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Hello everyone, welcome to lecture 4. 

(Refer Slide Time: 00:28) 

 

So plan for this lecture is as follows, we will discuss perfect secrecy which is the first formal 

notion of security and which is also the strongest notion of secrecy. And we will also discuss 

various equivalent definitions of perfect secrecy. 
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So, the definition of perfect security was given by Claude Shannon in his classical work in 1948 

and Shannon is often considered as the father of information theory and this notion of security is 

also called as unconditional security and information theoretic security. So the attack model that 

is considered in the definition of perfect security is the ciphertext only attack model, where we 

assume that we have a sender and the receiver who have agreed upon a random key value k. 

 

And we assume that sender has encrypted a single message m using a publicly known encryption 

process under that key k, and the ciphertext has been intercepted by the adversary. The 

interesting part of this attack model is that we assume here that the adversary is computationally 

unbounded. That means we make no assumption whatsoever about his computing power. We 

assume that he can do any kind of computation with brute force or any other computation. 

 

So that is the interesting aspect of this security model. Informally, perfect security says that 

irrespective of any prior information that the attacker has about down the line plain text, seeing 

the cipher text provides no additional information to him about the underlying plain text. That 

means seeing the ciphertext is absolutely useless for the attacker, whatever it could infer about 

the message from the ciphertext, same it could have already inferred before any ciphertext would 

have been communicated. 

 



So here we have 2 entities, we have the prior information and we have the term no additional 

information. So we have to now learn a little bit of maths to understand how to formalize these 2 

notions namely that of prior information and that have no additional information right. 
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So, imagine we are given a publicly known cipher namely a triplet of algorithms key generation 

algorithm, encryption algorithm and a decryption algorithm. Then any attacker has the following 

information about the encryption process, right. Namely, he knows it knows 3 spaces, namely the 

message space, the key space and the cipher text space, where the message space is the set of all 

legitimate messages which could be encrypted by the encryption process. 

 

Keys space denotes all possible keys which could be output by the key generation algorithm. 

And the ciphertext denotes all possible ciphertext, which could be generated by the encryption 

algorithm right. So now from the viewpoint of the attacker, any public any encryption scheme 

induces 3 probability distribution, 1 probability distribution over the message space, 1 

probability distribution over the key space. 

 

And 1 probability distribution over the ciphertext space. So now let us go over this probability 

distributions one by one. The first probability distribution is over the key space and this is 

induced by the key generation algorithm. So remember, as per the Kerckhoffs’ principle, we 



assume that steps of the key generation algorithm encryption algorithm and decryption algorithm 

are publicly known to the attacker. 

 

And we also discussed that key generational algorithm has to be a randomized algorithm. That 

means, every time we run the key generation algorithm it is going to output a possible candidate 

key from the key space with certain probability. So that is what we mean by the probability 

distribution over the key space induced by the key generation algorithm. Also, we discussed in 

one of our lectures that in most of the cases, the key generation algorithm is going to output a 

uniformly random key from the key space. 

 

Namely, if the key space size is this cardinality of key space, then any candidate key could be 

generated with probability one over the key space. So that is the uniform distribution over the 

key space, which adversary will already have if it knows such steps, of key generation algorithm. 

But it is not necessary that your key generation algorithm always outputs uniformly random keys 

from the key space. 

 

So that would be inducing another kind of probability distribution. Whatever is the case since the 

steps of the key generation algorithms are publicly known. We know that from the viewpoint of 

the attacker, there is a probability distribution over different values of keys, which could occur 

with different probabilities. And to capture that, we introduced this notation bold phase K, which 

is a random variable. 

 

And which denotes the value of candidate key, which could be obtained by running the key 

generation algorithm. And since the key generation algorithm is going to be a randomized 

algorithm, it is not the case that every time we run the key generation algorithm, we obtain the 

same value of little k. And different values of little k could occur with different probabilities to 

denote what value of little k has been obtained by running the key generation algorithm. 

 

We introduced this random variable bold phase K. So the notation probability, random variable k 

is equal to little k denotes the probability with which the key generation algorithm would output 



the candidate value of key to be little k. That is the probability distribution that adversary has 

about the key space. 
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The next important probability distribution is that over the plane tech space, and this models any 

kind of prior information that the attacker might have about the underlying plaintext. For 

example, if the attacker already knows or feels that depending upon the underlying context 

sender would either encrypt a message attack 70% times or the message retreat 30% time. Then 

that is a probability distribution over the message space that is induced and known to the 

attacker. 

 

But it might be the case that attacker is completely clueless what exactly is going to be the 

message it could be any uniform the random message from the plain text space in that case, the 

probability distribution is a uniform probability distribution. So we introduced this random 

variable bold phase m, which is a random variable to denote the candidate plain text, which 

sender might encrypt using the encryption algorithm. 

 

And since attacker does not exactly know what exactly is the message going to be encrypted. We 

have problems for different message candidate messages to occur with different probabilities. So 

the notation probability random variable M equal to little m denotes a probability with which 



attacker fields, that sender would encrypt a plain text m using the encryption algorithm. So that is 

a probability distribution over the plain text space. 
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And the third probability distribution is the probability distribution over the ciphertext space. 

And this is determined by the probability distribution over the message space and a key space 

and the steps of the encryption process. Because once the attacker knows, what is the probability 

that a certain plane text would be encrypted by the sender, and what is the probability that a 

candidate key would be obtained by the key generation algorithm. 

 

Then by running the steps of the encryption algorithm over that candidate plain text and the 

candidate key adversary can find out what is the probability of occurrence of a certain ciphertext. 

So we introduced this third random variable bold phase C to denote value of the candidate 

ciphertext and the notation probability the random variable C equal to little c denotes a 

probability with which the encryption algorithm would output a cipher text c right. 

 

So notice that there are random variables, m and k are independent of each other because the key 

is obtained by running the key generation algorithm, which is run independent of what message 

is going to be encrypted by the k algorithm. Whereas the random variable c, it depends upon the 

random value of the random variable m and a random variable k. 
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So now let us see a numerical example to understand this concepts in a better fashion. So 

imagine I have a candidate encryption process where the candidate messages could be either the 

character a or b, or c or d. In the same way, imagine I have a key generation algorithm which 

could output 3 keys with different probabilities and say the attacker has the following probability 

distribution over the pain text space. 

 

That means it knows depending upon the underlying context, it feels or it knows somehow that 

the message could be either a probability 1 by 4, or the message could b with probability 3 by 10 

and so on. In the same way, assume that the key generation algorithm outputs the candidate key 

to be k 1 k 2 k 3 with probability 1 by 4, 1 by 2 and 1 by 4 respectively. So that is a probability 

distribution over the key space that attacker has. 

 

And imagine the adversary knows the steps of the encryption algorithm. So it could compute an 

encryption metrics where along the columns you have the candidate plain text namely a b c d, 

right. So these are the candidate plain text. And here you have the candidate keys which could be 

obtained by running the key generation algorithm. So this value 3 denotes that the encryption 

algorithm is going to output side text 3 if the plain text would have been a and the key would 

have been k 1. 

 



In the same way, for example, this last entry denotes that the ciphertext will be 2, if the plain text 

would have been d, and the key would have been a 3, and so on, and adversary could compute 

this matrix because it knows the steps of the algorithm and it knows the different candidate 

values of plain text and candidate values of key, right. So that is the information that is available 

with the attacker. 
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So now let us try to compute the probability distribution over the ciphertext space right. So as 

you can see from the encryption metrics, the ciphertext could be either 1 or 2, or 3 or 4. So let us 

try to compute the probability with which the ciphertext could be 1 or 2, or 3 or 4. So let us first 

compute the probability that what is the probability that encryption algorithm produces 

ciphertext to be 1. 

 

So now if you see the encryption matrix, ciphertext could be 1, if the plain text is b and the keys 

k 2, that is one option or one condition under which the cipher text will be 1. The other condition 

in which the cipher text could be 1 is when the plain text is c, and the key would have been k 3. 

And the third condition under which the ciphertext could be 1 is when the plain text is d, and the 

key would have been k 1. 

 

And all these 3 conditions or events are independent of each other. So we apply the same rule 

here. So the first term here denotes the probability that the key would have been k 2. That means 



by running the key generation algorithm sender would have obtained the key to b k 2, and the 

probability that sender would have used the message b for encryption. Both these even suffer 

together, then the ciphertext would have been gone. 

 

The second term denotes the other possible condition in which the ciphertext could have been 1 

namely, plaintext at sender wants to encrypt the c. And the key that is obtained by running the 

key generation algorithm is k 3. And the third term here denotes the probability of occurrence of 

the third condition, namely, the plain text is d and the key generation algorithm outputs the k to 

the k 1. 

 

And since we know the value of each of these individual probabilities, which is available to the 

attacker, attacker can compute this and hence it knows that the probability that encryption 

algorithm could produce ciphertext to be 1 is 0.2625. So that is the value of probability of 

occurrence of 1 as the ciphertext. In the same way, let us try to compute what is the probability 

that the ciphertext could be 2 right. 

 

Again, if you see the encryption metrics, there are 3 possible conditions in which the ciphertext 

could be 2, the first condition is if sender would have encrypted the plain text c, and the key that 

is used by the sender namely the key generation algorithm outputs the key to k 1. So that is 

underlying them. The second condition in which the ciphertext character would have been 2 is if 

the plain text would have been d. 

 

And the key generation algorithm for sender would have output the k to k 2. So that is the second 

term. And the third condition under which the ciphertext character could have been 2 is if the 

plaintext would have been d, and the key would have been k 3. Again, we know all these 

individual probabilities and we can sum them together to obtain the probability of ciphertext 

being 2 being produced by the encryption algorithm. 

 

In the same way you can compute the remaining probabilities, namely, the probability of 

ciphertext being 3 and the probability that ciphertext character is 4. And that gives you the 

probability distribution over the ciphertext space. 
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Not only we can compute the probability distribution over the cipher text space, we can also 

compute some additional values, namely some kind of some conditional probabilities. For 

example, let us try to compute the conditional probability that given the plain text is m, what is 

the probability that ciphertext would have been c, right. So for instance, suppose let us try to 

compute the value of probability that ciphertext is 1 given that plaintext is equal to a. 

 

So again, if we see the encryption metrics, if you see the column under the plaintext a, then you 

can see that if the plain text would have been a no way, it is possible that the ciphertext could be 

1 because the encryption of a could give either the ciphertext being 3 or ciphertext being 3 or 

ciphertext being 4. For no value of k, no value of k the encryption of a would have given you the 

ciphertext to be 1. 

 

That is why we can say that the conditional probability that ciphertext is 1 given the plain text is 

a is 0, right. In the same way, the condition probability that ciphertext is going to be 2 given the 

plaintext is 1 is again 0 because again, you can see the encryption metrics or the encryption 

algorithm, which states that for no value of k encryption of a under that key would give you the 

ciphertext value 2. 

 



Now let us compute the conditional probability that given the message a, what is the probability 

ciphertext is equal to 3. Now, if you see the interruption metrics, under the plain text a, there are 

2 values of ks namely k 1 and k 2, both of which could produce an encryption of a 2 b 3. And 

since the key generation algorithm is a randomized algorithm, the probability that the key is 

equal to k 1 is given to you the probability that key is equal to k 2 is given to you. 

 

And if any of these 2 events occur, then the encryption of a under the key k 1 or under the key k 

2 would have given you the ciphertext equal to 3. So the conditional probability that given the 

place text is a you obtain the cipher text 3 is 0.75. And in the same way, if you want to compute 

the conditional probability that given the plain text is a what is the probability ciphertext equal to 

4. Then again, if you look into the encryption metrics, you can see that if the plain text is a then 

the only condition in which you can obtain the ciphertext to be 4 is if the key generation 

algorithm would have produced the key to be k 3. 

 

And the probability that the key generation algorithm would produce the key to be k 3 is 0.25 

right. In the same way, you could compute other conditional probabilities as well. 
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So now let us see the original definition of perfect security as given by Shannon. So informal 

requirement, recall the informal requirement from the perfect secrecy is that we will say an 

encryption process to be perfectly secure. If irrespective of any prior information the attacker has 



about the underlying plaintext. The cipher text that it intercepts leak, no additional information 

about the plaintext. 

 

And now we know how to model this prior information. That is precisely the probability 

distribution over the plane text space that attacker has. And now we can also mathematically 

capture what exactly we mean by no additional information. So formerly an encryption process 

namely a collection of algorithms key generation in conduct over a plain text space m is called 

perfectly secure. 

 

If for every probability distribution over the plain text space and key space, and for every plain 

text m belonging to the plain text space, according to that probability distribution, and for every 

ciphertext c belonging to the ciphertext space, the following equality holds, right. So let us try to 

understand what exactly the lhs and rhs of this equality stands for. So if you consider the rhs part 

of this equality. 

 

Namely the probability that the plain text is equal to small m little m that is precisely the a priori 

probability that message m could be communicated by the sender. That is a prior information 

about the underlying plain text before any communication has happened from the sender to 

receiver, before any key generation algorithm has been used, and the message has been 

encrypted that is the a priori information about the underlying plaintext. 

 

Whereas the lhs part of this equality namely the conditional probability that the plain text is 

equal to m given the ciphertext equal to c that supposed to you are the probability that the 

message m is encrypted in c. That means, given that adversary has seen or intercepted a cipher 

text c, what is the probability that the plain text m little m has is encrypted in this cipher text c. 

So, intuitively, when we say that these 2 probabilities are equal, it means that whatever the 

adversary knew about the underlying plain text before any cipher text was communicated with 

same probability adversary knows that a plain text could be m and in the given cipher text c. 

 

That means observing the ciphertext c does not change attackers knowledge about the 

distribution of the plaintext. Whatever the attackers knowledge was before seeing the ciphertext, 



the same knowledge it has, even after seeing the ciphertext. And moreover, it holds even if 

adversary is computationally unbounded. That is the importance of this definition. This 

definition does not put any kind of restriction on the computational power of the adversary. 

 

Even if adversary knows the steps of the algorithm, even if it knows what could be the candidate 

keys even if it is allowed to do brute force, its view or its knowledge about the underlying plain 

text or the distribution of the plain text should not change before and after seeing the ciphertext.  

If that holds, then we say that our underlying encryption process is perfectly secure. Notice that 

in this definition, I have highlighted few things namely, I have said that the condition should 

hold for every probability distribution over the plane text space. 

 

That means it does not matter whether the distribution of a plain text space is a uniform 

distribution or a bias distribution, the condition should hold for any possible probability 

distribution of other message space. In the same way, the condition or the quality should hold for 

any kind of probability distribution over the key space whether it is a uniformly generated key, 

whether the key generation algorithm output uniformly generate random keys or bias keys still 

the condition should hold. 

 

Moreover, once we fixed up probability distribution of the plain text space and the key space, the 

condition should hold for every plaintext belonging to the messy space and every candidate 

ciphertext belonging to the ciphertext space right. 
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So now, what we will do is we will see some alternate equivalent definitions for perfect security. 

So this is the original definition of perfect security as given by Shannon and the interpretation of 

the quality of these 2 probabilities is that the probability of knowing a plaintext remains the same 

before and after seeing the cipher text. That is the interpretation of the original definition of 

perfect security as given by Shannon. 

 

Now let us see the first alternate definition. The first alternative definition says that we will say 

an encryption process encryption scheme to be perfectly secure for every probability distribution 

over the plaintext space and key space. And for every pair of message m 0, m 1 which occurs 

with non-zero probability with respect to that probability distribution and every cipher text c the 

following equality should hold. 

 

The equality says that the conditional probability that ciphertext c given the plaintext is m 0 is 

same as the conditional probability that ciphertext is c given the plaintext is m 1. The 

interpretation of this equality is that the probability distribution of the ciphertext is independent 

of what exactly is your underlying plain text. That means if the adversary sees the ciphertext c 

over the channel, then it does not matter whether the plain text is m 0 or whether the plain text is 

m 1 with equal probability from the viewpoint of the attacker, the ciphertext c should be in 

candidate encryption of , 0 as well as a candidate encryption of m 1. 

 



There should not be any bias in the probability. But whether it is an encryption of m 0 or whether 

it is an encryption of m 1, that means the ciphertext distribution should be independent of the 

underlying plaintext. 
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So now what we are going to do next is we are going to prove that both these 2 definitions are 

equivalent. Namely, we will show that if there is an interruption process which satisfies the 

original condition of Shannon's perfect security, then the same encryption process has to satisfy 

the alternate definition and vice versa. So let us first prove the equivalence of the definition 

assuming that we have an encryption process which satisfies the condition of alternate definition. 

 

Namely, we assume that we have an encryption process where for every probability distribution, 

the conditional probability that m 0 is encrypted in c and m 1 is encrypted in c is same. And we 

call that probability to be say delta, for all pair of messages m 0, m 1 in the plain text space, and 

for all ciphertext c belonging to the cipher text space. Given this, we will prove that the original 

condition of the Shannon’s perfect security is also true for the encryption process. 

 

Namely, the conditional probability that the message is m in the ciphertext c is same as the 

probability that plain text is not right. So what we are going to do is assume we have an arbitrary 

plain text and arbitrary cipher text character. Now let us try to compute the conditional 



probability that message is m given the cipher text c. So what I am going to do here is I am going 

to apply the Bayes theorem here. 

 

And by applying the Bayes theorem contain the numerator and denominator of the conditional 

probabilities. So in the left hand side, the numerator is message being m and the denominator is 

ciphertext being c. So I am applying the Bayes theorem and rewriting the same expression in lhs, 

where I am changing the numerator and denominator. And as for the Bayes theorem, I will get 

the right hand side part right. 

 

So, now let us try to compute the value of probability what is c equal to little c. The probability 

that your ciphertext is little c is going to be this summation, this summation state that you take all 

possible messages from the plain text space and find out what is the probability that the message 

is that candidate plain text namely m dash and given that the message is m dash, what is the 

probability that m dash is encrypted in c. 

 

That will give you the probability distribution over the cipher text t little c right. Because you 

have all you what you have to basically do is imagine you have the plane text space you take 

each of the plaintext candidate plaintext that is precisely the first term in this summation. And 

once you have fixed that candidate plaintext you just compute what is the probability that that 

candidate plaintext will take you to the ciphertext little c, that is his second term. 

 

And if you multiply all this, if these 2 probabilities and take the summation over all candidate 

plain text, that will give you the probability distribution of ciphertext being little c. Now, as part 

of our hypothesis of the condition, we know that the conditional probability that ciphertext is 

little c given the plain text is m dash is same for all m dash namely, it is delta, because that is 

what is the assumption that we are making. 

 

We are making the assumption that our encryption process satisfies the alternate condition. So 

for every m dash, I can replace the second term in the summation by delta. And as a result, I get 

this simplified form of the summation and I cannot take out delta common and what I will be left 



with summation of probabilities over the plain text space that plain text is little m dash. And if I 

as per the rules of probability, if I sum up all those probabilities I will get 1. 

 

So that means I can say that the probability that ciphertext is little c is nothing but delta, okay, so 

we have computed the value of probability of c equal to little c, that is delta. Now, let us try to 

compute the conditional probability that ciphertext is little c given the plain text is m, that is the 

numerator part of this rhs expression. And again, as per our hypothesis of this, theorem, or this 

lemma, we already know that the given the plain text is little m, the probability that ciphertext 

will be c is nothing but delta. 

 

And that is irrespective of what is my little m, it could be m 0, it could be m 1 it could be m 2 for 

any candidate m from the plaintext base the probability that it could lead to the ciphertext when 

little c is delta. So, that means the numerator part of this rhs expression is also delta. Hence, I can 

say that my original lhs namely, the conditional probability that cipher text a plain text is m, little 

m given the ciphertext is little c is nothing but this equality. 

 

And in the numerator as well as in denominator, I have the delta so I can cancel it out. And 

hence, I obtain that this conditional probability is nothing but the probability that plaintext is 

little m, which is precisely what exactly we wanted to prove. That means we have proved that if 

the encryption process satisfies the condition of the alternate definition, then it also has to satisfy 

the condition of original Shannon's definition right. So, now let us do the proof in the reverse 

direction. 
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Namely, we assume that we have an encryption process which satisfies the condition of the 

original Shannon's definition. That is the conditional probability that message is little m given 

the cipher text this little c is same as the probability that messages little m, for all messages in the 

plain text space and all cipher text in the cipher text space. Given this will prove that the 

distribution of the cipher text is independent of the underlying plaintext. 

 

Namely, it does not matter whether the plain text is m 0 or whether the plain text is m 1 with 

equal probability, it could lead to the cipher text little c, and this holds for every pair of messages 

m 0, m 1 in from the plain text space and every cipher text c from the cipher text space right. So 

let us first try to compute the probability that ciphertext is little c given the plain text is m 0. For 

this we are going to use the fact that as per the given condition, since the encryption scheme 

satisfies the original channel and condition. 

 

We know that the conditional probability that message is m 0 given ciphertext is c is same as the 

probability that messages m 0, right. So now what I am going to do is I am going to expand my 

lhs part here using the Bayes theorem, where I am just changing the numerator and the 

denominator of the conditional probability. And by applying the Bayes theorem, I get this 

equality. 

 



Now, what I can do is I can cancel out this common term from both the lhs and rhs. And hence I 

obtained that the conditional probability that little m 0 will lead to an encryption of c is same as 

the probability that ciphertext is little c, by applying the same logic, I can conclude that the 

conditional probability that ciphertext is little c given the plain text is m, 1 is same as the 

probability that ciphertext is little c. 

 

As a result, both this conditional probability that m 0 will lead to an encryption of c and the 

probability that m 1 will lead to an encryption of c are same namely, it is probability that 

ciphertext is equal to little c. That means, we have proved that if the original Shannon's condition 

is satisfied, then the encryption process also has to satisfy the condition for the alternate 

definition. That means, both these definitions are equivalent to each other. 

 

So, if you are given an encryption process and if you are asked to prove whether it is perfectly 

secure or not, then you can either prove it as per the original Shannon's condition or you can 

prove it as per the first alternate definition. 
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Now, let us see another equivalent definition of perfect security. And before going into this 

definition, let us first try to understand the underlying intuition that we want to capture through 

this definition. So, the goal of the perfect security is the following. Imagine a scenario where a 

key for the encryption process has been indeed upon between the sender and the receiver. And 



suppose the adversary knows that the candidate plaintext for the sender is going to be either m 0 

or m 1 and that to with equal probability. 

 

And suppose indeed sender is going to encrypt message m 0 or m 1 with equal probability. And 

it encrypts 1 of these messages randomly using the key k as for the encryption process, computes 

the cipher text c and sent it over the channel and say the attacker intercepts the cipher text c, and 

the attacker has unbounded computing power. Intuitively perfect secrecy demands that the 

adversaries knowledge about the underlying plain text should remain the same even after seeing 

the ciphertext c. 

 

So what was this information about the plain text before any cipher text was communicated in 

this particular case, with probability half from the viewpoint of the attacker, the plain text could 

be m 0, and with probability half the plain text would be m 1. Now perfect secrecy demands that 

even after seeing the cipher text c and even after knowing the steps of the encryption process, 

and even if the adversary has unbounded computing power, the advantage that adversity gets 

after seeing the cipher text and learning the underlying plain text should be 0. 

 

That means, even after seeing the cipher text c the probability that the underlying plain text 

would be m 0 or m 1 should be half. That means adversary can do nothing better than guessing 

the underlying predicts. That is the basic underlying intuition that we are now going to formalize. 
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And this intuition is formalized by a challenge response game, which we call this experiment. 

And we are going to see that in the rest of this course, every security definition is going to be 

formalized by this kind of challenge response experiment or a game which model something 

which we want which can happen in reality, right. So the experiment is as follows. So we assume 

that we are given a publicly known cipher namely a triplet of algorithms and the message space, 

and the game is played between 2 entities. 

 

The first entity here is an adversary or an algorithm for the attacker which we denote by this 

algorithm a and the algorithm or the adversary is computationally unbounded. And this models 

the fact that we are trying to capture the notion of perfect secrecy where the adversary is 

computationally unbound. And the second entity here is the hypothetical verifier which is going 

to model the sender right. 

 

Now, the nomenclature that we are going to follow while naming these kind of experiments is as 

follows. So, this particular experiment is denoted by this name. And now let us try to decode 

each of the individual parts of this complicated name. So, the name prefix privK denotes here 

that we are trying to model an experiment for a symmetric encryption process or a private key 

encryption process. 

 



That is why the name privK, later on when we will try to model the security requirement for 

public key primitives. This privK will be replaced by pubK. The name of the string em denotes 

here we are considering an adversary where the adversary is only allowed to eavesdrop out just 

listen the cipher text because we are in the cipher text only attack model. The name a here 

denotes the name of the algorithm here and pi denotes the name of the encryption process with 

respect to which this game is going to be played. 

 

So, that is the nomenclature we are going to follow to denote this particular experiment right. So 

now what are the rules of this game. This experiment is going to be a randomized experiment. So 

the first step here is that adversary selects a pair of messages from the plain text space, say m 0 

and m 1 with the restriction that their size has to be same. An adversary can choose any pair of 

message there is absolutely no restriction which we put that on the pair of message that it can 

submit to the verifier. 

 

The only restriction is that their length have to be same, so adversary can use adversary can 

deterministically pick up a pair of message, it could randomly pick a pair of message, it can use 

any strategy to pick the pair of message that it wants to send to the verifier. Now, once the pair of 

messages are communicated to the verifier, what the verifier is going to do is the following, it is 

going to run the key generation algorithm which will output a uniformly random key or a key as 

per the steps of the key generation algorithm for the verifier. 

 

And the verifier is going to randomly pick 1 of these 2 messages for encryption. So the index of 

the message which is going to pick for encryption is denoted by b which is picked uniformly 

randomly. That means, with probability half, it might be picking the message m 0 for encryption, 

or with probability have it might be picking the message m 1 for encryption. Once it has decided 

to index of the message, it encrypts that message m b using the key k which is known only to the 

verifier and the ciphertext is given to the adversary. 

 

And now the goal of the adversary is to find out the index of the message which has been 

encrypted in c, that means the adversary has to find out whether the c that it is c is an encryption 

of m 0 or whether it is an encryption of m 1. So after analyzing the cipher text c as per whatever 



strategy adversary wants to follow, it gives them prediction. Namely, it outputs a bit, which is 

either 0 or 1 corresponding to the index, which it feels that that particular message has been 

encrypted in the cipher text c. 

 

That means b dash denotes the index, which according to the adversary is the index of the 

message which is encrypted in the ciphertext c. That is the experiment and as you can see, this is 

a randomized experiment, because adversary could pick any pair of message as per its random s 

in the same way the verifier is going to pick any random message out of this pair for encryption, 

and the key could be any random key as per the key generation algorithm. 

 

Now the output of the experiment is decided as follows. We say that output of the experiment is 

1 or which is interpreted as adversary has won the game. If it has correctly predicted what 

exactly is the message which is encrypted in the ciphertext c. That means if it correctly output b 

dash equal to b then we say that the adversary has won this experiment or the adversaries 

experiments output is 1. 

 

On the other hand, if the adversary incorrectly identifies what is encrypted in that cipher text c 

that means it outputs b dash which is different from b, then we say that output of the experiment 

is 0, which is interpreted as adversary has lost the game right. 

(Refer Slide Time: 37:41) 

 



Now, this is the experiment and now we have a definition we say is that an encryption process pi 

with respect to which this game has been played, is perfectly indistinguishable. If for every 

attacker who participates in this game, the probability that the output of the experiment is 1 that 

means probability that the adversary outputs b equal to b dash in the experiment is half. If it is 

more than half, then we say that the encryption process is not perfectly indistinguishable. 

 

Also, the probability here is taken over the randomness of an adversary and what the randomness 

of the verifier namely the value of b and the value of k used output by the key generation right. 

So, that is our third equivalent definition of perfect secrecy. 

(Refer Slide Time: 38:30) 

 

So, the original definition of perfect secrecy as given by Shannon was this, we saw the first 

equivalent definition and now we have this game based definition right. So we have now 3 

different definitions. And it can be proved that all these 3 definitions are equivalent to each other. 

We already proved that the first 2 definitions are equivalent to each other. We can also prove that 

this third definition is equivalent to the first definition. 

 

And the third definition is also equivalent to the second definition. That means, if you are given 

an encryption process, we can prove it to be secure as per any of these 3 conditions, we can 

directly prove it using the Shannon's original definition, we can try to prove it using the 



equivalent definition, or we can try to prove it using the game based definition right. So these are 

the 3 equivalent definitions of perfect security. 

 

So now I would like to stress a little bit on this game based definition. So this game based 

definition describes the notion of what we call as perfect indistinguishability. That means the 

ciphertext is completely indistinguishable from the viewpoint of the attacker, and it leaks no 

information whatsoever, whether it is an encryption of m 0 or whether it is an encryption of m 1 

and this notion of indistinguishability is very important. 

 

Because for the rest of the course, we will see that all the definitions that we are going to 

formulate will be in terms of the notion of indistinguishability right. 
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So now let us do an example here. And we will prove that the Vigenere cipher which we have 

discussed in the last lecture is not perfectly secure. So, we are going to consider an instance of 

Vigenere cipher, where the message space and the cipher text space are going to be of length 2, 

namely, the plaintext is going to be a 2 character string and the cipher text is going to be a 2 

character string that is why the message space and the cipher text space are strings over the set 0 

to 25 cross 0 to 25. 

 



Now, the key generation algorithm for this instance of bigness cipher is going to do the 

following. Since the message string, plain text string is of length 2 then the key which is going to 

be used should be of length either 1 or it should be either length 2. So that means the period of 

the key which is the value t is a uniformly random value, which could be either 1 or 2. And once 

the period of the key has been selected, we select the key of that much size uniformly, randomly 

from the set 0 to 25 okay. 

 

So that is a key generation algorithm. And once the key has been picked, we encrypt the plain 

text that is available with the sender as per the encryption process of the Vigenere cipher. 

Namely, we divide the plain text into blocks of size t. If t is equal to 1, that means the same t is 

used to encrypt both the characters of the plain text. Whereas if t is equal to 2, then we divide the 

plain text into 1 single block of size 2 and, encrypt the whole block in 1 row using the 2 different 

characters using the 2 characters of the key. That is encryption process. 

 

And the decryption process is just the reverse operation of the corresponding encryption process. 

So now, we are going to prove that this instance of Vigenere cipher is not perfectly secure. That 

means we will give a concrete attack where the attacker can significantly find out what exactly is 

the underlying message which has been encrypted and we are going to use the game based 

definition here. 

 

Namely, we will show an instance of the game here we will show that the distinguishing 

advantage of the attacker is significantly better than half. So the instance of the experiment here 

is as follows, so adversary submits the following pair of message, it submits a message m 0, 

which consists of the same characters 00. And it submits another plain text m 1 which consists of 

2 different plain text characters right. 

 

Now, as for the rules of the game, the verifier is going to randomly encrypt 1 of these 2 messages 

as per the key generation algorithm. So it decides whether it is going to encrypt the message m 0 

or whether it is going to encrypt the message m 1 with probably half and half. And once it 

decided what is going to encrypt, it runs a key generation algorithm which is going to output a 

period which could be either 1 or 2. 



 

And once the period is generated a key of that much size is uniformly randomly picked and 

given to the verifier. And now using that key the verifier encrypts and sends the ciphertext to the 

attacker. So let the cipher text character be c 1 and c 2. Since in this case the plain text which is 

encrypted consist of 2 characters, the cipher text is also going to contain 2 characters. Now the 

goal of the attacker is to find out after seeing this cipher text c. 

 

Whether the cipher text c corresponds to an encryption of 00, or whether it corresponds to an 

encryption of 01. And the adversary does that by applying the following strategy. It compares the 

2 cipher text characters in c, namely c 1 and c 2. And if it finds that c 1 and c 2 are same, then it 

predicts that the message m 0 is encrypted in c, whereas if the cipher text characters c 1 and c 2 

are different than it predicts that the message m 1 is encrypted in ciphertext. 

 

That is analysis of the attack right. So now let us see what is the distinguishing advantage of the 

attacker, whether it can significantly distinguish apart, whether the c that it is seeing is an 

encryption of 00 or whether it is an encryption of 01. We claim that the probability that 

adversary can win this experiment, namely, it can correctly identify what has been encrypted in 

the cipher text c is 0.75, which is significantly better than half. 

 

Then that means that this scheme, this instance of Vigenere cipher, is not perfectly secure. So 

now let us prove our claim. So what is the probability that adversary wins the experiment, the 

probability adversary wins to experiment is the following. We can view this instance of the 

experiment as 2 individual experiments, the experiment where the index b is equal to 0, namely 

the verifier has selected the message m 0 for encryption and c is the encryption of m 0. 

 

And the second experiment here is the version of the experiment where the value of b is equal to 

1 that means the verifier has selected the message m 1 for encryption and c is the encryption of 

m 1. So the probability that the adversary correctly wins the experiment is what is the probability 

that b is equal to 0 and probability of b equal to 0 is half. And given that b equal to 0 adversary, 

indeed outputs p dash equal to 0. 

 



That is one case in which adversary can win the experiment. And the second case is when b is 

equal to 1, which can occur with probability half. And given that b is equal to 1, what is the 

probability that adversary correctly output the dash equal to 1. If we sum these 2 things, then that 

gives the winning probability of the adversary for this experiment. So now let us compute each 

of these 2 individual probabilities one by one right. 

 

So let us first compute the probability that adversaries analysis outputs b dash equal to 0, given 

that indeed b equal to 0, that means we now want to analyze what is the probability that if m 0 is 

encrypted in c adversaries analysis indeed outputs b dash equal to 0, right. So if you see the 

adversaries analysis, adversary outputs b dash equal to 0 only if both the ciphertext characters are 

same. And if indeed 00 is encrypted, then there are 2 possibilities right. 

 

The key could be either of period 1, or the key could be of period 2. So if the plain text to 00 is 

encrypted, right. If the plain text 00 is encrypted with a period of size 1, that means that the key 

size is 1 and the same character of the keys used to encrypt 0 as well as a second 0, then of 

course the both the cipher text characters are going to be same. Whereas if the key is of size 2 

right, then the probability that both the cipher text characters are same as same as probability 

with which the key of size 2 satisfies the following condition. 

 

Namely, the first character of the key is the same as the second character of the key. If that 

happens, then again, the encryption of the message m 0 will produce the ciphertext in both the 

characters being the same. So these are the 2 individual events under which an encryption of m 

00 encryption of the message 00 will lead to a cipher text we are both the cipher text characters 

are same. So now what is the probability that the key generation algorithm of the verifier outputs 

a key of size 1. 

 

Well, it is 1 by 2. And what is the probability that the key generation algorithm for the verifier 

outputs a random key of size 2 where both the key characters are the same. The probability of 

that is 1 by 2 into 1 by 26 right. So if we sum these 2 probabilities, then we get the probability 

that adversaries analysis correctly output b dash equal to 0, given that verifier has indeed 

encrypted the message m 0 right. 



 

So that is the first probability we have computed. Now let us try to compute the second 

probability here. Namely, what is the probability that adversary outputs b dash equal to 1, given 

that indeed b equal to 1, that means we are now trying to analyze that assume the verifier has 

encrypted the message 0, 1, what is the probability that adversaries analysis also outputs b dash 

equal to 1. 

 

And for this we are actually going to subtract the complimentary probability namely, we will 

compute the probability that adversary incorrectly output b dash equal to 0 given that b equal to 

1 and we are going to subtract this probability from 1 and that will give us the required 

probability. Now let us try to compute the probability that adversaries analysis or adversaries 

algorithm outputs b dash equal to 0 given that b equal to 1, right. 

 

So the probability of this event is same as a key of size period 2 is selected with the first 

character being 1 more than the second character. Because, for example, if the key is k 1, k 2 

where k 1 and k 2 differs by 1 character, or whether the difference in the sense that say, the first 

character is the 1 and the second character is 0 of the key, or say the first character of the key is 2 

and the second character of the keys 1 and so on. 

 

If this kind of relationship holds between the 2 characters of the key, and if indeed the message 

0, 1 is encrypted then after encryption both the cipher text characters will be same. Only if this 

event happens then adversary will incorrectly end up outputting b dash equal to 0, even though b 

is equal to 1. Now what is the probability that a key period 2 is selected with the first character 

being 1 more than the second character. 

 

And the probability of this is 1 by 2 into 1 by 26 right. Because with probability 1 by 2, a key of 

period 2 could be selected, because the probability half the key could be a period 1 probability 

half the key could be period 2. So the 1 by 2 here denotes the probability that key is of period 2. 

And given this, what is the probability that the first character of the key is 1 more than the 

second character of the key well, it is same as 1 by 26 right. 

 



So if we multiply these 2 probabilities, we get this complimentary probability. And if we now 

subtract this complimentary probability from 1, we get our required probability. So now we have 

both this individual probabilities computed, and if we sum them together, and we have outside 1 

by 2 as the common thing, we get that the probability with which adversary analysis in this case 

could correctly identify what is encrypted is 3 by 4, which is significantly more than 1 by 2. And 

that means this instance of Vigenere cipher is not perfectly secure. 

 

So that brings me to the end of this lecture. To summarize, in this lecture we discussed the notion 

of perfect secrecy, which is the first formal notion of secrecy, and which is also the most 

strongest form of secrecy because this notion of security is against an adversary which is 

computationally unbounded. So, if you achieve perfect secrecy, then that is the best possible 

notion of secrecy that you can think of. 

 

We also discuss some alternate definitions of perfect secrecy, namely, the distribution of the 

ciphertext should be independent of the underlying plaintext. And we also saw the game based 

definition, which models perfect indistinguishability. I hope you enjoyed this lecture. Thank you. 


