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Lecture – 30 

Generic Attacks on Hash Functions and Additional Applications 

 

Hello everyone, welcome to this lecture. Just a quick recap. In the last lecture, we had seen 

how to use collision-resistant hash function to create message authentication codes for 

arbitrary long messages.  

(Refer Slide Time: 00:31) 

 

So, the plan for this lecture is as follows. In this lecture, we will discuss birthday attacks, 

which is a class of generic attacks which can be launched against any hash functions and we 

will also discuss the small space birthday attacks for finding collisions in hash functions, and 

finally, we will discuss some of the other applications of hash functions apart from the 

message authentication codes.  

(Refer Slide Time: 01:03) 



 

So let us start with but the attacks for finding collisions. So, imagine you are given a 

deterministic hash function which is publicly known. Then the naive algorithm for finding 

collision in this hash function is as follows. You can evaluate this hash function at 2 to the 

power l +1 number of distinct inputs and it is guaranteed that with 100% success you will 

obtain a collision. The success probability of finding the collision here is this is because of 

the pigeonhole principle. 

 

Because at the best you can hope that 2 to the power l distinct inputs go to 2 to the power l 

distinct outputs, but since you are evaluating in a H function at more input than 2 to the 

power l inputs, then definitely there will be 2 inputs which will be giving you the same hash 

value and that will give you collision. So, the success probability of this naïve collision 

finding algorithm is 1, it gives you 100% success guarantee, but unfortunately the running 

time of this naive algorithm is of order to 2 the power l and if little l is significantly large, 

then of course this naïve collision finding algorithm is impractical. 

 

So now let us see a generalization of this naive algorithm and the generalization goes as 

follows. You evaluate this hash function at q distinct inputs, which I denote by x sub 1 up to 

x sub 1 and you obtain the hash values and you pass these inputs comma output values and 

check whether exists a pair xi, xj such that your hash values are same. Now, we are interested 

to argue here what is the success probability of this generalized algorithm? So remember if 

little q is said to be 2 to the power l +1. 

 



Then basically this generalized algorithm becomes a naive algorithm in that that case, the 

success probability is 1, but now your q need not be 2 to the power l +1, it could be any 

function and now our goal is to analyze the success probability of this naive algorithm as a 

function of q and the size of your hash function, right. So while doing the analysis, what we 

will assume is that we will assume that the function H is behaving like a truly random 

function, and why so because that is the best you can hope for. 

 

Because if indeed your function H behaves like a truly random function, then that is the most 

difficult task for the adversary where the adversaries go, there will be to find a collision 

because it can be proved that the probability of finding collision for this generalized 

algorithm gets better if your underlying function H is a non-random function and if instead of 

querying on distinct inputs x1 to xq, your algorithm makes queries for random set of x values, 

right.  

 

So, we are basically actually we are not making any stronger assumption by assuming that the 

function H is a random function because the the success probability of this naive algorithm is 

lower bounded by the success probability that this naive algorithm will give you for the case 

where we are assuming your underlying function H is a random function. 

(Refer Slide Time: 04:30) 

 

So, let us set the setting for the generalized case here. So, you are given a truly random 

function from the set of binary strings to a fixed set domain where the size of the domain is 

big L and say you have made q number of queries for this hash values on distinct inputs x1 to 

xq and the corresponding output values are y1 to yq and since I am assuming my hash 



function is a random function, each of this y sub i values are uniformly random values from 

the set of big N values which my hash function can throw as possible output. 

 

I denote the event called q, N the event that there exists a collision, namely there exists a pair 

of entices I, j where i and j are different, but the corresponding hash values namely vi and yj 

are equal and my goal is to compute a lower bound on the probability of this event collision 

q, N. So, I want to prove here that if the number of queries that I am making here is upper 

bounded by square root of 2 times N, then the probability of collision is at least q times q-1 

over 4N. So let us see how we can derive this.  

 

So, let me denote the event no collisions sub i to be the event at when we are making the first 

i, when we had made the first i queries, all the hash output values are distinct, that means the 

values y1, y2, yi are all distinct. That is the case that means h of x1, h of x2, h of xi, they are 

all distinct and no collision has occurred and that is the event NoColl i and it is easy to see 

that since we are making q number of queries, then the event NoColl q is basically the 

complimentary of the event collision q, N. 

 

Because if the event no collision q occurs that means all your y values y1, y2, yq are distinct 

and that means there exists no collision, which I obtained by running by a generalized 

algorithm. So now it is easy to see that by applying simple rules of probability, we obtain the 

probability that event no collision q occurs is same as the product of these probabilities, 

namely the probability no collision occurs given that event no collision 1 occurs what is the 

probability that event no collision 2 occurs and like that, given that the event no collision q-1 

has occurred.  

 

That means the first q-1 queries gives you a distinct output what is the probability that event 

when you make the qth query, there exists still no collision. If I multiply all these 

probabilities, I obtain the probability of the event NoColl sub q, okay. So let us calculate each 

of the probabilities that are there in your right hand side. So it is easy to see clearly that the 

event NoColl 1 occurs with probability 1 because when you are making your first query, 

definitely no collision has occurred.  

 

That means y1 state, y1 is distinct. So I can simply turn off this, ignore this probability 

because that is 1. Now let us compute the ith term in the expression on your right hand side. 



Namely, let us compute the probability of the event NoColl sub i+1 given that the event 

NoColl sub i has occurred. That means your event is the following. Your y1 to yi are all 

distinct that is given to you and then when you have made the query for xi+1, you have 

obtained yi+1 and we want to analyze what is the probability that is yi+1 is different from all 

the values y1 to yi. 

 

It is not difficult to see that this probability is nothing but 1-i+1, why? Because I –i over N 

denotes the probability with which this i+1 th value could be same as at least one of these i 

values and if you subtract that quantity from 1 that gives you the required probability, and I 

can always replace this 1 - i over N by e to the power -i over N and this comes from your 

basic inequality from the fact that 1-x can be always upper bounded by e to the power -x for 

all x. So now I know the value of each of the terms in my right hand side that is what I have 

derived.  

 

So what I have to do is I have to just substitute here. So, I obtained that the probability that 

the event NoColl sub q occurs is the product of these entities, okay and if I take the product in 

the exponent, basically I end up doing the summation in the exponent. So, I obtained that 

even NoColl i occurs with this much probability, and if I take the summation inside, I obtain 

that this is less than equal to e to the power -q times q-1 over 2N and then I can finally 

replace it by this inequality. 

 

This is because q times q-1 over 2N is less than N because under the assumption I am making 

the assumption that q is upper bounded by a square root of 2N. If that is the case, then indeed 

q times q-1 over 2N is less than N, and if that is the case, then I can use the fact that e to the 

power -x is less than equal to 1-x over 2. So by making using all these facts and doing the 

substitutions and solving the inequalities, I obtained that the event NoColl occurs with this 

much probability, but that is not our goal. 

 

Our goal was to compute the probability of the event Coll q, N to occur and since the event 

called no collision q and the complimentary event collision q, N are related by this. We 

simply obtained that the probability of the event collision q, N to occur is at least q times q-1 

over 4N. 
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So that is the lower bound we have established here assuming that your function H is a 

random function and we have evaluated the function H at q distinct x values and we have 

established that the probability of the collision is at least as much. Now you might be 

wondering that why this generic algorithm for finding the collision is called or is given a 

fancy name birthday attack. Basically, this is due to the fact that whatever analysis we have 

done you can model is as of following computer science problem. 

 

Imagine that you have a set of q people sitting in a room who are the random set of people, 

and each of them has a birthday. So, you can imagine that the function H here is nothing but 

it is a function which maps the people to their birthdays and we assume that the birthdays of 

the people fall in a non-leap year. So the number of candidate’s birthdays which those people 

could have is 365 possible value, right. So, you have q number of people, say person 1, 

person 2, and person q and their birthdays are H of P1, H of P2, H of P3 and so on. 

 

We want to find out what is the probability that among those q people there exist at least 2 

people who have the same party. I am not interested in the year, when I am not arguing the 

day. I do not required that they should have said same year of birth as well. I am just 

interested whether they have the same birthday or not and you can imagine that the function 

H here is mapping those people birthday parties. 

 

So, it turns out that whatever analysis we have done here in the context of hash function, it 

could be carried out even in the context of this birthday problem and it could be proved that if 

there are 27 random people in the room, then the chance that at least 2 of them have the same 



birthday is approximately 50%, so which is a good enough probability. You do not require a 

large number of people to ensure that with good probability 2 people have the same birthday, 

okay.  

 

So coming back to the context of cryptographic hash functions, so what exactly are the 

implications of this birthday attack? It says that imagine that your co-domain space it sizes 2 

to the power l. That means your hash outputs could be any string of little l bits, then what is 

the analysis of the birthday attack basically says is that if you evaluate your hash function at 

these many number of distinct inputs, namely 2 to the power l+1 over 2 number of distinct 

inputs. 

 

If I substitute this value of q here in this expression and the value of n to be 2 to the power l, 

then I find that the probability of the collision turns out to be a constant independent of the 

size of l and a constant success probability is a good enough probability for an adversary to 

find collision in your underlying hash function in a polynomial time. That means your value 

of little l has to be significantly large and because if you ensure that your value of l is 

significantly large. 

 

That means to make these many number of queries, the adversary has to do an impractical 

amount of computation and that will rule out the implications of birthday attack. 

Theoretically, the implications are still there. It is only that we are going to operate our 

underlying hash with such a large value of little l that carrying out these many number of 

hash evaluations is going to be impractical, and that is why a necessary condition for 

obtaining a collision-resistant hash function is that you should have a large value of little l. 

 

Because if your little l is small, then just by making these many number of queries, adversary 

could come up with a collision with almost a constant success probability. So that is why the 

minimum value of little l which is recommended for current practical instantiations of the 

hash functions is 256. Because if you set l to be 256, then basically adversary has to do 

computations of order 2 to the power 128 to obtain collisions with a constant Success 

probability, but 2 to the power 128 computations is really a huge amount of computation. 
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So now let us discuss another type of body attack, which we call as a small space birthday 

attack for finding the collision. The idea here remains the same. So, remember in the 

generalized collision finding algorithm, we evaluated the hash function at q number of 

distinct inputs, and we had to store all those hash values because when we are comparing the 

x input and your hash values to find out whether there exist a collision or not, we need all the 

xi, xj pairs and their corresponding hash values. 

 

So, it turns out that the space complexity here is of order q. So, if you consider in the modern 

computer systems, time is not an issue, the processing speed is not an issue, day by day the 

processing speed is increasing. What matters is the space complexity because space is really a 

very critical resource here and that is why what will be interesting here is whether we can 

carry out the birthday attack or the generalized birthday attack that we had seen earlier where 

the space complexity is not O of q, but rather say it is a constant, right?  

 

Now, you might be wondering that how can just by storing constant number of values, we 

can still perform an attack which is similar to the generalized attack that we had seen in the 

context of birthday attack. So, the idea behind this constant space complexity or a small space 

complexity birthday attack is as follows. So, imagine you have a sequence of values y1 to yq 

which are basically obtained by a sequence of a chain of hash evaluation.  

 

So, you will start with say a distinct or random y1 and then y2 is nothing but hash of y1 and 

then from this y2 I obtain y3 which is same as say hash of y2, which in turn is same as hash 

of hash of y1 and so on. So, you can imagine that I have a chain like this and each subsequent 



y value is related to the previous y value by the hash function H. So, that is how I have 

computed these y values. Now, we can prove that if you have 2 indices Big I and Big J such 

that your yi value and yi values are same. 

 

That means you have this chain of values y1, y2, and say you have 2 indices intermediate 

indices yi and yj and you have say done q number of such y computations and you have say 2 

such indices y sub big I and y sub big J such that y sub big I and y sub big J are same, then it 

means that there exist at least one indice y sub little i or one y value which I denote by y sub 

little i such that y sub little i and y sub 2 times little i will be same that constitutes a collision 

for you, right. So that is a claim here okay.  

 

So, I am not going into the details of the proofs of this claim, but you have to believe me that 

if indeed we have computed y values like this and if we have this condition to be there to be 

true, then this condition holds as well, right, and that gives you an idea of how to find a 

collision with a space complexity of constant, right. So, what you have to do is you have to 

perform the same analysis that you have done for the previous case, but now you just need to 

store 2 hash values.  

 

So, what you have to do is in each iterations, you have to compute the next y value. So you 

have to go from yi to yi+1 and at the same time, you have to keep a track of y of 2i as well, 

right. As soon as you obtain an index little i such that y sub i and y sub 2i are same. That 

means, there exists some collision in the sequence of y values that you have computed till y 

of 2i. So, what you have to do is basically then you have to do a backtracking and find out the 

exact collision.  

 

So, I stress that is this claim does not give you the guarantee that y sub i and y sub 2i is 

exactly the collision because y sub i is obtained from the value H of yi-1 and y sub 2i is 

obtained by evaluating y 2i-1, right. So, it is not guaranteed that y i-1 and y sub 2y-1 

constitutes a collision. That is what you have to basically check by doing the backtracking, 

right. So, the interesting part here is that both for stage 1 as well as for stage 2, we just need 

to store 2 hash values.  

 

So, in stage 1, we can go in the forward direction and stop as soon as this condition holds and 

which will become true with very high probability, we can prove that, and if indeed this 



condition becomes true, we stop there and then we do a backtracking again by just keeping 

track of 2 hash values and we will end up finding the exact collision in the chain of values 

that we have got. The probability analysis more or less remains the same. So that is the idea 

behind a small space birthday attacks for finding collisions. 
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So now let us discuss some additional applications of collision-resistant hash function. So, 

the major application that we had discussed in the last lecture was constructing message 

authentication codes for arbitrary length inputs, but in this lecture, we will see some other 

applications as well. So imagine you are given a collision-resistant hash function and the one 

of the main ideas that we can use in several applications involving the hash function is that 

the hash of a file can serve as its short unique identifier. 

 

Where the size of the identifier will be fixed, say little l bits and its size would be little l bits 

irrespective of what file you are feeding as an input to the hash value. It could be a small file, 

it could be a large file, I do not care. The digest of the file will be taken as an identifier and 

since we are assuming that your underlying hash function is collision resistant that means in 

practical amount of time, it will be very difficult to come up with 2 files, say X and X dash 

such that both of them give you the same digest, right.  

 

Because if that is the case, then this whole idea would not work, but since I am assuming that 

my underlying hash function is a collision-resistant hash function, then it means that in 

practical amount of time, it is very difficult to come up with 2 two files X and X dash having 

the same identifier or the same message digest and it turns out that this small concept you can 



use in several real world applications. So let us discuss a few of them. The first application 

that where we can use this idea is that of virus fingerprinting. 

 

So what we do here is that the anti-viruses or virus scanner stores the hashes of known 

viruses in their database and whenever we have an email attachment or we download an 

email application, and if we want to check whether the downloaded attachment or the 

download application has a virus or not, what we do is the virus scanner basically computes 

the hash of the downloaded attachment or the application and then it matches the hash with 

the known hashes of the viruses, which it has already stored in its database.  

 

If there is a match, then an error message is given to us that it suspect data attachment that we 

have obtained or the application that we have downloaded contains potential virus. Notice 

that it might be possible that you have an attachment which is a genuine attachment, but 

unfortunately its hash matches the hash of one of the known viruses. In that case, even for a 

genuine attachment, you might get an error message, but that implies that you are getting a 

collision or you are finding a collision in a feasible amount of time. 

 

But since I am assuming that my underlying hash function is collision resistant, if at all an 

error message is given to me that means at very high probability indeed the hash of the 

attachment that I am downloading is containing viruses. 
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The second application where we can use this idea is that of the duplication and here the idea 

is that we want to eliminate duplicate copies of the same data. So, imagine that we are in a 



cloud storage scenario where say we have several users, user 1, user 2 and say n number of 

users and each of them are hiding a common cloud storage for uploading their data. Now, 

since the users are independent of each other, it might be possible that a user 1 and user 2 end 

up uploading a same file. 

 

If the cloud storage process if the cloud storage naively gives or stores both the copies of X, 

then that will be a wastage of space. So what can be an interesting or smart solution will be 

every time a user tries to upload a file, what the cloud storage can do is can compute a hash 

of the file for which the request has come and it can compare that hash value with all the 

hashes of the previous file that it has stored.  

 

If the hash value matches that means that the file which has been requested to be uploaded is 

already there in the cloud storage, so no need to again create a fresh copy of that file. So that 

is the idea of deduplication here, and again, we are using the idea of hashing the file and 

using the hash of the file as its identifier. 

(Refer Slide Time: 24:38) 

 

Now let us see some other applications of hash functions and this is what we call as hash 

pointers. So I am assuming that all of you are familiar with pointers in programming 

language. Basically, pointers are special type of variable or you can imagine that basically 

pointer variables points to a memory location where some data is stored. So if say 1884 is a 

memory location, and if I have a pointer variable, then in that pointer variable the address 

1884 is stored.  

 



So by following the address you can or by following this pointer, you can come to the 

location 1884 and see what exactly is stored. Now this hash pointer is almost same as a 

pointer in spirit, but apart from pointing to the data, this pointer also stores the hash of the 

value that is stored in that location. That means if this is some data which is stored in some 

arbitrary location, and if I say that this is your hash pointer, then this hash pointer will have a 

pointer to the data as well as the hash of the data that is stored in that location. 

 

The advantage of this hash pointer is that by following this pointer, not only you can retrieve 

the data, right, so if you follow the pointer you can retrieve the data, and once the data is 

retrieved if you want to verify whether you have retrieved the right data or not, you can again 

hash it and compare it with the hash value which is stored along with this point. So that is 

advantage or the extra property which is available with the hash pointer compared to the 

traditional pointers. 
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Now it turns out that any data structure which we can design using the standard pointers in 

programming language, all of them can be redesigned by replacing the standard pointers 

using hash pointers. So for instance, this is your standard linked list where you have a 

collection of nodes and each node has some sequence of data of which we call as data block 

and a pointer to the next block, right, like this, so this is your last block, and since there is 

nothing after it, that is why the next pointer for it is set to be null. 

 

We have the previous block where we have the data and a pointer pointing to the next block 

and so on and like that we have the head pointer. So that is a standard linked list here, which I 



guess all of you might be aware of. What we now do is that we take the same linked list, but 

replace all the pointers by hash pointers. So, we have now a sequence of blocks here, each 

block will have its own data content and along with that instead of a regular pointer, we have 

a hash pointer, which will point to the block after it along with the hash of the data as well as 

the hash pointer stored here.. 

 

So that means if I consider this hash pointer, right, so here, it will point to the next node and 

when I say node, node means node as a whole that means the data concatenated with the hash 

pointer stored there. So this hash pointer will be pointing to this data block and along with 

that a hash of this whole block whole binary string, whole binary content that is kept here will 

be stored in this hash pointer, right. Now it turns out as soon as I take the standard linked list 

and replace all the pointers by hash pointers, I obtain a very nice data structure, which has a 

very fancy name in this today's world, namely Block chain. 

 

So, if someone ask you what exactly is a Block chain, Block chain is nothing but a linear 

linked list where all the pointers are replaced by hash pointers. That means you have a 

sequence of block, each block has its own data part and short hash or the short summary of 

the entire content of the block after it and so on and like that you have a short summary of the 

entire Block chain or the entire linked list, which is nothing but the hash value of the head 

data block, right.  
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So, this Block chain, it gives you a very nice data structure. Namely, it helps you to 

instantiate what we call a tamper-evident log and what exactly is a tamper-evident log? It is a 



log data structure, namely it will store lot of information and it should be a dynamic data 

structure in the sense it should allow you to append data to the log. That means whatever 

existing log you have, you can append data to it. And apart from that any change in that log 

or the existing log should be deductible. 

 

So let us see whether we can instantiate this tamper-evident log using Block chain. So it turns 

out that indeed, we can use the Block chain to instantiate tamper-evident log and the idea 

here is that we can use the head hash pointer as a short summary for the entire log. That 

means I do not need to store the entire log. It is enough for me if I just store the head hash 

pointer. By just storing the head hash pointer, I can detect later on whether any tampering has 

occurred in the existing log or not, right.  
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So let us see how exactly the things go here. So if at all you want to insert a new data, that 

means suppose if this is an existing Block chain and if you want to insert A new data block 

here or a new node here, that is very simple, right? So you create the data, whatever data you 

want to store and along with that, you create a hash pointer here, which will point now to the 

previous head block here, and once you do that, you create a hash of this entire thing and that 

will be the hash pointer, which will be now stored in the summary of this tamper-evident log. 

 

So inserting a new data here is exactly the same as the insertion operation in the standard 

linked list, but now the interesting part here is that any change which adversary tries to make 

in an existing log with very high probability, it will be detected. So imagine, for instance, the 

adversary tries to change the contents of the data block in the third node here, right. So at the 



moment, I am assuming that you do not have the existing Block chain. You just have the 

head hash pointer with you. 

 

Now you ask someone that you please give me the content of the third node here or you give 

me the entire Block chain. So suppose if the request goes to the adversary, then what the 

adversary can try to do is that instead of giving you a genuine copy of the whole log or the 

whole Block chain, he might now try to insert his own data or he might want to change the 

existing data and so on and now he might want to give you the changed Block chain. 

 

So the idea here is that if at all he tries to do that, he will be detected with very high 

probability assuming that your underlying hash function is a collision-resistant hash function. 

Let us see how it happens. So imagine it changes the contents of the data block in the third 

node and as soon as it changes here, this node is now going to be a new node. That means the 

binary content will differ and to make it consistent, he has to change the hash pointer here, 

namely he has to change the hash value here. 

 

As soon as he changes the hash value in the second node, the node 2 as a whole it is binary 

content becomes different. To make it consistent, what he has to do, the adversary has to now 

change the hash pointer which is stored in the first node and as soon as the adversary changes 

the hash pointer in the first node, the binary contents of the first node will become different, 

and to make it consistent basically adversary now has to change the contents of the head hash 

pointer as well. 

 

But as soon as he changes the head to hash pointer that would not match with the head hash 

pointer, which you have stored with you assuming that finding collisions is difficult. Because 

if finding collisions is difficult, and it may so happen that this changed first node, its hash 

value matches the head hash value that you have stored with you for the existing Block chain, 

but assuming finding collisions are difficult, the adversary will be detected with very high 

probability.  

 

That is why the Block chain is a very popular database because you can keep on adding data 

to the existing log and the whole log can be summarized by just storing a small hash value. 
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Let us see the last application of hash function for today's lecture. This is a very nice 

application which we call this Merkle tree and what basically Merkle trees are they are full 

binary trees with hash pointers, right. So all of you, I am sure you know what exactly is a full 

binary tree. So you have say 2 to the power k number of leaves and at each layer, you have a 

node with both its left child as well as right child being present here. So what we are now 

doing is that instead of implementing the binary k with standard pointers, we now replace 

those standard pointers using hash pointers. 

 

So we imagine that we have say 2 to the power k number of data contents or data blocks here. 

So in this example, I am taking say 8 number of blocks and the way we construct a Merkle 

tree is as follows. So we have at the leaves the data blocks present, and then we go to the one 

layer up, where we have the hash pointers. So this hash pointer basically contains the hash of 

the data and this hash pointers basically contains the hash of this data and so on. Now, what 

we do is since this hash values are also binary strings, we can take this binary string 

concatenated with this binary string and hash it and go one layer up. 

 

So, this hash value basically is a hash value of concatenation of these 2 hash values. In the 

same way, this hash value is basically hash value of the concatenation of these two has values 

and so on and we go one layer up and like this we keep on going till we obtain the hash root 

pointer and that hash root pointer or the hash value which is stored at the root basically is a 

short summary of the entire tree, right, and we require that in this Merkle tree, the number of 

leaves node should be a power of 2.  

 



If that is not the case, then we append dummy nodes to ensure that the number of leaf nodes 

is indeed some power of 2 and that is required for the overall application here. So, as it was 

the case for Block chain or the hash pointer based linked list, it turns out that any change or 

any tampering of data block can be easily detected if someone is maintaining up to date copy 

of the hash root pointer. That means, imagine I as a user, I am not maintaining the whole tree, 

I am just having hash root pointer with me. 

 

Suppose at a later point of time, I ask someone that please give me all the data block contents, 

then if that user tries to change is the data block or the data content and with very high 

probability it will be detected assuming finding collisions in the underlying hash functions is 

difficult. So for instance, suppose it tries to change the second data block while giving it back 

to me. If it changes the second data block, then the hash value stored in the previous tree will 

get changed here and as a result this binary string of this node as a whole will become 

different. 

 

To make it consistent, the adversary has to change this hash value, which will further disturb 

this whole binary string as a whole. To make it further consistent, the adversary has to change 

this hash value and this as a whole will make this binary string disturbed and as a result 

adversary has to change the head hash pointer or the root hash pointer assuming that finding 

collisions are difficult, but as soon as the adversary tries to change the root hash pointer, it 

will be detected because that would not match with the root pointer that I am storing with me.  

(Refer Slide Time: 36:37) 

 



The interesting part of this Merkle trees is the proof of membership. So what exactly is the 

scenario here? Imagine that I have stored with me only the head root pointer with me and I do 

not have the data blocks with me. Now suppose later on I ask someone that please give me ith 

data block. Now the person from whom I am asking the ith data block if he is malicious 

person, he might try to give me an incorrect ith data block. How do I verify that whether 

indeed the so called ith data block that he is giving to me is a correct data block or not? 

 

Well, one way of verifying that is that I re-compute the entire tree, but for re-computing the 

entire tree not only I need the ith data block, but I need all the data blocks which were present 

in the original Merkle tree because only when I have all the data blocks present with me, I 

can re-compute the root along given and taking the ith data block that the person has given to 

me and then verify whether indeed he is giving me the correct data block or not, but it turns 

out that we do not require all the data blocks. 

 

Namely, 2 to the power k data blocks as a proof to verify whether the retrieved ith block is 

indeed current ith block or not, magically, it turns out that only by giving you K number of 

data blocks, one data block and K number of intermediate blocks it is suffice for me to re-

compute the root here. So basically that acts as a proof for the person who is giving me back 

the ith block, right. So if he is giving me back the ith block and he wants to prove that indeed 

the block that he is giving to me is the current ith block or not. 

 

Basically, what he has to do is that apart from that ith data block, he can give me all the 

blocks along the path from the root to the data block and just by using the blocks along the 

path from the root to the data block, which I have actually asked for, I can re-compute back 

the root pointer or the root hash value and compare it with the root hash value that I have 

stored with me to verify whether indeed the data block that I have received is correct or not. 

So let me demonstrate what I am trying to say. 

 

Imagine I have the up to date root pointer or root hash value, and I asked from a person who 

has actually maintaining a full copy of the Merkle tree that please give me the sixth block 

here and he gives me the sixth block, and if I consider the path from the root to the sixth 

block, the nodes that are occurring along that path are now highlighted with this highlighted 

blocks and what basically that person has to do is he can give me the sixth block and along 

with that he can give me all the binary strings along with this highlighted nodes. 



 

These highlighted values suffice for me to re-compute back the root of the original tree and 

by re-computing the root of the original tree, I can compare it with the root value that I have 

stored with me assuming finding collisions in the hash functions are difficult, with very high 

probability it is ensure that indeed the so called sixth block that the person has given to me is 

indeed the correct sixth block which was present in the original Merkle tree. So that means, 

now you can see that the number of values that the person has to give me to prove that indeed 

he is supplying me the correct ith block is not of order 2 to the power k. 

 

Basically, for each layer of this complete binary tree, he has to just give me one node value, 

right. So, at this layer he has to give me the binary contents here, at the second layer he has to 

give me the binary contents of this node, at the third layer he has to give me the binary 

contents of this node, and at the last layer basically he has to give me the ith the data block, in 

this case the sixth data block.  

 

That means, if you have a Merkle tree where there are 2 to the power k number of data blocks 

and if you want to fetch only a particular data block ith data block, then the number of binary 

strings which the person has to give back to me is of order k only, not 2 to the power k and 

that makes this data structure very powerful. You can prove the membership of certain data 

blocks in the whole tree without actually supplying the whole fee. Just supplying logarithmic 

number of information, it suffices for an entity to prove whether a certain data block is 

present in the tree or not, right. 

 

So, that brings me to the end of this lecture. Just to summarize, in this lecture we had seen 

some of the applications of hash functions, right. We had seen how the hash of a file can or 

the hash of an entity can serve at its unique identifier assuming finding collisions are difficult 

and this concept has got tremendous applications. Major application is in the context of hash 

pointers, where we can replace all the data structures based on standard pointers by hash 

pointers. 

 

We had seen how Block chains can be used as our tamper-evident log based on this principle. 

We had also seen Merkle trees and how Merkle tree helps us for the efficient proof of 

membership. Thank you. 


