fact. 
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So now the question is we have seen we can have we can form prime order cyclic subgroup 

of Zp* and DLog, CDH, DDH problems are believed to be very difficult in those cyclic 

subgroups the questions turns out that what should be the magnitude of the resultant p and q 



to ensure that indeed the DLog, CDH and DDH problems are difficult in the resultant 

subgroups right.  

 

So the problem that we want to address here is we are given p and q which are price where p 

is of the form r times q + 1 and we have collected the set of we have found a set of rth 

residues which we know is a cyclic group which has a generator little g and say the number 

of bits that we need to represent p is l and the number of bits that we need to represent q is n. 

Now the best known algorithms for solving the discrete log problem in the subgroup that we 

have formed here it falls under 2 categories. 

 

We have the Class I algorithm that we know for solving the discrete log problem in this 

subgroup their running time is of order root to the power q and now since q is of the 

magnitude 2 to the power n that means root q will be of the magnitude 2 to the power n/2. So 

even though this is an exponential time in this underlying security parameter we have to very 

judiciously decide the value of little n when we are instantiating this subgroup for 

instantiating a cryptographic primitive whose security is based on the DLog assumption. 

 

It turns out that if you set n = 256 right namely if we select q which is a 256 bit prime and 

accordingly set a prime p where p and q are related by the relationship that p is r times q + 1 

then just by setting n = 256 we achieve a level of security which is comparable to AES-128. 

So remember when we saw the practical instantiation of (()) (20:13) like AES, DES where we 

aim for the practical security. 

 

And by practical security of AES-128 I mean that the best possible attack that an adversary 

can launch to recover an AES key where the adversary is given several x, y pair where x is 

the AES input and y is the corresponding AES output under an unknown key then the 

complexity of the best known attack should be of order 2 to the power 128. So it turns out 

that if we instantiate any cryptographic primitive based on the hardness of DLog problem by 

selecting a cyclic subgroup of Zp* by setting n = 256. 

 

Then the best known algorithm for solving the DLog problem by this class of algorithm will 

take time roughly of order 2 to the power 256/2 which will be of order 2 to the power 128 

that means we get the same level of security as your AES-128 would have provided whereas 



the Class 2 algorithms for solving the DLog problem in this cyclic subgroup it is running time 

is of order poly logarithmic in the value l right.  

 

So it is running time precisely is 2 to the power sorry its running time is 2 to the power order 

poly logarithmic in the number of bits that we need to represent p. So as up to 2016 this Class 

2 algorithm can be used to solve instance of DLog problem and for any instantiation of the 

cyclic subgroup where l is 768 and it is suggested that to have meaningful notion of security 

we should operate by setting l to be 2048. 

 

That means if we summarize to tackle the class 1 algorithm and Class 2 algorithm that we 

have for solving the DLog problems in this cyclic subgroups to ensure that we have 

reasonable amount of security or the running time of the adversary for solving the discrete 

log problem is of sufficiently large order we have to perform computations modulo 2048 bit 

prime number.  

 

That means say for instance if we use the Diffie–Hellman Key Exchange Protocol and if we 

instantiate the steps of the Diffie–Hellman Key Exchange Protocol by setting (()) (22:37) to 

be set of all rth residues modulo p then I have to ensure that my size of p should be my p 

should be 2048 bit large prime number that means both sender and the receiver have to 

perform computations modulo this large bit prime number which actually reduces the running 

time of both sender and the receiver. 

 

So even though we have now a candidate cyclic subgroup which we can now used to 

instantiate any cryptographic primitive whose security is based on the hardness of DLog, 

CDH and DDH assumption it turns out that the running time of the sender, receiver or all the 

involve parties also reduces because we are going to perform operations modulo are very 

large prime number. 

 

So an interesting question will be can we have other kind of cyclic candidate cyclic groups 

where we do not have to perform operations modulo such a huge prime number, but still the 

CDH problem, DDH problem and DLog problem are difficult to solve in those alternative 

groups and in the next lecture, we will see one such candidate group. So that brings me to the 

end of this lecture.  

 



In this lecture we have introduced one candidate cyclic groups namely the cyclic subgroup of 

Zp* with respect to the operation, multiplication modulo p and we believe that the CDH 

problem, the DLog problem and DDH problem are indeed difficult to solve in this groups 

however to obtain practical level of security we have to set the value of modulo p or we have 

to set the size of the modulus p to be a very large number to ensure that sender and receiver 

obtain reasonable amount of security which actually ends up making the running time of the 

sender and the receiver also slow. Thank you.  


