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Hello everyone, welcome to this lecture. Just to recall in the last lecture, we have introduced 

a new cryptographic primitive, namely cryptographic hash functions and we also discussed 

rigorously the one of the important security properties that we require from cryptographic 

hash functions namely that of collision resistance. We also saw how to construct 

cryptographic hash functions using Merkle-Damgard paradigm. So the plan for this lecture is 

as follows. 

 

We will see how to use collision-resistant hash function to design message authentication 

codes for arbitrary long messages and we will see an instantiation of this paradigm, practical 

instantiation namely HMAC, which is a widely used message authentication codes used in 

practice. 
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So just to recall, we have already seen how to construct message authentication codes for 

long messages. So recall the construction of our PRF F star using the CBC mode of PRF for 

fixed-length inputs and this PRF F star based on CBC mode takes inputs as binary strings of 

arbitrary length and gives you a tag or an output of fixed size. So just to recall how exactly 

this construction F star looks like. It takes an input which is a key of size n bits and the actual 

input on which the PRF needs to be evaluated which can be a bit string of length up to n 

times l bits and it gives you a fixed output of size little n bits.  

 

Basically, depending upon whether the underlying message on which you want to evaluate 

this PRF F star is a multiple of n or not, we are actually having one of the 2 possible cases. So 

the first case is when the number of blocks right in your message on which you want to 

evaluate your PRF F star, it is already a multiple of n, in that case what we do is, we first 

apply a prefix-free randomized encoding operated by a key k1. 

 

Once we have the prefix-free encoding of your message on which you want to evaluate your 

PRF, what we do is basically we evaluate the CBC mode of PRF which is blocked by secure 

and where the number of blocks in the encoded input m is already a multiple of the block size 

of your fixed size PRF F and this we operate using another key k0 and the overall output is 

taken as the output of your PRF F star for the input m. This is for the case when the size of 

your message is c times some n for a constant c. 

 

Whereas if the size of the message is not a multiple of n, then what we do is we do a padding 

before computing the encoding of your message. So, the padding is a deterministic padding, 



where we divide your message into blocks of n bits, n bit, n bits and the last block basically 

consists of the padded bits which is 1 followed by the required number of zeros and then we 

compute a prefix-free encoding of this padded message m dash under the key k2. Once we 

have the prefix-free encoding of the message, we now operate the block wise secure PRF F 

CBC under the key k0. 

 

That is taken as the overall outcome of your PRF F star for the input m. So, here the key is 

k0, k1, k2 and they are derived from the master key k with which you are going to operate 

your PRF F star by a sub key generation algorithm which could be publicly known and 

depending upon whether your message size is some constant times n or not, the prefix-free 

encoding is operated with either key k1 or with the key k2. So that is an indication to the 

receiving side whether the message which has been evaluated by this PRF F star its size is 

already some constant times n or not. 

 

Now the goal here is we want to construct a message authentication codes again for 

arbitrarily long messages, but now using a collision-resistant hash function and a fixed-length 

MAC and we hope that indeed if we have one such construction, then we can completely get 

rid of the large number of PRF invocations which are used in this construction F star, right. 
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Let us see how we can design a message authentication codes for arbitrary long messages 

using a collision-resistant hash function and this paradigm is popularly called as Hash-and-

MAC paradigm. So as the name suggests what we do is if you are given an arbitrary length 

message on which you want to compute the authentication tag, then the tag is computed in 2 



stages. Remember that our tag should be of fixed length, its length should not depend upon 

the message which you want to authenticate. 

 

So this fixed-length tag is computed in 2 stages. In stage 1, we first hash the arbitrary 

message on which you want to compute the tag to a fixed-length string and this is done using 

a collision-resistant hash function and now once you have the hash of the message or the 

digest of the message which you have obtained in step 1, what we do is we compute the tag 

on the output which we have obtained on the previous step by using some fixed-length 

message authentication code and that is why the name Hash-and-MAC paradigm. 

 

We hash first the input and then we compute tag on the output of the hash of the message. So 

block wise what you are given here is you are given a message authentication code which I 

denote by say pi MAC and which is a secured MAC, which has a key generation algorithm, 

tag generation algorithm, and tag verification algorithm and it can authenticate a fixed-size 

messages, namely messages of size say little l bits and it has its own message-space, key-

space and tag-space. 

 

We are also given say a secure or collision-resistant hash functions say H taking arbitrary 

length inputs and giving you fixed set size outputs, the outputs of size little l bits. Then what 

we are going to do in this Hash-and-MAC paradigm is, we are going to combine these 2 

primitives and obtain a secure MAC, which I denote as pi tilt and it will have its key 

generation algorithm, tag generation algorithm, and tag verification algorithm. 

 

The key space of the MAC that we obtained by composing the fixed length MAC and the 

collision-resistant hash function will be the same as the key space of the fixed-length MAC, 

whereas the message space will be strings or binary strings of arbitrary length and the tag 

space will be the same as the tag space of your fixed-length MAC pi MAC. 
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So, here is how we compose the fixed-length MAC along with the collision-resistant hash 

function to obtain the message authentication code pi tilt. So, the tag generation algorithm is 

as follows. It takes a message which could be of any length, it is an arbitrary bit string and a 

key k randomly generated by the key generation algorithm. So just to stress here the key 

generation algorithm of the composed MAC is the same as the key generation algorithm of 

your base MAC. So, the base MAC outputs a uniformly random key of some fixed size, then 

so is the key generation algorithm of this composed MAC. 

 

So key little k is one of those keys and m is the message on which we want to compute the 

tag. So, what we do internally inside this tag generation algorithm is we apply the collision-

resistant hash function on your input m and once we have the hash of the message which is 

say of size little l bits, we invoke the tag generation algorithm of our base MAC under the 

key k of the composed MAC and the resultant output is considered as the tag generated by 

the composed MAC.  

 

The tag verification algorithm is similarly done here. So imagine you are given an arbitrary 

length input m along with the corresponding tag and you want to verify it with respect to a 

key k. So what we do is we re-compute the tag on the message part of the input. So that we 

do by performing the hash or computing the hash of the message and then once we have the 

hash of the message, we again perform or we compute the tag verification algorithm with 

respect to the input H of m and the tag component of the input that you have received for this 

tag verification algorithm. 

 



What we do is we invoke the tag verification algorithm of our base MAC with respect to the 

key k, and if the tag verification fails, that means this message, Tag-Ver should be rejected 

whereas if the tag verification of the base MAC is successful, then that means we should 

accept the message, tag that we have obtained for the composed MAC. So that is how the 

Hash-and-MAC paradigm works. 
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So, now we want to analyze whether indeed this Hash-and-MAC paradigm is going to give us 

a secure message authentication code for authenticating arbitrary length inputs. So what we 

want to prove here is that if the component-wise, the fixed-length MAC is a secure MAC, say 

CMA secure or strong CMA secure and if the H component that is given to us is also a 

collision-resistant hash function, then the composed MAC that we have obtained is indeed a 

secure MAC which can authenticate arbitrary length inputs. 

 

So for simplicity what we are going to prove is we are going to prove the CMA security of 

the composed MAC assuming that the base MAC is also a deterministic, but that need not be 

the case if your base MAC is a randomized MAC, then the overall MAC that we are 

obtaining is also a randomized MAC in which case we should go for strong CMA security, 

but just to keep our argument simple, we assume that the base MAC is a deterministic MAC 

and as hence the composed MAC is also a deterministic MAC and hence we are going to 

prove the CMA security. 

 

So just to recall how exactly the CMA game will be played in against this composed MAC. 

So as per the rules of the CMA game, adversary is going to ask for tags on several messages 



of its choice adaptively, namely polynomial number of messages and to respond to 

adversary’s queries, the challenger of the experiment runs the key generation algorithm 

obtains a uniformly random key and it computes the tag on all the messages for which the 

adversary has asked for the tag. 

 

Those tags are returned back to the adversary as per the tag generation algorithm of the 

composed MAC scheme, and finally, the adversary outputs a forgery, namely a message, 

Tag-Ver and we say that adversary has won the game or the output of the experiment is 1. If 

this message m star which has been submitted by the adversary is different from all the 

messages for which the adversary has asked for the tags and the tag verification of the 

composed MAC on the m star, t star gives you the output 1. 

 

So our goal is to show that if the component-wise the base MAC is secure and the underlying 

hash function is collision resistant, the probability that any poly-time adversary could win this 

experiment is upper bounded by some negligible probability. So the idea behind the proof is 

as follows. So if at all there exist an adversary who can come up with a forgery m star, t star 

in polynomial time, then there could be 2 possible cases. 

 

The first case could be that the adversary who has come up with the forgery m star, t star for 

him it so happened that there exists at least one of the messages for which he has asked for 

the tag such that which we denote say by m such that the forged message m star even though 

that is different from the that particular special message m, it so happened that the message 

m, m star constitutes a collision for your underlying hash function.  

 

If so that happen, then in that case it s easy for the adversary to come up with a tag on the 

message m star because adversary has already queried for the tag on the message m and say it 

has obtained a tag t and if the hash of the message m and the hash of the message m star are 

same that means the tag for the message m star as per the composed message authentication 

code will also be t. And hence by knowing m, t, it will be easy for an adversary to come up 

with the tag on the message m star and that will be the forgery for the adversary. 

 

But this internally means that adversary needs to find out a collision for the underlying hash 

function in polynomial amount of time, which contradicts our assumption that the underlying 

hash function is a collision-resistant hash function, right. So this is one of the cases by which 



one of the possibilities under which the adversary could come up with the forgery m star, t 

star. The second case could be that it may so happen that the message m star, its hash is 

different from hash of all the messages for which the adversary has asked for the or queried 

for the tag. 

 

But even if the hash of the message m and the hash of the message m star are different, it may 

so happen that the adversary is able to actually forge a tag on the fixed-length input, namely 

hash of the message m star. If that is the case, then again whatever forgery m star, t star 

adversary has submitted, it will be considered as a valid forgery, but for this case 2 to be true, 

what adversary basically has to do, it has to basically forge a tag on the message H of m star. 

 

Where H of m star is different from all the H of m's for which the adversary has asked for the 

tag as for the composed scheme, but this will contradict our assumption that the base message 

authentication code that we are assuming is CMA secure. So these are the two possible cases 

under which an arbitrary adversary against a composed scheme could come up with a 

forgery. Now what we are going to informally establish is that both these case 1 and case 2 

are going to be successful for any poly-time adversary only with some negligible probability, 

right. 
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So formally, here is your CMA game against the composed message authentication code for 

arbitrary length messages against an arbitrary poly-time adversary. So it asks for the tags for 

certain number of messages and the set of those messages I am denoting by this fancy Q set 

and in response, it obtains the tag on those messages as per the unknown uniformly random 



key picked by the key generation algorithm and as for the syntax of this composed scheme, 

each of this tag ti is basically obtained by first hashing the message mi and then computing a 

fixed length tag under the unknown key k on the hash of mi’s. 

 

After obtaining the tags for this Q messages, adversary submits a forgery and our goal is to 

analyze what is the success probability of adversary winning this experiment which we 

denote that CMA experiment outputting 1 and just as per the rules of the game the CMA 

experiment outputs 1 if and only if the forged message m star is different from all the 

messages in the fancy Q set and a tag verification with respect to the unknown key for this 

message m star with respect to the tag t star is successful. 

 

So to analyze the success probability of the CMA experiment, let me call an events coll 

which basically denotes the event that there exist at least one message in the set of messages 

for which the adversary has asked for the tag such that the hash of that message m is the same 

as the hash of the forged message m star, and now it is easy to see that the success probability 

of the adversary against the CMA experiment or the probability that the output of the CMA 

experiment is 1 can be splitted into 2 disjoint event, namely conditioned on the event whether 

the event collision happens or not, right. 

 

So the overall probability that the output of the CMA experiment is 1, can be written as the 

probability that the output of the CMA experiment is 1 and the event collision occurs plus the 

probability that the output of the CMA experiment is 1 and the event collision does not occur, 

right. So, this follows from the basic rules of probability and now what I can do is this first 

term here I can always upper bound it by the probability of the event collision to happen and 

the remaining probability I am retaining as it is, right. 

 

So just I am doing some substitutions here. So, I can always upper bound the probability that 

output of the experiment CMA is 1 by this entity and now what we are going to show is that 

each of this expressions on your right hand side, namely the probability of the event collision 

to happen and the probability that the output of the CMA experiment is 1 and the event 

collision does not happen both are negligible functions of your underlying security parameter. 

(Refer Slide Time: 17:35) 



 

So let us establish these 2 facts one by one. So both of these facts we are going to establish 

through a reduction proof. So what we are going to do is assume we have an arbitrary 

adversary who can forge your MAC or who can submit a forgery against the combined or the 

composed MAC and using that our goal is to find or create another poly-time adversary this 

fancy c whose goal is to basically find a collision in the underlying collision-resistant hash 

function. 

 

So what basically do is we do here in the reduction is the adversary or the MAC forger asked 

for tag on several messages of its choice, say Q number of message, and to respond to those 

queries what this collision finder algorithm does is it runs the key generation algorithm of the 

composed MAC itself, generates a uniformly random key, and it computes the tag on the 

messages for which our MAC forger has asked for the tag and the response are given back to 

the MAC forger and as per the syntax of the composed MAC. 

 

Each of this ti is basically computed by first hashing the message as per the underlying hash 

function H and then computing a fixed-length tag on the hash of each mi under the unknown 

key k. So if you see what is happening in this reduction is from the viewpoint of this MAC 

forger, right, if we consider this MAC forger, the probability distribution of the information 

that it is receiving from this collision finder is exactly the same as this MAC forger would 

have expected by participating in a real instance of the CMA game against the composed 

MAC. 

 



Because in a real instance of the MAC CMA game, what basically the adversary would have 

done is it would have submitted a several messages of its choice and the tags that it would 

have seen in response would have exactly the same distribution as provided by the collision 

finder algorithm to this MAC forger, right. So view wise, the probability distribution of the 

information that the MAC forger is seeing in this reduction is exactly the same as its 

adversary would have seen in a genuine instance of the CMA experiment. 

 

After getting the tags on the messages of adversary’s choice, basically this adversary or the 

MAC forger outputs of a forgery and what is the goal of the collision finder? The goal of the 

collision finder is to spot a collision in the underlying hash function. So what it does is it 

basically parses the set of messages in the query set, so it has the set of messages for which 

the adversary has asked for the tag and it parses those messages and sees if there exist at least 

one such message mi in that set such that the message mi is different from the forged 

message m star. 

 

The hash of that message mi is same as the hash of the message m star. If that is the case, 

then this collision finder algorithm outputs a coalition for the underlying hash function H and 

it is easy to see that the running time of this collision finder algorithm is polynomial time, if 

the running time of the MAC forger algorithm is of polynomial time, right. So now it is easy 

to see that the probability that the collision finder successfully outputs a collision is exactly 

the same with which the event collision happens when this adversary MAC forger 

participates in an instance of the CMA game. 

 

Because if indeed the event collision happens, that means there exists at least one message mi 

which is different from m star, but the hash of m star is same as H of mi, then indeed that 

case the collision finder algorithm will be able to successfully find the collision and event at 

mi different from m star, but their hash values are same is nothing but the event collision. So 

since I am assuming that my underlying hash function is a collision-resistant hash function, 

then as per the definition of collision-resistant hash function, this probability should be some 

negligible function of the security parameter. 

 

Since that probability is the same as the probability of the event collision happening that 

means the event collision also happens with some negligible probability. So that established 

our first fact that we wanted to establish. 
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Now let us establish the same fact, namely we want proof that assuming that the event 

collision does not happen, the probability that a MAC forger algorithm against the composed 

MAC and win the CMA game is upper bounded by some negligible function and that we 

establish by giving a reduction. So, we assume that we have a poly-time adversary, MAC 

adversary who can forge against, who can break the security or the CMA security of the 

composed MAC. 

 

Now using that adversary, we design another adversary which we denote as say A dash and 

its goal is to actually create a forgery against the fixed length base MAC. So now, what this 

adversary for the composed MAC does is it participates in an instance of the CMA game 

against the composed MAC and as per the rules of the CMA game, it asks for the tags for 

several messages of his choice.  

 

What this adversary A dash now does is it invokes an instance of CMA game against the 

fixed-length MAC, where the messages which are authenticated are of fixed length, namely 

little l-bit messages, right. So the difference in the CMA part, CMA experiment here and the 

CMA experiment here is the length of the messages. In the CMA experiment against the 

composed scheme, each of this messages m1, m2, mq, they could be of any length, but in the 

CMA game placed against a fixed-length MAC, the query set can consist of only messages 

whose lengths are of little l bits. 

 



So what this adversary A dash does is it plays a dual role on your left-hand side he is actually 

acting as an adversary and its goal is to win an instance of CMA game against a fixed-length 

MAC, but on the right-hand side he is acting as a verifier right and he is interacting with the 

MAC forger against the arbitrary length inputs. So what this adversary A dash is now doing 

is it got a set of queries on which it is supposed to create tags as for the composed scheme. 

 

To do that what it does is it hashes all those messages and though the hash of those messages 

are supplied as a query set to the verifier in the CMA game against the fixed-length MAC, 

basically adversary A dash is asking now for the tags on the hash of this messages m1, m2, 

mq and as per the rules of the CMA game, the verifier of the CMA game against the fixed-

length MAC generates a key and it responds back by computing a tag on hash of each of the 

messages which has been submitted by the adversary A dash, right. 

 

Now what this adversary A dash does is it has to respond back to the queries which the 

adversary A has raised to the adversary A dash. So what it does is it supplies the same 

response to the MAC forger as it has retrieved from the verifier in the CMA game against the 

fixed-length MAC. So again, before proceeding further, let us understand what is happening 

here? If we consider the view of the adversary A against the composed scheme, the view is 

exactly the same as this adversary would have seen by participating in an genuine instance of 

CMA game against the composed MAC. 

 

Basically, he would have submitted any messages of his choice and in response he would 

have seen tags where the distribution of the tag will be exactly the same. Namely, the tag will 

be computed by first hashing the messages, so that is why the hash of the messages are 

supplied by the adversary A dash here and once the hash of the messages have been 

computed, a fixed-length tag would have been obtained on the hash of those messages and 

that is what will be the distribution of the tag values that the adversary A would have seen in 

the composed MAC and that is what exactly is happening in the reduction. 

 

So as per the view of the adversary A is considered, its view is exactly the same as it would 

have expected by participating in a genuine instance of the CMA game against the composed 

MAC. So what this adversary A does now does it submits a forgery against a composed 

MAC say m star, t star and what the adversary A dash has to now do is it has to create or it 



has to output fixed-length forgery for the fixed-length base MAC, right. So what it does is 

basically whatever forgery m star, t star has been submitted by our adversary A. 

 

The adversary A dash computes a hash on the message m star and that is the message on 

which it is creating a forgery at the corresponding forge tag is t star. So now it is easy to see 

that what is the probability that our adversary A dash which we have created here is able to 

win the CMA game against the base MAC or the fixed-length MAC. Well, the probability 

that it can win the CMA game against a fixed-length MAC is exactly the same as the 

adversary A wins the CMA game against the composed MAC and the event collision does 

not happen in the instance of the experiment. 

 

Namely the event collision does not happen that means the hash of all the messages m1, m2, 

mq, they are differ from the hash of the message m star that is precisely the event collision 

not happening and adversary A still winning the game, right. If adversary A still wins the 

game that means the message m star, t star is indeed a forgery even in the presence of the 

event negation of collision, then indeed the hash of the message m star, t star is a valid 

forgery for your fixed-length MAC, which will imply that adversary A dash has won the 

CMA game against the fixed-length MAC. 

 

Now since we are assuming that our base MAC or the fixed-length MAC pi MAC is secure, 

then this quantity is a negligible quantity, namely there exist no adversary A dash who can 

win the CMA game against a fixed-length MAC with probability better than negligible 

probability in some security parameter. That means, the other event, the event on your right 

hand side, namely the adversary or the MAC forger winning the CMA game against your 

composed MAC in the presence of the complementary event collision also occurs with some 

negligible function in the security parameter. 

 

So this proves the two facts that we wanted to state and this overall shows that the Hash-and-

MAC paradigm is indeed going to give you a secure MAC for authenticating arbitrary long 

messages. 
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So now we have a general paradigm generic paradigm, namely Hash-and-MAC paradigm. So 

what we will do is that we will see an instantiation of this paradigm which we call as HMAC 

and basically, the motivation of this HMAC construction is that we want to create a MAC 

which is just based on hash functions, right. So, if you see the Hash-and-MAC paradigm, it 

uses 2 cryptographic primitives, namely it uses a cryptographic collision-resistant hash 

function as well as it uses a fixed-length MAC. 

 

Whereas the HMAC instantiation that we are going to see for the Hash-and-MAC paradigm, 

it is an industry MAC standard and the advantage of this HMAC construction is that it just 

involves hash functions, everything just based on hash function, you do not require another 

primitive namely a fixed-length MAC and let us see how exactly we construct this HMAC. 

So what we are given here is we are given a collision-resistant compression function which 

takes an input of size n+l bits and gives you an output of n bits and it is provably secure and it 

is collision resistant. 

 

So, for concrete instantiation of such a compression function, you can take the Davies-Meyer 

construction which we had discussed in the last lecture, whose security we have proved in the 

ideal cipher model. So pictorially, this is how your Davies-Meyer function will operate. It 

takes an input of size n+l bits, but that input of size n+l bits you can imagine as if it contains 

of 2 chunks of inputs or 2 parts of input, one part of little l bits, another part of little n bits and 

overall the output is the fixed-size output of n bits. 

 



We had seen in the last lecture that if Davies-Meyer construction, you can instantiate using 

any secure block cipher, say AES, DES and so on. So what this HMAC does is basically it 

has 2 layers of several iterations of this Davies-Meyer construction and overall it is controlled 

by a key right, because remember we want to design a MAC, so we have a key for the MAC. 

So these 2 layers of the several iteration of the Davies-Meyer construction is controlled by a 

key and finally we obtain the tag. 

 

So what exactly these 2 layers are, right? So the layer 1 is an inner layer and what it does, it 

takes the arbitrary input on which you want to compute the tag and it creates a fixed-length 

output of that input on which we want to compute the tag as per the Merkle-Damgard 

transformation by iteratively applying this Davies-Meyer function several times and 

remember the output of the Merkle-Damgard transformation gives you a fixed-length output. 

 

Once we have the layer 1, what we do in the outer layer is we actually compute the tag on the 

output that we have obtained from the inner layer, and this again is done interestingly by 

using one instance of the Davies-Meyer function. So that is the difference here, right. So even 

though this can be viewed as an instantiation of your Hash-and-MAC paradigm because we 

are first hashing the message and then we are creating the tag on the message. 

 

The interesting part here is that the tag for the message is also computed using an 

instantiation in one instance of the Davies-Meyer function or the collision-resistant 

compression function. We do not need a separate MAC for this second layer. 

(Refer Slide Time: 31:55) 

 



So let us see the architecture of the HMAC. So we have some publicly known constants here 

which we denote as ipad and opad, ipad basically stands for input pad and opad stands for 

output pad, each of length little l bits and we have a secret key of little l bits which is the 

master key for the overall MAC that we want to construct, right. So what we do is we invoke 

one instance of the Davies-Meyer construction where the overall input was sub size n+l bits.  

 

The message part is basically the XOR of the ipad with the key and we have a fixed publicly 

known IV and then what we do is we actually apply the Merkle-Damgard transformation. So 

what we have done basically here is you have the message m on which you want to compute 

the tag for the message under the key k. So, what we do is this part is basically inner layer of 

hashing where this inner layer of hashing this part is nothing but a Merkle-Damgard 

transformation where we would have encoded the message. 

 

Then the last block we would have added some padding bits, which basically denotes the 

binary representation of the number of little l-bit blocks which are present in your message 

and then we would have done a sequence of chaining, where in each iteration we will have 

one invocation of your Davies-Meyer function on the current block of the message and the 

output of the previous invocation of hDM. The difference here is that the IV now here is an 

IV or a key value which is obtained by running one invocation of the Davies-Meyer function 

on this input k XOR ipad with a fixed on IV. 

 

So this is your inner layer of hashing and it will give you a fixed-size output and what we do 

now do in the MAC part or the outer layer is the following. We take the output t which is of 

size say little n bits and little n might be less than little l. So what we do is we do the padding 

here and we do 2 invocations of the Davies-Meyer function here where the first invocation is 

now with the XOR of k with opad and whatever output comes it is used as a key, right, or it is 

used as one of the inputs along with the tag concatenated with the output pad being input. 

 

Whatever output comes out that is taken as the overall output of the HMAC construction for 

your message and this second layer actually is the outer layer of the message authentication 

code. So you have the inner layer of hashing where we take the arbitrary length message, 

compute a fixed-length tag, and then we take that fixed-length tag and then again do 2 

invocations of the Davies-Meyer function to compute the final MAC. 
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So, now we will not go into the full-fledged security of the HMAC construction, but let us 

intuitively try to understand what is happening here. So this is the overall architecture of the 

HMAC construction. So what we are doing here is we are actually deriving 2 keys by running 

the Davies-Meyer function here, you can call those keys as k in and k out right and k in is 

basically serving as the IV for your Merkle-Damgard transformation, whereas the k out is 

serving as the one part of the input for the Davies-Meyer function when we are actually 

computing the tag.  

 

So imagine that we define a function G which takes a key k for the overall MAC and it 

invokes Davies-Meyer function twice like this, sorry for this typo this DM should come in the 

subscript. So we have 2 invocations of the Davies Meyer function. The first invocation is on 

input IV concatenated with the XOR of k and ipad and the second invocation is on the input 

IV concatenated with k XOR opad and say the resultant output is k in and k out, right. 

Interestingly, what we can prove is the construction G of k that we have defined like this. 

 

It is like a pseudorandom generator if we go in the ideal cipher model. So in the security 

definition of the pseudorandom generator, the game was that the adversary is given a 

challenge sample and it has to distinguish whether the sample is generated by the 

pseudorandom generator or a true random generator, but if we take that game in the ideal 

cipher model, then apart from the challenge sample which is given to the adversary. 

 

Adversary have also got oracle access to the underlying block ciphers which are used in the 

instantiation of the Davies-Meyer function, and based on oracle access to the underlying 



block ciphers which are used in the Davies-Meyer function, the goal of the adversary is to 

distinguish the challenge sample whether it is truly random or whether its pseudorandom. So, 

we can formally prove that a construction G of k that we have defined like this indeed is a 

pseudorandom generator in the ideal cipher model. 

 

That means what that the distribution of the 2 keys that we have obtained, namely k in and k 

out which we are using in the inner layer and the outer layer, their distribution is 

computationally indistinguishable from a distribution of truly random keys k in and k out that 

would have been obtained by running a true random generators. So, that means you can 

safely consider the derived key k in and the derived key k out to be as good as true random 

keys. Now, let us focus on the inner layer of the hashing, right. 

 

So again sorry for the typo here, this should H sub MD, so basically this denotes the Merkle-

Damgard transformation. So what we are doing in the inner layer of hashing is basically a 

Merkle-Damgard transformation on the input k in concatenated with the encoded m. The only 

difference now is instead of a fixed IV which is all zeros in the case of the Merkle-Damgard 

transformation, the IV with which we are triggering the Merkle-Damgard transformation is a 

derived key k in, right.  

 

So, you can imagine in some way that whatever function that we have computed by applying 

the Merkle-Damgard transformation on the encoded input and concatenated with k in that is 

kind of define a keyed hash function which I denote as H tilde right, and we can prove that 

this function H til k in constitutes a collision-resistant hash function even if adversary has 

seen polynomial number of outputs of this keyed hash function for several messages of its 

choice. So, we can formally establish this that is very simple, but due to lack of time, I am not 

going into the formal details. 

 

So, what it means is even though we are doing a Merkle-Damgard transformation during the 

inner layer of hashing controlled by a key k in that constitutes a keyed hash function, which 

can be formally proved to be collision resistant even if adversary has oracle access to that 

keyed hash function. That means, whatever output t that we are obtaining here that you 

cannot consider as an outcome of a collision-resistant hash function, right. So that is what the 

first part of the overview of the security proof. 

 



The second part is with respect to the MAC part or the fixed-length MAC part that we are 

computing here. S, imagine that I define a tag generation algorithm, again sorry for the typo 

here it should be H sub DM which basically is one instantiation of the Davies-Meyer 

construction with a key as input concatenated with the message also as the input, right. So 

that will be the overall tag generation algorithm for the message m under the key k. 

 

So basically, the part that I have highlighted here under the box that is nothing but the 

outcome of this tag generation algorithm, that means you can imagine that this t dash that is 

coming is an output of a tag generation algorithm and we can correspondingly define a 

corresponding tag verification algorithm and interestingly we can prove that the way this 

Davies-Meyer function is operating here in the ideal cipher model, we can consider this 

instantiation of Davies-Meyer function to be a secure MAC for fixed-lengths inputs. 

 

So if that is the case, then the output t dash that we are obtaining here it can be considered as 

the tag for the message t concatenated with padded bits under the key k out and as per our 

assumption the key k out is computationally indistinguishable from a uniformly random key. 

That means we can imagine that the t dash is an outcome of a fixed-length MAC. So, overall 

what we can imagine is that even though everything involves instantiation of the Davies-

Meyer construction, overall this HMAC can be considered as an instantiation of your Hash-

and-MAC paradigm. 

 

Because the first part, namely the inner part is nothing but doing a keyed hashing for the 

message as per the Merkle-Damgard transformation, where the key is computationally 

indistinguishable because it is derived from one invocation of the Davies-Meyer function 

which in the ideal cipher model we can prove to be equivalent to a pseudorandom generator 

and actual message authentication code right. This part is basically a keyed invocation of 

Davies-Meyer function on the output that we are obtaining from the hashing stage. 

 

Again in the ideal cipher model, we can prove that the instantiation of this Davies-Meyer 

function as per the key where the key k out is computationally indistinguishable from a 

uniformly random key gives you a message authentication code which cannot be forged. So 

as a result, we can view this overall construction of HMAC as an instantiation of the Hash-

and-MAC paradigm and as we have stated earlier, the Hash-and-MAC paradigm is indeed 



secure if your underlying hash function is collision resistant and if your MAC is a secure 

MAC for fixed-length messages. 

 

The only difference in the proof is that underlying components are secure in the ideal cipher 

model, namely the keyed hash function is collision resistant in the ideal cipher model and the 

underlying fixed-length MAC can be proved to be a secure MAC in the ideal cipher model 

and that implies overall that HMAC is secured, and this is really one of the highly popular 

instantiation of message authentication code which is used in practice. 

 

So that brings me to the end of this lecture. Just to summarize in this lecture, we have seen 

the Hash-and-MAC paradigm which is the generate construction and which gives you a 

message authentication codes for arbitrary long messages by combining or composing a 

MAC for fixed-length messages and a collision-resistant hash function and we had also seen 

an instantiation of this paradigm, namely the construction of the HMAC message 

authentication code. Thank you. 


