
Foundations of Cryptography

Prof. Dr. Ashish Choudhury

(Former) Infosys Foundation Career Development Chair Professor

Indian Institute of Technology – Bangalore

Lecture –32

Random-Oracle Model - Part II

(Refer Slide Time: 00:34)

Hello everyone, welcome to this lecture. So just to recall in the last lecture, we had

introduced the Random-Oracle model. So, in this lecture we will continue our discussion on

Random-Oracle model. Specifically, we will see constructions of several cryptographic

primitives based on hash functions, whose security proof we cannot just prove based on the

standard properties of the hash functions and by standard properties I mean the collision-

resistance property and turns out that the proof for those cryptography constructions, which

we are going to see in this lecture can be completed only in the Random-Oracle model.

(Refer Slide Time: 01:08)

So, before we proceed, let us first argue whether the Random-Oracle methodology is sound

or not? Because as you remember in the Random-Oracle model, we are making very strong

assumptions about the underlying hash functions, right? Namely, we assumed that the

underlying hash function behaves like a truly random function with no entity in the system,

which uses that cryptographic primitives have access to that oracle. If someone wants to

evaluate that underlying oracle on some input of its choice, then it has to make oracle call.

It is not allowed to see the internal details of the underlying oracle, which is far away from

the reality because in reality when we instantiate cryptography construction based on hash

function, then we have to select some candidate hash function and everyone in the system

who is using that primitive will have access to the code of that hash function. So, that brings

us to the debate whether the Random-Oracle methodology is sound or not? Now, it turns out

that in cryptography we have 2 school of thoughts here.

We have one group which says that the Random-Oracle methodology is indeed useful,

whereas the another group is against it. So let us see first objections to the Random-Oracle

model. So, as I said earlier that the security of any cryptographic primitives by is a pi which

is based on Random-Oracle model, not only depends upon the random choice of the parties

who are using that primitive, but also on the random choice of the underlying oracle H.

That means, that the primitive pi may not be secure when actually we go for the deployment

of the primitive pi by instantiating that oracle H by some specific real-world hash function

because it so turns out that no concrete hash function, say the SHA functions and MD5

functions and so on can behave like a Random-Oracle. First of all, none of these hash

functions behave like a truly random function and even if we so assume that they behave like

a truly random function, we cannot prevent the adversary to see into the code of the

underlying hash function.

It will know the full details of the underlying hash function. Whereas the security proof that

we gave in the Random-Oracle model, it depends upon what specific underlying Random-

Oracle we are using during the instantiation of the primitive pi. Where I started a school of

thought which actually gives which is in the support for Random-Oracle model is as follows.

So, it turns out that there are several cryptography primitives which are highly efficient and

we will see some of the examples of such primitives in this lecture.

Later on, we will see that most of the practical public key cryptographic primitives or public

key cryptosystems, they use hash functions and their security can be proved only if we go in

the Random-Oracle model. We cannot prove the security of those public key cryptographic

primitives based on hash function just using the collision-resistance or the standard properties

of the hash functions, right. So, the support for the Random-Oracle model based proof is that

a security proof that we give in the Random-Oracle model, it gives you the confidence that as

far as the design principle of the cryptographic primitive is concerned, it sound.

The only weakness in the primitive when we actually deploy that primitive could be due to

the underlying instantiation of the hash function. As a design principle of that primitive pi,

which uses the hash function as a random article, there is absolutely no flaw. So that is the

support that we could come up for a proof that is there in the Random-Oracle model. Also, it

turns out that for almost all the cryptographic primitives whose proof are there in the

Random-Oracle model, we have obtained no successful real-world attacks when we actually

instantiate hash functions by some real-world hash functions.

So that is another argument in the support of the Random-Oracle model based proof. The

final argument which is there in the support of the Random-Oracle model based proof is that

a proof of security of some cryptographic primitive in the Random-Oracle model is far better

than no proof at all. That means, imagine you design a primitive pi based on some hash

function and for that you have absolutely no proof at all, whereas you have the proof for the

same primitive but in a very idealized setting namely say Random-Oracle model.

Then you will be feeling confidence that indeed if I instantiate this primitive pi by

instantiating, the underlying hash function, then the only flaw that could be there might be

due to the weaknesses in the underlying instantiation of the hash function and then what you

can think of, you can think of coming up with a better replacement or a better instantiation of

that hash function instead of changing the design of the whole primitive pi. So that is a very

strong argument in the support for a proof that is given in the Random-Oracle model.

As I said, you have 2 types of groups here, one group hates proofs given in the Random-

Oracle model whereas other group supports proofs given in the Random-Oracle model. So, as

a design principle, we should always try to design schemes whose proofs are not in the

Random-Oracle model. Namely, we should try to design schemes which uses hash function

whose security can be proved just on the standard properties of the hash function, namely the

collision-resistance property.

But if at all, it turns out that we cannot give a proof just based on the standard properties, but

we can give proofs in the Random-Oracle model, then we should go for proofs in the

Random-Oracle model provided that the construction that we are giving are highly efficient.

So basically you have tradeoff. You have a tradeoff in the sense that if you have a

construction based on hash function and they are highly efficient, but with no proof.

Whereas you have another construction for the same primitive with a proof in the standard

model but highly inefficient, then for the sake of efficiency, we can prefer to go for the

scheme based on the hash function whose proof is available in the Random-Oracle model.

(Refer Slide Time: 07:21)

So, let us see some cryptography primitives which we can design using hash functions for

which the security proof can be given only in the Random-Oracle model and the primitive

that we are going to see here is what we call as commitment schemes and it is basically a two

party primitive involving a sender and a receiver. Basically when we say that we have a

commitment scheme, it consists of 2 protocols or 2 phases, a commitment phase and an

opening phase.

So, what happens in the commitment phase? In the commitment phase, sender has a message

which is private and known only to the sender which we denote by a little m which can be a

bit string of some arbitrary length and in the commitment phase basically sender wants to

commit the message to the receiver. So, you can imagine that in the commitment phase the

sender computes a fixed length commitment, which we denote by c for the message m and

this commitment c is given to the receiver R.

So, you can imagine that this commitment c is like a sealed envelope or a sealed box inside

which the sender has put the message m and given it to the receiver R. Under security

property that we required from this commitment phase is that if the sender is honest and the

receiver is corrupt, then by looking into the commitment c or by looking into the envelope c

or in the box c, the receiver cannot find out what exactly is the message m which has been

committed in the commitment c. So, that is a commitment phase of a commitment scheme.

(Refer Slide Time: 08:15)

Now, let us see what happens in the opening phase. So, imagine receiver has received a

commitment of some unknown message available with the sender in the opening phase. The

sender provides or reveals the opening information to the receiver using which the receiver

opens the commitment and the receiver verifies whether the opening information is correct or

not and based on that, it either accepts or rejects the revealed message that is there in the

commitment and a security property that we require from the opening phase is as follows.

Now, we consider a corrupt sender and an honest receiver. So, remember, for the hiding

property, we considered an honest sender and a corrupt receiver, but when we are considering

the binding property with respect to the opening phase, we consider the case when the sender

could be corrupt and the receiver is honest. So, what exactly the binding property means is

that a corrupt sender should not be able to open a commitment c in two different ways.

What it means is that it should not be possible for a corrupt sender to commit a message say

m during commitment phase and later on provider revealing information which ends up

opening that commitment c to another message m dash. That means, one sender has fixed his

commitment and he has decided what exactly to commit, later during the opening phase he

should not be able to change his mind.

(Refer Slide Time: 10:18)

So, now let us see how exactly we can design commitment schemes using hash functions. I

stress that that this is not the only way by which we can design a commitment schemes. Later

on, we will be discussing the number theoretic hardness assumptions, we will see how we can

design commitment schemes based on cryptographic hardness assumptions based on number

theoretic problems, but right now we are trying to give a scheme based on a hash function.

So imagine you are given a collision--resistant hash function H and the commit phase or the

commitment phase for the commitment scheme that we are going to design is as follows. So

the message that the sender wants to commit is some message m. To commit this message,

what does sender does is it picks randomness of some suitable size which denoted by S. So,

basically S is a uniformly random string of size little n bits where n is some security

parameter and the commitment of the message m is computed as follows.

Basically, sender evaluates or computes the hash of the input message concatenated with the

randomness which we do not as c and we call this protocol as protocol Com with respect to

the input m and randomness s and the commitment information c is given to the receiver that

is the commit phase. During the opening phase, the receiver has a commitment already

available to it and it wants to now see what exactly it corresponds to based on the opening

information which the sender is going to provide.

So, what sender provides in the opening phases the message, randomness which it might have

used in the commit phase to commit message m in the commitment c and once the message,

randomness comes to the receiver, what the receiver basically does is it recomputes the

commitment by hashing the input message concatenated with randomness and checks

whether the recomputed commitment matches the commitment c, which the receiver already

has received during the commit phase.

If it matches, then output is 1 that means accept the message m, whereas if the recomputed

commitment does not match the existing commitment c, then the receiver rejects the message

m and outputs 0. So, that is a very simple construction of a commitment scheme based on a

collision-resistant hash function. To commit a message, concatenate a message with some

appropriate randomness and hash it. To open the message, you basically open the message or

you reveal the message along with the randomness which you have used to compute the

commitment.

Now, what we are going to prove is that this commitment scheme that we have designed here

satisfies the hiding property and binding property and before we go into the proof, let us

formally define what exactly we mean by the hiding property and the binding property in the

context of a commitment scheme.

(Refer Slide Time: 12:56)

So, remember, the hiding property informally requires that if the sender is honest and the

receiver is corrupt, then by looking into the committed commitment c, the receiver should not

be able to identify or learn what exactly is the message m which is has been committed in the

commitment c, and this is modeled by an experiment which we call as the hiding experiment.

So, the rules of the hiding experiment are as follows. So, we have the description of a

publicly known commitment algorithm, right, which is going to be used by the sender to

commit some message.

We have an adversary A who wants to basically learn the value of the message which has

been committed in a commitment, right, even by knowing the description of the algorithm

com. So, the game is played between the adversary and the experiment or a challenger and

what the rules of the game are as follows. So, basically the adversary submits a pair of

messages m0, m1 and the challenger basically does the following. It randomly decides one of

these two messages by tossing a fair coin.

Once it has decided what message to commit, it picks a randomness of appropriate size as per

the commitment algorithm com and it commits that selected message mb under the

randomness s, right. Now, the challenge for the adversary is to identify whether the c star is a

commitment of the message m0 or whether c star is a commitment of the message m1. So,

what this basically experiment models is that if the adversary is sitting in between, if the

receiver is corrupt, right, then based on the commitment that it sees from an honest sender.

It should not be able to distinguish apart whether it is seeing a commitment of m0 or whether

it is seeing a commitment of m1 where the receiver is given the power that it already knows

that the commitment could be either the commitment of m0 or m1. So, the output of the

adversary is a bit namely whether it feels the commitment c star is the commitment of m0 or

m1 and our security definition is as follows We say that output of the experiment is 1 or the

adversary has won the game if it could correctly identify the message which has been

committed in c star.

Namely, its output b dash = b and we say that formally a commitment’s algorithm com

satisfies the hiding property if for every poly-time adversary participating in this experiment,

there is some negligible function such that the probability that adversity can win the hiding

experiment is upper bounded by half plus the negligible quantity. Another way to put the

same condition is that the distinguishing advantage of the adversary should be upper bounded

by some negligible function.

That means, it does not matter whether the commitment is for message m1 or whether the

commitment c star is for the message m0. In both the cases, the response of the adversary is

almost identical except with some negligible function and in both the definitions, the

probability is taken over the random choice of the bit b and the randomness s and the random

choice of the adversary with which it could decide the message Pr m0, m1. So, on a very high

level, this indistinguishability based definition of commitment might look like the

indistinguishability based definition of encryption schemes that we have seen.

The only difference here is that we do not deal with any keys here, right. So that is why we

do not have any training phase and post-training phase and so on. The goal of the adversary is

basically to just distinguish apart a commitment of m0 from a commitment of m1.

(Refer Slide Time: 16:44)

Now let us formally define the binding property, and remember informally the binding

property demands that if the sender is corrupt and the receiver is honest, then it should not be

possible for a corrupt sender to open an existing commitment c via are 2 different messages

and this is simply model by an experiment where the adversary’s goal is to come up with a

commitment c and a pair of message, randomness where the first message randomness is m,

s.

The second message randomness pair is m star, s star such that the commitment of the

message m with the randomness s and the commitment of the message m star and the

randomness s star are same, namely c, even though the message m and message m star are

different. If that is the case, then we say that the adversary has won the game. So, when we

say that the sender wants to break the binding property, its goal is basically to come up with

some message m and the corresponding randomness s.

Another message say m star different from m and an appropriate randomness s star such that

when you commit the message m with the randomness s, you obtain the commitment c as

well as when you commit the message m star with the randomness s star, you also again

obtain the commitment c. If that is the case, if that is possible, then what the corrupt sender

can do is during the commit phase, it could commit a message m with some randomness s,

but it when it comes to reveal the message which has committed in c, it can change its mind

and say I have committed m star by showing the appropriate randomness s star.

What we want from a commitment scheme satisfying the binding property is that the

probability that a computationally bounded or computationally corrupted s is able to come up

with such m, s and m star, s star is upper bounded by some negligible function. So formally,

we say that a commitment scheme has the binding property if for every poly-time adversary

A participating in this experiment, there is a negligible function such that the adversary can

win the game or it can break the binding property is upper bounded by some negligible

probability.

Notice that we are not putting in this definition that a success probability of the adversary

should be upper bounded by half plus negligible because here the goal of the adversary is not

to distinguish a commitment of m0 from a commitment of m1. Its goal is to basically come

up with a pair of colliding message, randomness with both of which could give you the same

commitment and there is always a there is always a guessing strategy by the adversary where

the adversary could guess m, s and m star, star, which indeed gives you the same

commitment c as per the commitment algorithm.

The success probability of this guessing adversary is nonzero. So that is fine the definition.

The best we can hope for is that the success probability of any adversary coming up with a

bad m, s and a bad m star, s star giving the same commitment c is upper bounded by some

negligible quantity.

(Refer Slide Time: 19:52)

So now let us come back to the hash function based commitment scheme that we have

designed and what we are now going to formally prove is that that commitment schemes

satisfies the binding property and the hiding property. So the binding property will simply be

based on the collision-resistance property of the underlying hash function. So assume we are

given a collision-resistant hash function H, here is how we have constructed our commitment

scheme. So, to commit a message m with some randomness s, basically you have to compute

the hash value on the input m concatenated with s.

We can formally prove that if the underlying hash function is collision resistant, then indeed

the algorithm com that we have defined here has the binding property. Namely, what we can

formally prove is that any poly-time adversary who can break the binding property with a

significant probability with almost the same probability. It can be used to find out a collision

in the underlying hash function with a significant probability, but that is a contradiction to the

assumption that our hash function is collision resistant.

More formally, assume we have an adversary, a poly-time adversary who can break the

binding property against the commitment scheme that we have done. Using that adversary,

we can show another adversary, which can find the collision in the underlying hash function.

So what does adversary A coll does is it invokes the existing algorithm A bind, which can

break the binding property and basically the adversary who can break the binding property,

he comes up with this set of triplet.

Namely it comes up with a commitment c, a message, randomness, m, s and another message

randomness m star, s star. And what this adversary A coll does is it outputs a pair of collision

namely m concatenated with s and m star concatenated with s star and it turns out that if

indeed the binding the adversary A bind has broken the binding property, namely the triplet

that he has produced breaks the binding property that means, m s as well as m star, s star

gives you the same commitment c as per the algorithm com.

Then indeed, the inputs m concatenated with s and the inputs m star concatenated with a star

constitutes a collision for the underlying hash function. That means, what we can say is that

the probability that our collision finder wins the collision resistant experiment is exactly the

same with which our adversary who can break the binding property can break the binding

experiment, but since we are assuming that our hash function is coalition resistant, then we

know that quantity on your left hand side is some negligible function, right?

No poly-time adversary could come up with a coalition in polynomial amount of time. That

means, this adversary A coll does not exist and that automatically means that the adversary A

bind also does not exist. That means, only with negligible probability, the so called adversary

A binding that we have defined exist. It cannot break the binding property with significant

probability.

(Refer Slide Time: 22:56)

Now let us prove the hiding property of the commitment scheme that we have designed and it

turns out that just by using the standard properties of the hash function, we cannot prove the

hiding property, but interestingly we can prove that if we instantiate this commitment scheme

in the Random-Oracle model. Then in the Random-Oracle model, we can prove that this

commitment scheme satisfies the hiding property. So, let us go into the detail. Now, since we

are going into the Random-Oracle model, we have to modify the hiding experiment.

So remember in the hiding experiment, the rules of the game were as follows. The adversary

simply throws a pair of messages m0, m1 and one of them is randomly committed and the

challenge for the adversary was to identify whether it is seeing a commitment of m0 or

whether to seeing a commitment of m1, but now since we are going to instantiate the

commitment using a hash function which is taken in the Random-Oracle model and in the

Random-Oracle model, each entity in the system is going to have oracle access to the

function H.

We have to incorporate the oracle access to this oracle H in the experiment. So, the modified

experiment is as follows. So, the adversary basically submits a pair of messages and the

challenger or the experiment decides one of the messages to commit randomly. So, it decides

a suitable randomness. Once it has decided what message to commit and now it throws the

commitment of that message as per the com algorithm, and to commit that message mb

basically this challenger has to evaluate H of mb concatenated with s.

But since we are assuming that we are in the Random-Oracle model, this hash function is,

this output H of mb concatenated with s is obtained by the experiment making an oracle call

to the oracle H on the input mb concatenated with s and as per the rules of the Random-

Oracle model adversary A is not allowed to see the oracle call that experiment has made to

the Oracle H. Now, since we are in the Random-Oracle model, this adversary A is also

allowed to make polynomial number of oracle queries to this oracle H on any input of its

choice.

Then finally, it outputs whether it has seen a commitment of the message m0 or whether it

has seen a commitment of message m1. I stress here that in this whole experiment, that

function H is a random oracle with neither the experiment nor the adversary having access to

the code of this oracle H. So, since we want to now prove that what is the probability that

adversary A could significantly output b dash = 1, since we are in the Random-Oracle model,

we have to basically argue that what is the probability that adversary has made oracle query

with inputs of the form something concatenated with the randomness s.

So, remember that the commitment c star is the output of the oracle H on some message mb

were mb could be either m0 or m1 which is already known to the adversary A because

adversary itself has thrown that pair of messages. What the adversary does not know is the

other part of the input which has been used to compute the commitment c star, namely it does

not know the value of the randomness s, and since the randomness s is the uniformly random

value.

The probability that adversary A makes an H query of this form namely H query where the

input of the query is something concatenated with the randomness s which has been used by

the challenger is maximum 1 over 2 to the power n. Conditioned on the event that adversary

has not made any query of this form, namely H query of the form something concatenated

with a, the value of c star is going to be a uniformly random value from the viewpoint of the

adversary and it does not reveal anything whether it corresponds to the H output or H value

for the message m0 or for the message m1.

That means with almost same probability from the viewpoint of the adversary, it could be a

commitment of m0 or it could be a commitment of m1. So, now you can see that as soon as

we take this whole construction, this simple construction based on the hash function and take

it to the Random-Oracle model, we can very conveniently give a proof that indeed this

construction satisfies the hiding property, but if we do not take this construction in the

Random-Oracle model, we cannot complete the security proof for the hiding property just

based on the standard properties of the hash function.

(Refer Slide Time: 27:23)

So, now, let us see some other primitives which we can use, which we can design based on

hash functions whose proof we can give only in the Random-Oracle model and this primitive

is what we call as key-derivation function and later on, when we will be discussing public

key cryptography, we will be extensively encountering this primitive. So what exactly is the

goal of key-derivation function? So the scenario is as follows. Imagine we have two parties

say a sender and a receiver and they have some pre-shared data, which is highly

unpredictable.

They need not be that highly unpredictable pre-shared data, need not be in the binary form, it

may not be a binary string and not only that, it need not be a uniformly-random bit string. For

example, you can imagine that S and R might have pre-shared a common password

consisting of 28 characters, where all the characters are uppercase letters, namely they belong

to the set big A to big Z and any of the characters in the set A to Z with equal probability and

with uniform probability, so that is the scenario.

The goal here is basically sender and receiver locally want to apply some function on their

pre-shared data m and derive a random secret key. For example, they might be interested to

derive on a 128 bit uniformly random AES key from the pre-shared data m, which is highly

unpredictable and not known to anyone except the sender and receiver. I stress here the goal

is to do that by locally applying some publicly known function, right, sender and receiver do

not want to interact, they just want to apply some function on the pre-share data m and want

to derive some random secret key.

It turns out that if sender and receiver apply some ad hoc mapping or ad hoc function to the

pre-shared data, then resultant output need not be uniformly random bit string. For example,

let us take the case where both sender and receiver take the ASCII bit representation of the

first 16 characters of m. Why is it 16 characters because the ASCII representation of each

character will be 8 bits and since the goal of the sender and the receiver should derive a 128

bit key.

It suffice for the sender and the receiver to just concentrate on the first 16 characters of their

common password and convert the 16 characters into the ASCII representation and take that

to be the resultant AES key. Intuitively, you might feel that since the password consistent of

uniformly random uppercase characters, when those uppercase characters are converted into

their ASCII representation, the corresponding binary representation also will be uniformly

random, but it turns out that this ad hoc mapping is simply not secure.

It is not secure in the sense that the resultant 128 bit strings that sender and receiver that they

are going to derive are not uniformly random 128 bit strings. This is because if you see the

ASCII representation of the letters for the uppercase letters A to Z, then all those ASCII

representation starts with 010 as the prefix. So the ASCII representation of A starts with 010

and so is the ASCII representation of B and so is the ASCII representation of Z and so on. So,

it does not matter what exactly are the first 16 characters of the password m that is available

with the sender and the receiver.

If they convert the first 16 characters into their ASCII representation, then an adversary who

knows that sender and receiver are basically taking the ASCII representation of the first 16

characters of the common password, the adversary knows that 37.5% of the resultant key are

fixed and known to any third party. So that means, out of the 128 bit keys that sender and

receiver is derived 37.5% bits of the keys is already known to any third party in the world and

that is why we cannot claim that the resultant 128 bit key is a uniformly random 128 bit key.

So now you can see that we cannot just apply ad hoc mapping to highly unpredictable pre-

shared data and hope that the resultant mapping gives us uniformly random key.

(Refer Slide Time: 31:43)

So that is the goal of key-derivation function. So key-derivation function as the name

suggests it derives key from an already existing pre-shared highly unpredictable data and

what we do basically in the key-derivation function is we can design key-derivation function

in varieties of ways, but what we are going to see is the highly practical instantiations of key-

derivation functions based on hash functions. So the idea here is imagine that S and R have

some pre-shared highly unpredictable data.

So till now, I was just giving you an informal description of what we mean by pre-shared

highly unpredictable data. So, let us formally define it. So, I say that it is highly unpredictable

in the sense that it belongs to a probability distribution fancy x with big L-bits of min-

entropy. What exactly that means? Well, that means that if I pick a value as per the

probability distribution fancy x, then the probability that the picked value is some given little

x is upper bounded by 2 to the power–L that is what is the interpretation of this notation.

So this means that I am picking some value as per the probability distribution and the picked

value is some random value, so that is why this big X is the random value denoting the value

that I am picking as per the probability distribution fancy x. Now, I am arguing that what is

the probability that that random value takes the value equal to little x for a given fixed x. If

that probability is upper bounded by 2 to the power -L, then I say that this probability

distribution fancy x has big L-bits of minimum entropy.

Informally, what it means is that even the most likely outcome as per this probability

distribution fancy x can occur with probability at most 1 over 2 to the power big L. So what

basically this L-bits of min-entropy captures, it captures the probability with which an

adversary can guess the value picked by a sender or receiver as per the probability

distribution fancy x. That means if adversary already knows that certain outcomes are more

likely to occur and certain values are less likely to occur.

If the adversary’s strategy is to as always guess that it is the most likely value that a sender

has picked, then even in that case, the probability that adversary’s guess is correct is 1 over 2

to the power L. That is the idea of this notion of L-bits of min-entropy, right. So assume both

sender and receiver have access to a publicly known hash function, right and they have some

pre-shared data m, which has L-bits of min-entropy, then to derive a key what basically

sender and receiver can do is you can just evaluate the hash function on the pre-share data m.

The resultant output which I denote as k will be the pre-shared binary string of size little l

bits, which will be now available to the sender and the receiver. So that is a key-derivation

function in its most simplest form and now, we can argue that if we model the function H as a

Random-Oracle and if we take this construction and instantiated in the Random-Oracle model

and if the value of big L is sufficiently large, then the resultant output little k is indeed a

uniformly random little l-bit string from the viewpoint of any poly-time adversary.

This is because of the fact imagine there is an adversary A sitting between the sender and the

receiver, and since we are now in the Random-Oracle model, what the adversary is going to

do his adversary will be now making polynomial number of oracle queries to this H and

adversary would not be knowing what exactly is the underlying oracle H. So, until and unless

adversary does not query this oracle H on the exact value m which is pre-shared between the

sender and the receiver, the value of k, which sender and receiver are outputting here will be

uniformly random from the viewpoint of the adversary.

Now, what is the probability that adversary indeed queried for H of m given that it has made

q number of queries to the oracle? Well, if my probability distribution or if the data m which

has been pre-shared between the sender and receiver has big L-bits of min-entropy, then what

the adversary can hope for is that every time it can ask the value of this H oracle on the most

favorable data that it feels that the sender and the receiver might have picked as per this

probability distribution

So, the probability that in each single query, it has actually queried for the exact m is 1 over 2

to the power l because that has come from the definition of L-bits of min-entropy and since

the adversary has done q number of queries with maximum this much probability, adversary

A might have queried for the input H of m from the oracle H and if we assume that big L is

sufficiently large and if q is anyhow polynomially bounded in the security parameter, this is

some negligible function in the security parameter.

So, since adversary has not queried for H of m except with negligible probability from the

viewpoint of the adversary, the resultant key k is going to be a uniformly random l-bit string

and that ensures that now sender and receiver can safely use the derived key k for any

cryptography primitive as the key. Say for instance if they want to use the key k as the key

for AES, they can safely use it. So, now, you can see that how this highly efficient key-

derivation function based on hash function can be proved secure if we go in the Random-

Oracle model.

But if we just go into standard model and use the standard properties of the hash functions,

namely collision-resistance, we cannot prove that the so called key derivation function is

indeed a secure key derivation function. So that brings me to the end of this lecture. Just to

summarize in this lecture, we have continued our discussion on the Random-Oracle model.

We have seen that we have certain arguments in the favor of Random-Oracle model, we have

certain arguments against Random-Oracle model and so on.

We have seen instantiation of 2 important cryptography constructions or primitive namely

commitment schemes and key-derivation functions based on hash functions, whose proof we

can give only in the Random-Oracle model. Thank you.

