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Cyclic Groups 

 

Hello everyone. Welcome to this lecture. 

(Refer Slide Time: 00:30) 

 

The plan for this lecture is as follows. So in this lecture we will introduce the concept of 

cyclic groups. You will see various definitions and properties and the reason we are 

interested to study cyclic groups is that later on we will introduce some cryptographic 

hardness assumptions in the context of cyclic groups which will further help us to design or 

develop the basic ideas which are used to design the Diffie–Hellman Key Exchange Protocol. 

(Refer Slide Time: 01:00) 



 

So remember the abstract Diffie–Hellman key Exchange Protocol which we have explained 

assuming that we have some special functions E and (()) (01:08) and just to recall what 

exactly the requirement from the function E and F were well we need the following 

properties. We need that function E should be easy to compute for any input. We also need 

that if you are given any alpha from the domain of E and a function output E of beta. 

 

Then without knowing the value beta it should be easy to compute the value of function F on 

the input pair alpha, beta and this should hold for any alpha, beta and if you want to achieve 

weak privacy then the property that we require here from the function E and F is that for 

every random alpha, beta it should be difficult to compute to value of alpha F of alpha, beta if 

you are just given the value of E of alpha and E of beta. 

 

Whereas for strong privacy we need that the value of F of alpha, beta should be 

computationally indistinguishable from any random value from the co-domain fancy y even if 

you know the value of E of alpha and you know the value of E of beta. Now the question is 

that how do we instantiate this function E and F and (()) (02:23) could be as follows. So 

imagine we take exponentiation to the public base g. 

 

So you assume that g is some publically known fixed base and we can take the candidate 

function E to be as follows E of alpha is defined to be this base g to the power alpha and this 

function F of alpha, beta can be defined to be the exponentiation of this with respect to this 

base g and a power exponentiation power is alpha times beta. So that is my candidate F of 

alpha, beta and it is now easy to see that if I define my E function and F function like this. 



 

Then I am able to satisfy one of requirements of the function E and F that I am interested in. 

Namely if I am given E of alpha and if I want to compute F of alpha, beta then what I have to 

do is I have to just raise that E of alpha to the power beta that will give me the value of F of 

alpha, beta and in the same way if I possess E of beta and I do not know beta then just 

knowing alpha and E of beta I can compute F of alpha, beta by raising that value E of beta to 

the power alpha. 

 

So that satisfies one of the key requirements that I need from my function E and function F, 

but it turns out that taking this integer exponentiation is not sufficient to instantiate that 

abstract Diffie–Hellman Key Exchange Protocol because there are several others security 

problem with this function E and F. The first major problem is that is function E is not a 

candidate one-way function. 

 

And to see that imagine you know the description of the base g and you know the value of E 

of alpha namely g to the power alpha and your goal is to find out the alpha then it is very easy 

to compute the unknown alpha by just taking the natural logarithm and computing natural 

logarithm is a computationally easy task. So the function E at the first place itself is not a 

one-way function and that means I cannot achieve this notions of weak privacy and strong 

privacy. 

 

And not only the function E is a one-way function the problem here is that I cannot use it for 

practical purposes I cannot use this candidate E function and candidate F function for 

practical purposes because here my alpha and beta can be any arbitrary integers whereas if I 

want to instantiate and implement this function E and F I cannot work on a function or 

domain at the range which consist of arbitrary integers and which could be of infinite size. 

 

Rather we will be interested to work on domains which are finite in nature so that is why we 

will now try to look for candidate E and F functions which are not only one-way functions 

and not only satisfies the requirement in E and F functions that we need for this abstract 

Diffie–Hellman Key Exchange Protocol, but we are also interested that those functions 

should be from appropriate finite algebraic domain. 
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And for that now we have to recall the theory of groups that we had seen when we 

constructed our information theoretic (()) (05:33) namely when we constructed universal 

function. So let me quickly go through the definition of groups. So a group which I denote by 

this symbol G is a set with some appropriate operation over the elements of the G set and we 

say that set G along with this operation o is a group if it satisfies the fall in axioms. 

 

Namely it should satisfy the closure property which states that if you perform the group 

operation on any pair of element from the G set you should again obtain an element from the 

G set. The second property is that the operation o should satisfy the associativity property 

namely for any triplet of element a, b, c from the set G it does not matter in what order you 

perform the operation o you should get back the same result. 

 

We need the existence of an identity element namely there should exist a unique element 

which I denote as little e in the set G such that for every element little a in the set G if you 

perform the group operation on the element a and element e you should get back the element 

a and you should have an inverse element for every element in the set G namely for every 

element is small g or little a from the set G there should exist a unique element which I 

denote by a to the power -1. 

 

Such that when we perform the group operation on the element a and this inverse element a 

inverse I should get back the identity element. I stress that this element a to the power -1 does 

not mean 1 over a the numeric 1 over a. It is just an interpretation or just a notation for the 

special inverse element corresponding to the element a that I need from my set G. So again 



just to recall we had also seen some examples of groups. 

 

So the set of integers Z with respect to the + operation constitutes an Abelian group okay 

what is an Abelian group? An Abelian group is a special group which satisfies all the group 

axioms and on top of that it should satisfy the commutative property namely your operation 

little o should satisfy the commutative property and it is easy to see that the set of integers 

along with this operation + that satisfies the group axioms. 

 

If you take any 2 integers add them you obtain an integer, addition is associative, 0 is the 

identity element because if you add 0 to any integer you obtain that integer and if you take 

any integer a the corresponding inverse is – of a whereas it turns out that the set of natural 

numbers does not form a group with respect to the + operation because we do not have the 

additive inverse. 

 

Because additive inverse of the element say 2 is – 2, but -2 does not belong to the set of 

natural numbers. In the same way the set of non zero real numbers forms a group with respect 

to the multiplication operation because multiplication of any 2 real numbers gives you a real 

number so closure is satisfied, multiplication is associative the element 1 is the identity 

element. 

 

And for every non zero element little a the corresponding inverse is the numeric 1 over a 

because the real number a multiplied with inverse 1 over a will give you the identity element 

a and that is why the set of non zero real numbers forms a group. 
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Now we are interested in special types of groups which we call as cyclic groups so let us see 

what exactly a cyclic groups. So a group G with respect to an operation o is called a cyclic 

group of order q if the following conditions holds. First of all, G,o should satisfy the group 

axioms namely closure, associative property existence of identify, existence of the inverse for 

each group element. 

 

And if it is a Abelian group then it is fine, but we do not need it to be an Abelian group. So 

pictorially imagine that we have certain elements from this set G and this operation o satisfies 

all this group axioms. The second proper requirement here is that since I am saying that the 

group G is a cyclic group of order q by order q I mean that there are q number of elements in 

my set G right so that is what I mean by the order of the group to be q. 

 

And why it is called cyclic group it is called a cyclic group because I need a special element 

which I call a generator which I denote by say little g and this little g should be one of the 

elements from this set big G such that all the elements from set big G can be generated by 

this special element little g by different powers and here “powers” it will be clear to you very 

soon what exactly I mean by powers here. 

 

Basically the idea here is that this special element little g which I call as generator it has the 

capability, it has the capacity to generate all the elements in your set big G and if I have at 

least one such special generator element which I call as generator then my group g is called 

as a cyclical, but I do not have any such special element little g then my group big G is not 

called a cyclic group. 



 

So let me explain to you what exactly I mean by generating different elements by different 

powers of the element generator. So let p be a prime and I define a set Zp * which consists of 

the element 1 to p – 1 and now let me define a multiplication operation which is different 

from the normal arithmetic multiplication so the operation that I am going to define is it is 

denoted by this dot sub p and which is also called as multiplication modulo p. 

 

So the way this multiplication is going to be performed is as follows. If I take any 2 elements 

a, b from the set Zp* then multiplication modulo p of a and b is same as you multiply a and b 

numerically and take the reminder with respect to the modulo p. Whatever reminder you 

obtain that will be a number in the range 0 to p-1 and that is the way we define this 

multiplication modulo p operation. 

 

Now I am going to state a result which is a standard result which follows from a number 

theory I am not going to prove that, but if you are interested in the proof of this theorem then 

you can refer to any standard reference from the number theory. So the theorem basically 

states that for every prime number p the set Zp* along with the operation multiplication 

modulo p is a group or it constitute a group consisting of p – 1 elements. 

 

That means the group order is p – 1. So we are not going to prove that, but I am going to 

demonstrate that indeed this is true if p is your prime so I am taking p = 5 here and Z5* 

basically consist of element 1, 2, 3, 4 so what I have done is along the rows I have written 

down the element 1, 2, 3, 4 and along the columns I have denoted the elements 1,2, 3, 4 and 

this is like a (()) (13:00) here. 

 

And what I have done here is the i, jth and K denotes the results of i dot j modulo 5 here 

right. So if I consider this entry this is the result of 2 dot 2 modulo 5 in the same way 4 into 3 

modulo 5 is going to give you 2 and so on. So you can see from this matrix that your closure 

property is satisfied you take any i and any j in the range which belongs to Z5 * and perform 

the operation i module 5 j that means i j modulo 5 you are going to obtain the number in the 

range 1 to 4. 

 

The multiplication operation that we have defined here it satisfies the associativity property 

that means if I take i, j, K then it does not matter in what order I multiply i, j, K and take 



modulo 5 I am going to obtain the same reminder. The identity element is the element 1 here 

because if you see this matrix here right and if you focus on the column under 1 here then 

under that 1, 1 dot 1 modulo 5 gives you 1, 2 dot 1 modulo 5 gives you 2, 3 dot 1 modulo 5 

gives you 3 and 4 dot 1 modulo 5 gives you 4.  

 

So the element 1 serves as the identity element here and now under each element you will 

have the corresponding inverse element. So the inverse of 1 is 1 here because 1 dot 1 gives 

you 1. The inverse of 2 is 3 because 2 dot 3 modulo 5 gives you the identity element 1, the 

inverse of 3 is 2 because 3 dot 2 modulo 5 gives you the identity element 1 and inverse of 4 is 

4 because 4 dot 4 modulo 5 gives you the identity element 1. 

 

So you have all the axioms satisfied and now you can see you have some special generator 

elements present here as well so I am going to demonstrate that as well. So for going into 

whether the generator element here exist or not let me first define what we mean by group 

exponential in this set Zp*. So for any element little g belonging to set Zp* I define g to the 

power 0 to be 1. 

 

And I define g to the power 1 to be g because indeed g to the power 0 modulo p you are 

going to obtain 1 modulo p which is same as 1 and g to the power 1 if g is an element of Zp* 

so of course it is less than p and if you do g to the power 1 and then take mod p then the 

effect of mod p does not (()) (15:39) you are going to obtain g only. Whereas I define g to the 

power I to be the multiplication modulo p operation applied i – 1 times. 

 

And it turns out that it does not matter whether I take the reminder at the end or if I take on 

reminder after performing each individual dot p operation i – 1 times the results will be same 

because that comes from the associativity property of my group Zp*. So I can define g to the 

power i to be the same as you perform the numeric g to the power i and then you take a final 

mod p to bring back the result in the range 0 to p – 1. 

 

So because of the way g to the power i is defined for the case i to be 0, i to be 1 and i to be a 

generic i, I can say that I can define my g to the power i I can use the notation g to the power 

i in the set Zp* to denote the value numeric g to the power i modulo p so that is a notation I 

am going to use here and that is what I mean by the power of the power of an element g in the 

set Zp* here. 



 

So again I am going to state another well known result from the number theory which states 

that for every prime number p there exist at least to one element little g in the set Zp* such 

that when you compute when you raise g to the different powers and perform modulo p 

operation namely you do g to the power 0 mod p, g to the power 1 mod p up to g to the power 

p – 2 mod p. 

 

Then you are going to obtain all the elements in the set Zp* in some arbitrary order that 

means p – 1 distinct powers of this special element g is going to give you all the elements in 

Zp* and that means you have at least one generator present in this set Zp* and that is what I 

mean by generating all the elements of the set big G by different powers. Your big B here in 

this particular example is Zp*. 

 

And the claim from the number theory is that there exist at least one element in this big Zp* 

such that if you raise g to the different powers here and perform the group operation namely 

the multiplication modulo p operation you are going to obtain all the elements of Zp*. Again 

I am not giving a proof of this, but if you are interested in the proof you can see any standard 

reference. 

 

Let us see whether this theorem holds for the current example that we are considering here. 

So if I take the element 2 which is an element of Z5* and perform 2 to the power 0 modulo 5 

2 to the power 1 modulo 5, 2 to the power 2 modulo 5 and 2 to the power 3 modulo 5 I am 

going to obtain the elements 1, 2, 3, 4 and 1,2, 4, 3 respectively. So notice that I am not 

obtaining all the elements of Z5* in the exact order. 

 

But I am obtaining all the elements in some arbitrary order right. So for the definition of 

cyclic group the requirement is that different powers of g should give you all the elements of 

that set big G in any arbitrary order the order does not matter here. In the same way the 

element 3 is also a special element here because 3 to the power 0, 3 to the power 1 3 square 3 

to the power 3 modulo 5 is going to give you the element 1,3, 4, 2 namely the entire Z5*. 

 

But if I take the element 4 and try to raise or compute different powers of 4 I am not able to 

generate all the elements of Z5*. I could generate only the elements (()) (19:19) 1 and 4 right. 

So since the number theory result that I am stating here states that I have some special 



element little g which has the capability to generate the entire set Zp* that means the set Zp* 

along with this multiplication modulo p operation is a cyclic group of order p – 1. 

 

Because it has p – 1 elements and indeed in this example 2 is the one of the generators of 

Z5*, 3 is also one of the generators of Z5*, but 4 is not a generator of Z5*. Now you might be 

wondering that why the name cyclic here. The reason I am calling it cyclic because as soon if 

you have a generator g say for example for the group Z5* Zp* and then if you compute the 

next power of g namely g to the power p – 1 you are going to obtain one of the elements 

which is already there in Zp*. 

 

Essentially you are going to obtain the element g to the power 0 only. So again the proof for 

that follows from the number theory, but I am not going to prove that if you compute g to the 

power p – 1 you will get the same value as g to the power 0. The next power of g will give 

you g to the power 1 and so on. In that sense it is cyclic that means as soon you go up to the 

limit g to the power p – 2. 

 

And if you go to you start taking the next sequence of powers of g you will start getting back 

the same cycle you will obtain the same elements of Zp* and it will keep on happening and 

that is why the name cyclic group. So cyclic groups just to summarize cyclic groups are 

special types of group which has at least one generator.  
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So the group Zp* with respect to the multiplication modulo p operation constitutes the 

multiplicative cyclic group because there the operation was multiplication. It was not the 



natural multiplication a natural it was not the integer multiplication, but it could be 

interpreted as a multiplicative operation. It turns out that we can also define cyclic groups 

based on the notion of addition operation and let us do that.  

 

So let p be a prime and I define a set Zp to be the set of integers 0 to p – 1. So the difference 

between Zp* and Zp is that is that the element 0 is not there in Zp*, but the element 0 is now 

allowed in Zp and now let me define an addition operation in this set Zp which I had called as 

addition modulo p denoted by this symbol + sub p and the addition modulo p of some pair of 

numbers a, b from the set Zp is nothing but to perform the numeric or integer addition a and b 

and take the module p. So that the resultant is an element in the set 0 to p – 1. 

 

So again let us take an example here the set Z5 consist of the integer 0, 1, 2, 3, 4 and what I 

have done here is I have done the matrix which denotes the result of performing the + modulo 

5 operation on any pair of elements in the set Z5. Again there is a well known fact from the 

number theory which states that if you take any prime p then the set Zp along with the 

operation addition modulo p constitutes a group. 

 

But now the order of the group is prime namely it has p number of elements because you are 

now having element 0 to p – 1 whereas the set Zp* was a multiplicative group of order p – 1. 

So now let us see how we can interpret the group exponentiation in this additive group. So we 

defined 0 times g to be 0 and we defined one times g to be g where g is any element in the set 

Zp. 

 

Whereas I times Z is defined to be the result of applying this addition modulo p operation 

being applied on the element g i – 1 times and it turns out that it does not matter whether I 

take the mod at the last or whether I take the mod after every + operation the result is going to 

be the same because that follows from the associativity property of the + operation and hence 

I can say that i times g is the same as the integer multiplication of i and g modulo p right. 

 

So when I say i times g that did not mean that I am multiplying i and g, i times g is the 

notation i followed by g and i followed by g is same as the integer multiplication of i and g 

modulo p. So based on these 3 ways or the way this group exponentiation is defined with 

respect to this + operation I can use the notation that i g is same as integer multiplication of i 

and g modulo p.  



 

And again there is a well known result from the number theory which states that for every 

prime p there exist at least one special element g in the set Zp such that 0 times g, 1 times g 

up to p – 1 times g namely the p – 1 distinct powers of g is going to give back all the 

elements of the set Zp in some arbitrary order. So now here the exponentiation is basically 

treated as if you want to compute g to the power x. 

 

Basically g to the power x here is interpreted as if you are performing the + modulo p 

operation x – 1 number of times. So that is the interpretation of power of g when I am 

considering the underlying group operation in the additive sets. So again in the context of Z5 

the element 1 turns out to be one such special element where all the powers of 1 different 

powers of 1 is going to give you back all the elements of Z5. 

 

Same holds for 2 as well different powers of 2 is going to give you back all the elements of 

Z5 that means the set Zp along with the operation + modulo p is a cyclic group of order p. So 

we had seen examples of cyclic groups based on the multiplication operation. 
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So we had seen examples of cyclic group based on addition operation. Now let us define 

what we mean by group exponentiation in abstract cyclic groups. So for explanation I am 

assuming that that my g is (()) (25:44) some abstract group where the underlying operation is 

a multiplicative operation. It need not be an integer multiplication, but it can interpreted in 

the multiplicative sets. 

 



And it has an order q namely it has q numbers of elements and since it is an abstract group I 

denote the identity element to be e and let g be an element of this group G then we use the 

following notation. So since we are using multiplicative notation here for that abstract group I 

will use the notation g to the power 0 to denote the identity element and g to the power 1 to 

denote the identity element. 

 

And the notation g to the power i to denote the element which I obtain by composing or 

performing the group operation on the element g i – 1 number of times. I stress that this 

notation is completely different from the integer exponentiation. This is just a notation g raise 

to the power i does not mean that I am multiplying g i times i – 1 times. It is basically just a 

notation which I used to represent that I am performing the group operation on the element g 

i – 1 number of times.  

 

However, it turns out that the rules of the integer exponentiation are still applicable in this 

abstract multiplicative group. Namely if I take the group element g to the power m which is 

basically the element g composed to itself m – 1 numbers of times as per the group operation 

and I take the another group element say g to the power n which is the group element g 

composed to itself n – 1 number of times. 

 

And then if I perform the group operation on these 2 elements then the result will be the same 

as the element g being composed m + n – 1 number of times. In the same way, if I take the 

element g to the power m and perform the group operation on that element n – 1 number of 

times then I will obtain the same result which I obtain by performing the group operation on 

the element g mn – 1 number of times and so on.  

 

Moreover, if this element g is a cyclic group then it turns out that different powers of g and 

again by different powers of g I do not mean the integer exponentiation power by different 

powers of g means the definition of group exponentiation in that abstract sense. So if this 

little g is a generator then different powers of g ranging from the 0th power to the q – 1th 

power is going to give me back all the element of set big G in some arbitrary order. 

 

And finally an interesting fact which we are going to encounter later or use later is the 

following. So if you have any element g which is a generator of the group then the element g 

to the power i is the same as the element g to the power i modulo q that means you can 



perform mod q operation in the exponent as well. So for any i which is < q this fact is 

trivially true because g to the power i and g to the power i mod q are same if i is < q. 

 

But what this fact says that if i is larger than q than g to the power that larger power i is going 

to give you back the same answer as the result which you will obtain by raising g to the index 

i modulo q. Again I am not giving you the proof for this you can refer to any standard text on 

number theory for proof of this. Now this discussion that we have till now here is with 

respect to a multiplicative cyclic group we can extend our definition for any abstract cyclic 

group where the underlying operation is additive.  

 

So we can define g to the g times g to be e or the identity element namely the 0th power of g 

here is the identity element and g to the power 1 in the additive cyclic group will be 

interpreted as one times g and definition says that 1 times g is going to give you the element g 

and g to the power i in this additive cyclic group will be interpreted as i times g which is 

defined to be the group operation or the additive group operation performed on the element g 

i – 1 times. 

 

And it turns out that the rules of exponentiation holds in the additive cyclic group as well. 

Namely if I take the element m times g which is same as g to the power m in the additive 

cyclic group and another element n times g which is the equivalent of g to the power n in the 

additive cyclic group and if I perform the group operation then the result will be the same as 

m + n times the element g namely the equivalent of the element g to the power m + n. 

 

And the same holds like this. If I take the element m time g and then if I perform n times that 

element, then the result will be the same as nm times that element g and so on. Moreover, if 

the element little g is a generator then different powers of g is going to give me the same the 

entire set big G in some arbitrary order and the different powers of g is written as 0 times g, 1 

times g and q- 1 times g. 

 

And as it was the case for the multiplicative cyclic group I have a corresponding fact here as 

well that if little g is a generator then any i times g which is the corresponding equivalent of g 

to the power i is same as i modulo q times g that means if i is > q and then if you want to 

compute that i times g then you can first reduce that index i modulo q and then raise that 

index to the element g to get the resultant answer.  
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So now we have defined a notion of cyclic groups and now let us see what we mean by 

discrete logarithm in the cyclic groups. So imagine you are given a arbitrary cyclic group of 

order q and without loss of generality assume that the underlying group operation is a 

multiplicative operation. It need not be an integer multiplication, but for notation purpose we 

will use the multiplicative notation here.  

 

Since the order is q that means it has finite number of elements. So this color dots denotes the 

various element in your set g and since it is a cyclic group it has some generator at least one 

generator which I denote by little g. So I have highlighted that element little g here and as per 

the definition of cyclic group different powers of this g element little g is going to give you 

the entire set big G in some arbitrary order. 

 

What does that mean is that if you take any element little y from this set big G then their exist 

some unique index x in the range 0 to q – 1 such that g to the power x would have given you 

the element y right and remember g to the power x is performing the group operation on the 

element g x – 1 number of times. It does not necessarily mean that I am multiplying g x 

number of times right.  

 

I am performing the underlying multiplicative group operation on the element g x – 1 number 

of times. So the reason there exist a unique x in this range 0 to q – 1 such that g to the power 

x would have given you y. It comes from the fact that the element little g is a generator. Now 

this unique x in the range 0 to q – 1 it is called the discrete logarithm of your element y to the 



base g which we denote by this notation DLog of y to the base g = x. 

 

And you can consider this discrete log to be an equivalent of the natural log. In the natural 

world, in the real number world if you have any real number g to the power giving you y then 

we say we define that log of y to the base g = x. What we are trying to do here is that we are 

trying to give an equivalent definition in the discrete world namely in the context of a group 

where we have some finite number of elements say q numbers of elements. 

 

And since we are considering a group the elements here are discrete right between any two 

group elements will not be an arbitrary group elements coming up. So that is why this 

logarithm that we are defining the notion of logarithm that we are defining in this cyclic 

group is called as the discrete logarithm. Interestingly, it turns out that the discrete logarithm 

obeys the rules of natural logarithm. 

 

In the sense that if you take the discrete log of the identity element to the base of the 

generator then the discrete log is 0 because as per the definition generator to the power 0 is 

defined to be the identity element. In the same way if you take any element h from the group 

g and raise it to the power r and then take the discrete log of that element then it is same as r 

times the discrete logarithm of h to the base g modulo q.  

 

Why we are taking modulo q is that this is the thing that we are having the bracket that may 

go out of q that may cross the range 0 to q – 1, but as per the definition of discrete log the 

index the discrete logarithm has to be in the range 0 to q – 1 and that is why we are taking 

modulo q here and in the same way if we have 2 elements h1 and h2 from the group and if we 

multiply them again the resultant will be a group element. 

 

That group element can be expressed as some g to the power unique x in the range 0 to q – 1 

that unique x is nothing, but computing the discrete logarithm of h1 and h2 and individually 

to the base g adding them and taking the modulo q. You are going to verify this facts these 

are some simple exercises for you and the final fact that we are going to use in the context of 

discrete logarithm is that if you have some g to the power x given to be y where x need not be 

in the range 0 to q – 1. 

 

Then the discrete logarithm of y to the base g is same as x modulo q. Well if your x that you 



are given is indeed in the range 0 to q – 1 then x module q is same as x. but the interesting 

fact here is that if you have if you are given an x which is outside the range 0 to q – 1 such 

that g to the power that x is given y and if you are interesting to compute the discrete 

logarithm of y then the discrete logarithm of y to the base g is same as performing the 

operation x module q.  

 

Again this is a well known fact from number theory which I am not going to prove here you 

can see any standard text for the proof of this theorem. So that brings me to the end of this 

lecture. To summarize in this lecture, we have introduced the notion of cyclic groups and we 

have seen the definition of discrete logarithm. In the next lecture we will see some candidate 

cryptography hardness assumptions based on cyclic groups and then how using those 

cryptographic hardness assumptions we define the exact Key Exchange Protocols. Thank 

you. 


