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Hello everyone, welcome to this lecture. So just to recall in the last lecture, we had 

introduced the Random-Oracle model. So, in this lecture we will continue our discussion on 

Random-Oracle model. Specifically, we will see constructions of several cryptographic 

primitives based on hash functions, whose security proof we cannot just prove based on the 

standard properties of the hash functions and by standard properties I mean the collision-

resistance property and turns out that the proof for those cryptography constructions, which 

we are going to see in this lecture can be completed only in the Random-Oracle model. 
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So, before we proceed, let us first argue whether the Random-Oracle methodology is sound 

or not? Because as you remember in the Random-Oracle model, we are making very strong 

assumptions about the underlying hash functions, right? Namely, we assumed that the 

underlying hash function behaves like a truly random function with no entity in the system, 

which uses that cryptographic primitives have access to that oracle. If someone wants to 

evaluate that underlying oracle on some input of its choice, then it has to make oracle call. 

 

It is not allowed to see the internal details of the underlying oracle, which is far away from 

the reality because in reality when we instantiate cryptography construction based on hash 

function, then we have to select some candidate hash function and everyone in the system 

who is using that primitive will have access to the code of that hash function. So, that brings 

us to the debate whether the Random-Oracle methodology is sound or not? Now, it turns out 

that in cryptography we have 2 school of thoughts here.  

 

We have one group which says that the Random-Oracle methodology is indeed useful, 

whereas the another group is against it. So let us see first objections to the Random-Oracle 

model. So, as I said earlier that the security of any cryptographic primitives by is a pi which 

is based on Random-Oracle model, not only depends upon the random choice of the parties 

who are using that primitive, but also on the random choice of the underlying oracle H. 

 

That means, that the primitive pi may not be secure when actually we go for the deployment 

of the primitive pi by instantiating that oracle H by some specific real-world hash function 

because it so turns out that no concrete hash function, say the SHA functions and MD5 



functions and so on can behave like a Random-Oracle. First of all, none of these hash 

functions behave like a truly random function and even if we so assume that they behave like 

a truly random function, we cannot prevent the adversary to see into the code of the 

underlying hash function.  

 

It will know the full details of the underlying hash function. Whereas the security proof that 

we gave in the Random-Oracle model, it depends upon what specific underlying Random-

Oracle we are using during the instantiation of the primitive pi. Where I started a school of 

thought which actually gives which is in the support for Random-Oracle model is as follows. 

So, it turns out that there are several cryptography primitives which are highly efficient and 

we will see some of the examples of such primitives in this lecture. 

 

Later on, we will see that most of the practical public key cryptographic primitives or public 

key cryptosystems, they use hash functions and their security can be proved only if we go in 

the Random-Oracle model. We cannot prove the security of those public key cryptographic 

primitives based on hash function just using the collision-resistance or the standard properties 

of the hash functions, right. So, the support for the Random-Oracle model based proof is that 

a security proof that we give in the Random-Oracle model, it gives you the confidence that as 

far as the design principle of the cryptographic primitive is concerned, it sound. 

 

The only weakness in the primitive when we actually deploy that primitive could be due to 

the underlying instantiation of the hash function. As a design principle of that primitive pi, 

which uses the hash function as a random article, there is absolutely no flaw. So that is the 

support that we could come up for a proof that is there in the Random-Oracle model. Also, it 

turns out that for almost all the cryptographic primitives whose proof are there in the 

Random-Oracle model, we have obtained no successful real-world attacks when we actually 

instantiate hash functions by some real-world hash functions. 

 

So that is another argument in the support of the Random-Oracle model based proof. The 

final argument which is there in the support of the Random-Oracle model based proof is that 

a proof of security of some cryptographic primitive in the Random-Oracle model is far better 

than no proof at all. That means, imagine you design a primitive pi based on some hash 

function and for that you have absolutely no proof at all, whereas you have the proof for the 

same primitive but in a very idealized setting namely say Random-Oracle model. 



 

Then you will be feeling confidence that indeed if I instantiate this primitive pi by 

instantiating, the underlying hash function, then the only flaw that could be there might be 

due to the weaknesses in the underlying instantiation of the hash function and then what you 

can think of, you can think of coming up with a better replacement or a better instantiation of 

that hash function instead of changing the design of the whole primitive pi. So that is a very 

strong argument in the support for a proof that is given in the Random-Oracle model. 

 

As I said, you have 2 types of groups here, one group hates proofs given in the Random-

Oracle model whereas other group supports proofs given in the Random-Oracle model. So, as 

a design principle, we should always try to design schemes whose proofs are not in the 

Random-Oracle model. Namely, we should try to design schemes which uses hash function 

whose security can be proved just on the standard properties of the hash function, namely the 

collision-resistance property. 

 

But if at all, it turns out that we cannot give a proof just based on the standard properties, but 

we can give proofs in the Random-Oracle model, then we should go for proofs in the 

Random-Oracle model provided that the construction that we are giving are highly efficient. 

So basically you have tradeoff. You have a tradeoff in the sense that if you have a 

construction based on hash function and they are highly efficient, but with no proof. 

 

Whereas you have another construction for the same primitive with a proof in the standard 

model but highly inefficient, then for the sake of efficiency, we can prefer to go for the 

scheme based on the hash function whose proof is available in the Random-Oracle model. 
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So, let us see some cryptography primitives which we can design using hash functions for 

which the security proof can be given only in the Random-Oracle model and the primitive 

that we are going to see here is what we call as commitment schemes and it is basically a two 

party primitive involving a sender and a receiver. Basically when we say that we have a 

commitment scheme, it consists of 2 protocols or 2 phases, a commitment phase and an 

opening phase. 

 

So, what happens in the commitment phase? In the commitment phase, sender has a message 

which is private and known only to the sender which we denote by a little m which can be a 

bit string of some arbitrary length and in the commitment phase basically sender wants to 

commit the message to the receiver. So, you can imagine that in the commitment phase the 

sender computes a fixed length commitment, which we denote by c for the message m and 

this commitment c is given to the receiver R. 

 

So, you can imagine that this commitment c is like a sealed envelope or a sealed box inside 

which the sender has put the message m and given it to the receiver R. Under security 

property that we required from this commitment phase is that if the sender is honest and the 

receiver is corrupt, then by looking into the commitment c or by looking into the envelope c 

or in the box c, the receiver cannot find out what exactly is the message m which has been 

committed in the commitment c. So, that is a commitment phase of a commitment scheme. 
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Now, let us see what happens in the opening phase. So, imagine receiver has received a 

commitment of some unknown message available with the sender in the opening phase. The 

sender provides or reveals the opening information to the receiver using which the receiver 

opens the commitment and the receiver verifies whether the opening information is correct or 

not and based on that, it either accepts or rejects the revealed message that is there in the 

commitment and a security property that we require from the opening phase is as follows. 

 

Now, we consider a corrupt sender and an honest receiver. So, remember, for the hiding 

property, we considered an honest sender and a corrupt receiver, but when we are considering 

the binding property with respect to the opening phase, we consider the case when the sender 

could be corrupt and the receiver is honest. So, what exactly the binding property means is 

that a corrupt sender should not be able to open a commitment c in two different ways.  

 

What it means is that it should not be possible for a corrupt sender to commit a message say 

m during commitment phase and later on provider revealing information which ends up 

opening that commitment c to another message m dash. That means, one sender has fixed his 

commitment and he has decided what exactly to commit, later during the opening phase he 

should not be able to change his mind. 
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So, now let us see how exactly we can design commitment schemes using hash functions. I 

stress that that this is not the only way by which we can design a commitment schemes. Later 

on, we will be discussing the number theoretic hardness assumptions, we will see how we can 

design commitment schemes based on cryptographic hardness assumptions based on number 

theoretic problems, but right now we are trying to give a scheme based on a hash function.  

 

So imagine you are given a collision--resistant hash function H and the commit phase or the 

commitment phase for the commitment scheme that we are going to design is as follows. So 

the message that the sender wants to commit is some message m. To commit this message, 

what does sender does is it picks randomness of some suitable size which denoted by S. So, 

basically S is a uniformly random string of size little n bits where n is some security 

parameter and the commitment of the message m is computed as follows. 

 

Basically, sender evaluates or computes the hash of the input message concatenated with the 

randomness which we do not as c and we call this protocol as protocol Com with respect to 

the input m and randomness s and the commitment information c is given to the receiver that 

is the commit phase. During the opening phase, the receiver has a commitment already 

available to it and it wants to now see what exactly it corresponds to based on the opening 

information which the sender is going to provide. 

 

So, what sender provides in the opening phases the message, randomness which it might have 

used in the commit phase to commit message m in the commitment c and once the message, 

randomness comes to the receiver, what the receiver basically does is it recomputes the 



commitment by hashing the input message concatenated with randomness and checks 

whether the recomputed commitment matches the commitment c, which the receiver already 

has received during the commit phase.  

 

If it matches, then output is 1 that means accept the message m, whereas if the recomputed 

commitment does not match the existing commitment c, then the receiver rejects the message 

m and outputs 0. So, that is a very simple construction of a commitment scheme based on a 

collision-resistant hash function. To commit a message, concatenate a message with some 

appropriate randomness and hash it. To open the message, you basically open the message or 

you reveal the message along with the randomness which you have used to compute the 

commitment. 

 

Now, what we are going to prove is that this commitment scheme that we have designed here 

satisfies the hiding property and binding property and before we go into the proof, let us 

formally define what exactly we mean by the hiding property and the binding property in the 

context of a commitment scheme.  
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So, remember, the hiding property informally requires that if the sender is honest and the 

receiver is corrupt, then by looking into the committed commitment c, the receiver should not 

be able to identify or learn what exactly is the message m which is has been committed in the 

commitment c, and this is modeled by an experiment which we call as the hiding experiment. 

So, the rules of the hiding experiment are as follows. So, we have the description of a 



publicly known commitment algorithm, right, which is going to be used by the sender to 

commit some message. 

 

We have an adversary A who wants to basically learn the value of the message which has 

been committed in a commitment, right, even by knowing the description of the algorithm 

com. So, the game is played between the adversary and the experiment or a challenger and 

what the rules of the game are as follows. So, basically the adversary submits a pair of 

messages m0, m1 and the challenger basically does the following. It randomly decides one of 

these two messages by tossing a fair coin. 

 

Once it has decided what message to commit, it picks a randomness of appropriate size as per 

the commitment algorithm com and it commits that selected message mb under the 

randomness s, right. Now, the challenge for the adversary is to identify whether the c star is a 

commitment of the message m0 or whether c star is a commitment of the message m1. So, 

what this basically experiment models is that if the adversary is sitting in between, if the 

receiver is corrupt, right, then based on the commitment that it sees from an honest sender. 

 

It should not be able to distinguish apart whether it is seeing a commitment of m0 or whether 

it is seeing a commitment of m1 where the receiver is given the power that it already knows 

that the commitment could be either the commitment of m0 or m1. So, the output of the 

adversary is a bit namely whether it feels the commitment c star is the commitment of m0 or 

m1 and our security definition is as follows We say that output of the experiment is 1 or the 

adversary has won the game if it could correctly identify the message which has been 

committed in c star. 

 

Namely, its output b dash = b and we say that formally a commitment’s algorithm com 

satisfies the hiding property if for every poly-time adversary participating in this experiment, 

there is some negligible function such that the probability that adversity can win the hiding 

experiment is upper bounded by half plus the negligible quantity. Another way to put the 

same condition is that the distinguishing advantage of the adversary should be upper bounded 

by some negligible function. 

 

That means, it does not matter whether the commitment is for message m1 or whether the 

commitment c star is for the message m0. In both the cases, the response of the adversary is 



almost identical except with some negligible function and in both the definitions, the 

probability is taken over the random choice of the bit b and the randomness s and the random 

choice of the adversary with which it could decide the message Pr m0, m1. So, on a very high 

level, this indistinguishability based definition of commitment might look like the 

indistinguishability based definition of encryption schemes that we have seen. 

 

The only difference here is that we do not deal with any keys here, right. So that is why we 

do not have any training phase and post-training phase and so on. The goal of the adversary is 

basically to just distinguish apart a commitment of m0 from a commitment of m1. 
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Now let us formally define the binding property, and remember informally the binding 

property demands that if the sender is corrupt and the receiver is honest, then it should not be 

possible for a corrupt sender to open an existing commitment c via are 2 different messages 

and this is simply model by an experiment where the adversary’s goal is to come up with a 

commitment c and a pair of message, randomness where the first message randomness is m, 

s. 

 

The second message randomness pair is m star, s star such that the commitment of the 

message m with the randomness s and the commitment of the message m star and the 

randomness s star are same, namely c, even though the message m and message m star are 

different. If that is the case, then we say that the adversary has won the game. So, when we 

say that the sender wants to break the binding property, its goal is basically to come up with 

some message m and the corresponding randomness s. 



 

Another message say m star different from m and an appropriate randomness s star such that 

when you commit the message m with the randomness s, you obtain the commitment c as 

well as when you commit the message m star with the randomness s star, you also again 

obtain the commitment c. If that is the case, if that is possible, then what the corrupt sender 

can do is during the commit phase, it could commit a message m with some randomness s, 

but it when it comes to reveal the message which has committed in c, it can change its mind 

and say I have committed m star by showing the appropriate randomness s star. 

 

What we want from a commitment scheme satisfying the binding property is that the 

probability that a computationally bounded or computationally corrupted s is able to come up 

with such m, s and m star, s star is upper bounded by some negligible function. So formally, 

we say that a commitment scheme has the binding property if for every poly-time adversary 

A participating in this experiment, there is a negligible function such that the adversary can 

win the game or it can break the binding property is upper bounded by some negligible 

probability. 

 

Notice that we are not putting in this definition that a success probability of the adversary 

should be upper bounded by half plus negligible because here the goal of the adversary is not 

to distinguish a commitment of m0 from a commitment of m1. Its goal is to basically come 

up with a pair of colliding message, randomness with both of which could give you the same 

commitment and there is always a there is always a guessing strategy by the adversary where 

the adversary could guess m, s and m star, star, which indeed gives you the same 

commitment c as per the commitment algorithm. 

 

The success probability of this guessing adversary is nonzero. So that is fine the definition. 

The best we can hope for is that the success probability of any adversary coming up with a 

bad m, s and a bad m star, s star giving the same commitment c is upper bounded by some 

negligible quantity. 
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So now let us come back to the hash function based commitment scheme that we have 

designed and what we are now going to formally prove is that that commitment schemes 

satisfies the binding property and the hiding property. So the binding property will simply be 

based on the collision-resistance property of the underlying hash function. So assume we are 

given a collision-resistant hash function H, here is how we have constructed our commitment 

scheme. So, to commit a message m with some randomness s, basically you have to compute 

the hash value on the input m concatenated with s. 

 

We can formally prove that if the underlying hash function is collision resistant, then indeed 

the algorithm com that we have defined here has the binding property. Namely, what we can 

formally prove is that any poly-time adversary who can break the binding property with a 

significant probability with almost the same probability. It can be used to find out a collision 

in the underlying hash function with a significant probability, but that is a contradiction to the 

assumption that our hash function is collision resistant. 

 

More formally, assume we have an adversary, a poly-time adversary who can break the 

binding property against the commitment scheme that we have done. Using that adversary, 

we can show another adversary, which can find the collision in the underlying hash function. 

So what does adversary A coll does is it invokes the existing algorithm A bind, which can 

break the binding property and basically the adversary who can break the binding property, 

he comes up with this set of triplet. 

 



Namely it comes up with a commitment c, a message, randomness, m, s and another message 

randomness m star, s star. And what this adversary A coll does is it outputs a pair of collision 

namely m concatenated with s and m star concatenated with s star and it turns out that if 

indeed the binding the adversary A bind has broken the binding property, namely the triplet 

that he has produced breaks the binding property that means, m s as well as m star, s star 

gives you the same commitment c as per the algorithm com. 

 

Then indeed, the inputs m concatenated with s and the inputs m star concatenated with a star 

constitutes a collision for the underlying hash function. That means, what we can say is that 

the probability that our collision finder wins the collision resistant experiment is exactly the 

same with which our adversary who can break the binding property can break the binding 

experiment, but since we are assuming that our hash function is coalition resistant, then we 

know that quantity on your left hand side is some negligible function, right? 

 

No poly-time adversary could come up with a coalition in polynomial amount of time. That 

means, this adversary A coll does not exist and that automatically means that the adversary A 

bind also does not exist. That means, only with negligible probability, the so called adversary 

A binding that we have defined exist. It cannot break the binding property with significant 

probability. 
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Now let us prove the hiding property of the commitment scheme that we have designed and it 

turns out that just by using the standard properties of the hash function, we cannot prove the 

hiding property, but interestingly we can prove that if we instantiate this commitment scheme 



in the Random-Oracle model. Then in the Random-Oracle model, we can prove that this 

commitment scheme satisfies the hiding property. So, let us go into the detail. Now, since we 

are going into the Random-Oracle model, we have to modify the hiding experiment. 

 

So remember in the hiding experiment, the rules of the game were as follows. The adversary 

simply throws a pair of messages m0, m1 and one of them is randomly committed and the 

challenge for the adversary was to identify whether it is seeing a commitment of m0 or 

whether to seeing a commitment of m1, but now since we are going to instantiate the 

commitment using a hash function which is taken in the Random-Oracle model and in the 

Random-Oracle model, each entity in the system is going to have oracle access to the 

function H. 

 

We have to incorporate the oracle access to this oracle H in the experiment. So, the modified 

experiment is as follows. So, the adversary basically submits a pair of messages and the 

challenger or the experiment decides one of the messages to commit randomly. So, it decides 

a suitable randomness. Once it has decided what message to commit and now it throws the 

commitment of that message as per the com algorithm, and to commit that message mb 

basically this challenger has to evaluate H of mb concatenated with s. 

 

But since we are assuming that we are in the Random-Oracle model, this hash function is, 

this output H of mb concatenated with s is obtained by the experiment making an oracle call 

to the oracle H on the input mb concatenated with s and as per the rules of the Random-

Oracle model adversary A is not allowed to see the oracle call that experiment has made to 

the Oracle H. Now, since we are in the Random-Oracle model, this adversary A is also 

allowed to make polynomial number of oracle queries to this oracle H on any input of its 

choice. 

 

Then finally, it outputs whether it has seen a commitment of the message m0 or whether it 

has seen a commitment of message m1. I stress here that in this whole experiment, that 

function H is a random oracle with neither the experiment nor the adversary having access to 

the code of this oracle H. So, since we want to now prove that what is the probability that 

adversary A could significantly output b dash = 1, since we are in the Random-Oracle model, 

we have to basically argue that what is the probability that adversary has made oracle query 

with inputs of the form something concatenated with the randomness s. 



 

So, remember that the commitment c star is the output of the oracle H on some message mb 

were mb could be either m0 or m1 which is already known to the adversary A because 

adversary itself has thrown that pair of messages. What the adversary does not know is the 

other part of the input which has been used to compute the commitment c star, namely it does 

not know the value of the randomness s, and since the randomness s is the uniformly random 

value. 

 

The probability that adversary A makes an H query of this form namely H query where the 

input of the query is something concatenated with the randomness s which has been used by 

the challenger is maximum 1 over 2 to the power n. Conditioned on the event that adversary 

has not made any query of this form, namely H query of the form something concatenated 

with a, the value of c star is going to be a uniformly random value from the viewpoint of the 

adversary and it does not reveal anything whether it corresponds to the H output or H value 

for the message m0 or for the message m1. 

 

That means with almost same probability from the viewpoint of the adversary, it could be a 

commitment of m0 or it could be a commitment of m1. So, now you can see that as soon as 

we take this whole construction, this simple construction based on the hash function and take 

it to the Random-Oracle model, we can very conveniently give a proof that indeed this 

construction satisfies the hiding property, but if we do not take this construction in the 

Random-Oracle model, we cannot complete the security proof for the hiding property just 

based on the standard properties of the hash function. 
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So, now, let us see some other primitives which we can use, which we can design based on 

hash functions whose proof we can give only in the Random-Oracle model and this primitive 

is what we call as key-derivation function and later on, when we will be discussing public 

key cryptography, we will be extensively encountering this primitive. So what exactly is the 

goal of key-derivation function? So the scenario is as follows. Imagine we have two parties 

say a sender and a receiver and they have some pre-shared data, which is highly 

unpredictable. 

 

They need not be that highly unpredictable pre-shared data, need not be in the binary form, it 

may not be a binary string and not only that, it need not be a uniformly-random bit string. For 

example, you can imagine that S and R might have pre-shared a common password 

consisting of 28 characters, where all the characters are uppercase letters, namely they belong 

to the set big A to big Z and any of the characters in the set A to Z with equal probability and 

with uniform probability, so that is the scenario. 

 

The goal here is basically sender and receiver locally want to apply some function on their 

pre-shared data m and derive a random secret key. For example, they might be interested to 

derive on a 128 bit uniformly random AES key from the pre-shared data m, which is highly 

unpredictable and not known to anyone except the sender and receiver. I stress here the goal 

is to do that by locally applying some publicly known function, right, sender and receiver do 

not want to interact, they just want to apply some function on the pre-share data m and want 

to derive some random secret key. 

 



It turns out that if sender and receiver apply some ad hoc mapping or ad hoc function to the 

pre-shared data, then resultant output need not be uniformly random bit string. For example, 

let us take the case where both sender and receiver take the ASCII bit representation of the 

first 16 characters of m. Why is it 16 characters because the ASCII representation of each 

character will be 8 bits and since the goal of the sender and the receiver should derive a 128 

bit key. 

 

It suffice for the sender and the receiver to just concentrate on the first 16 characters of their 

common password and convert the 16 characters into the ASCII representation and take that 

to be the resultant AES key. Intuitively, you might feel that since the password consistent of 

uniformly random uppercase characters, when those uppercase characters are converted into 

their ASCII representation, the corresponding binary representation also will be uniformly 

random, but it turns out that this ad hoc mapping is simply not secure. 

 

It is not secure in the sense that the resultant 128 bit strings that sender and receiver that they 

are going to derive are not uniformly random 128 bit strings. This is because if you see the 

ASCII representation of the letters for the uppercase letters A to Z, then all those ASCII 

representation starts with 010 as the prefix. So the ASCII representation of A starts with 010 

and so is the ASCII representation of B and so is the ASCII representation of Z and so on. So, 

it does not matter what exactly are the first 16 characters of the password m that is available 

with the sender and the receiver. 

 

If they convert the first 16 characters into their ASCII representation, then an adversary who 

knows that sender and receiver are basically taking the ASCII representation of the first 16 

characters of the common password, the adversary knows that 37.5% of the resultant key are 

fixed and known to any third party. So that means, out of the 128 bit keys that sender and 

receiver is derived 37.5% bits of the keys is already known to any third party in the world and 

that is why we cannot claim that the resultant 128 bit key is a uniformly random 128 bit key. 

 

So now you can see that we cannot just apply ad hoc mapping to highly unpredictable pre-

shared data and hope that the resultant mapping gives us uniformly random key. 
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So that is the goal of key-derivation function. So key-derivation function as the name 

suggests it derives key from an already existing pre-shared highly unpredictable data and 

what we do basically in the key-derivation function is we can design key-derivation function 

in varieties of ways, but what we are going to see is the highly practical instantiations of key-

derivation functions based on hash functions. So the idea here is imagine that S and R have 

some pre-shared highly unpredictable data. 

 

So till now, I was just giving you an informal description of what we mean by pre-shared 

highly unpredictable data. So, let us formally define it. So, I say that it is highly unpredictable 

in the sense that it belongs to a probability distribution fancy x with big L-bits of min-

entropy. What exactly that means? Well, that means that if I pick a value as per the 

probability distribution fancy x, then the probability that the picked value is some given little 

x is upper bounded by 2 to the power–L that is what is the interpretation of this notation. 

 

So this means that I am picking some value as per the probability distribution and the picked 

value is some random value, so that is why this big X is the random value denoting the value 

that I am picking as per the probability distribution fancy x. Now, I am arguing that what is 

the probability that that random value takes the value equal to little x for a given fixed x. If 

that probability is upper bounded by 2 to the power -L, then I say that this probability 

distribution fancy x has big L-bits of minimum entropy. 

 

Informally, what it means is that even the most likely outcome as per this probability 

distribution fancy x can occur with probability at most 1 over 2 to the power big L. So what 



basically this L-bits of min-entropy captures, it captures the probability with which an 

adversary can guess the value picked by a sender or receiver as per the probability 

distribution fancy x. That means if adversary already knows that certain outcomes are more 

likely to occur and certain values are less likely to occur. 

 

If the adversary’s strategy is to as always guess that it is the most likely value that a sender 

has picked, then even in that case, the probability that adversary’s guess is correct is 1 over 2 

to the power L. That is the idea of this notion of L-bits of min-entropy, right. So assume both 

sender and receiver have access to a publicly known hash function, right and they have some 

pre-shared data m, which has L-bits of min-entropy, then to derive a key what basically 

sender and receiver can do is you can just evaluate the hash function on the pre-share data m. 

 

The resultant output which I denote as k will be the pre-shared binary string of size little l 

bits, which will be now available to the sender and the receiver. So that is a key-derivation 

function in its most simplest form and now, we can argue that if we model the function H as a 

Random-Oracle and if we take this construction and instantiated in the Random-Oracle model 

and if the value of big L is sufficiently large, then the resultant output little k is indeed a 

uniformly random little l-bit string from the viewpoint of any poly-time adversary. 

 

This is because of the fact imagine there is an adversary A sitting between the sender and the 

receiver, and since we are now in the Random-Oracle model, what the adversary is going to 

do his adversary will be now making polynomial number of oracle queries to this H and 

adversary would not be knowing what exactly is the underlying oracle H. So, until and unless 

adversary does not query this oracle H on the exact value m which is pre-shared between the 

sender and the receiver, the value of k, which sender and receiver are outputting here will be 

uniformly random from the viewpoint of the adversary. 

 

Now, what is the probability that adversary indeed queried for H of m given that it has made 

q number of queries to the oracle? Well, if my probability distribution or if the data m which 

has been pre-shared between the sender and receiver has big L-bits of min-entropy, then what 

the adversary can hope for is that every time it can ask the value of this H oracle on the most 

favorable data that it feels that the sender and the receiver might have picked as per this 

probability distribution 

 



So, the probability that in each single query, it has actually queried for the exact m is 1 over 2 

to the power l because that has come from the definition of L-bits of min-entropy and since 

the adversary has done q number of queries with maximum this much probability, adversary 

A might have queried for the input H of m from the oracle H and if we assume that big L is 

sufficiently large and if q is anyhow polynomially bounded in the security parameter, this is 

some negligible function in the security parameter. 

 

So, since adversary has not queried for H of m except with negligible probability from the 

viewpoint of the adversary, the resultant key k is going to be a uniformly random l-bit string 

and that ensures that now sender and receiver can safely use the derived key k for any 

cryptography primitive as the key. Say for instance if they want to use the key k as the key 

for AES, they can safely use it. So, now, you can see that how this highly efficient key-

derivation function based on hash function can be proved secure if we go in the Random-

Oracle model. 

 

But if we just go into standard model and use the standard properties of the hash functions, 

namely collision-resistance, we cannot prove that the so called key derivation function is 

indeed a secure key derivation function. So that brings me to the end of this lecture. Just to 

summarize in this lecture, we have continued our discussion on the Random-Oracle model. 

We have seen that we have certain arguments in the favor of Random-Oracle model, we have 

certain arguments against Random-Oracle model and so on. 

 

We have seen instantiation of 2 important cryptography constructions or primitive namely 

commitment schemes and key-derivation functions based on hash functions, whose proof we 

can give only in the Random-Oracle model. Thank you. 


