
Foundations of Cryptography 

Prof. Dr. Ashish Choudhury 

(Former) Infosys Foundation Career Development Chair Professor 

Indian Institute of Technology – Bangalore 

 

Lecture – 28 

Cryptographic Hash Functions - Part II 

 

 

(Refer Slide Time: 00:32) 

 

Hello everyone, welcome to this lecture. So just to recall, in the last lecture we had seen the 

Merkle-Damgard paradigm for constructing collision-resistant  hash functions for any size 

inputs and in this lecture we will see the stage 1 of the Merkle-Damgard paradigm, namely 

how to construct a fixed-length compression functions.  
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So just to recall pictorially, this is how a Merkle-Damgard paradigm will take any fixed-

length compression function little h which is collision-resistant and apply it iteratively to 

obtain or hash function which can hash inputs of any size. So now the interesting question is 



how exactly you obtain this fixed-length collision-resistant compression function little h at 

the first place. So pictorially, this function little h takes an input of size l + n bits which can 

be passed as 2 inputs and input m of little l bits and another input t of little n bits. 

 

Together it will compress it and gives you an output of size little n bits right. So that is how 

you can interpret this fixed-length compression function and it turns out that there are 2 

approaches to construct this function h. The first approach is to make a design construction 

based on number-theoretic hard problem or number-theoretic assumptions. So when we will 

start our discussion on number theory and public key cryptography, we will come back and 

we will see how to use some number-theoretic hardness assumptions to construct this 

function little h. 

 

This approach is not used practically because even though the constructions, their running 

time, they are polynomial in the security parameter, the actual running time when deployed in 

practice is of order of several magnitudes and that is why we do not use the instantiations of 

this function little h based on number-theoretic hardness assumptions. Instead what we do is, 

we design constructions, we go for constructions based on block ciphers or we can take any 

of the existing block ciphers say aes, tes or we can design dedicated block ciphers. 

 

These are the construction or so these are the instantiations of the function little h, which we 

use in practice. However interestingly the security proof of the constructions based on this 

block ciphers, they are in very unconventional model. They are unconventional model in the 

sense, we make very strong assumptions from the underlying model and then give the 

security proof. 
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So let us see this approach of how to construct collision-resistant compression function, 

fixed-length compression function from block ciphers and there are several constructions 

available. We will see one of the constructions which is called as Davies-Meyer construction. 

So what you are given is a block cipher which you can interpret as a keyed pseudorandom 

permutation, taking a key from the key space and input x from the block space and giving 

you an output, where the output and the block size are the same. 

 

Namely both of them belong to the set this fancy x and using this we design a compression 

function little h which I denote as h sub DM, namely we can call it as Davies-Meyer 

compression function, which takes an input right of size this cardinality of k and cardinality 

of x space, so namely it takes 2 inputs, 1 input is considered interpreted as m and other input 

is interpreted as t and the output of this compression function is defined as follows. 

 

We evaluate the block cipher with respect to the key little m and treating the t part as the 

block and the output is again XORed with the t part of the input of this Davies-Meyer hash 

compression function, so that is how this Davies-Meyer compression function is evaluated, 

right. So the interesting part here is that the message block in the hash chain, so remember 

that this function little h is going to be plugged in in the hash chain of the Merkle-Damgard 

paradigm right when we are evaluating the overall hash function big H, right. 

 

That is why pictorially I am representing this function little h consisting of 2 inputs, one input 

will be the block part of the message which we want to hash in the bigger message and one 

will be the t part which will be coming from the outcome of the previous invocation of the 



little h function right and the way we are designing this Davies-Meyer compression function 

is basically the message block on which we are going to operate this Davies-Meyer 

instruction will be treated as the key for the pseudorandom permutation of the block cipher. It 

need not be uniformly random right. 

 

Because attacker could have full control over the bigger message which it want to hash as per 

the Merkle-Damgard paradigm and that means it gives the attacker full control over what 

exactly is serving as the key for the block cipher when the block cipher is internally used in 

the design of the Davies-Meyer compression function.  However even though the adversary 

has the full control over the key which is used in the underlying instantiation of block cipher 

in this Davies-Meyer compression function, it can be proved that the overall construction of 

this Davies-Meyer compression function is indeed collision-resistant under special 

conditions, right.  

 

That means there is nothing to worry about here, even though you might be wondering that or 

we have discussed that block ciphers remain secure only if the key is not known to the 

attacker and the key is uniformly random, but the way we are operating or using the block 

cipher in this Davies-Meyer compression function is that, the block of the message which we 

are going to use or apply the hash function little h right, it is fully under the control of the 

adversary and that is actually serving as the key for your blocks underlying instantiation of 

your block cipher and that need not be random. 

 

But still we can prove that under special conditions the way this output of the Davies-Meyer 

construction is defined overall the function, Davies-Meyer construction that we have 

constructed here is indeed collision-resistant, right.  
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So here is how we have constructed the Davies-Meyer compression function and as I am 

continuously saying that we can prove the collision resistance of the Davies-Meyer 

construction under special assumptions, this is because we do not know how to prove the 

collision resistance of the Davies-Meyer construction that we have given just assuming that 

the underlying block cipher is a strong pseudorandom permutation. It is not sufficient to just 

assume that the underlying function F is a strong pseudorandom permutation and give a proof 

that the Davies-Meyer construction is indeed collision-resistant. 

 

However, interestingly the proof of the collision resistance of the Davies-Meyer construction 

is known in the ideal-cipher model which is kind of a hypothetical setting, because it makes 

very strong assumptions about your underlying block cipher. So let us see what exactly is this 

ideal-cipher model? So in ideal-cipher model, the underlying block cipher or the keyed 

permutation F is abstracted as a collection of several truly random permutations, where each 

member of this family or each member of this collection is indexed by the underlying key 

with which we are going to operate the function F.  

 

So remember, the block cipher it takes a block input and a key input. So what basically we 

are assuming in this ideal-cipher model is that even though we are given the description of a 

single F function as soon as we fix the value of k that gives an instantiation of the F function, 

which can be treated as one member of a bigger family. So different values of the k which are 

used in the instantiation of your function F will give you different members of the bigger 

family and that is why we are now viewing that even though we are given the description of a 

single F function when used with different K. 



 

It gives you different members from a bigger family and that is what we mean by function F 

abstracted as a collection of truly random permutations. The second property in this ideal-

cipher model is that once we know a family member Fk1 and another family member Fk2, 

namely these are the instantiation of your block cipher with the key k1 and the key k2 the 

assumption here is that the family member Fk1 and the family member Fk2 namely the keyed 

permutations Fk1 and Fk2, they are independent of each other even if the keys k1 and k2 are 

dependent or related to each other.  

 

That means even if it so happens that k1 is almost the same as k2 except say the last bit, the 

assumption in this ideal-cipher model is that the function Fk1 will be completely independent 

in the sense its output will be uniformly random and it will be completely independent from 

the outputs of the function Fk right, so that is a second property in this ideal-cipher model. So 

till now there is nothing unconventional here that we are assuming about the function F. 

 

Because when we are assuming that function F is a strong pseudorandom permutation that 

means even though it is not a truly random permutation, it gives you pseudo randomness 

guarantee that means we can assume that it behaves like a pseudorandom permutation, but in 

the ideal-cipher model we are making slightly more stronger assumptions, we are assuming 

that each member of this bigger family is indeed a truly random permutation and independent 

of each other.  

 

The strongest property or you can call it as the most unconventional property in this ideal-

cipher model is that no party or no entity in the system who is going to use a cryptographic 

primitive, which makes use this block cipher will have access to the code of the function F 

and the code of the function F inverse. That means if at all any entity wants to compute the 

value of the function F with respect to some key, it will make oracle access or it will make 

oracle calls to the keyed permutation Fk and it will just get back the value of the keyed 

permutation on the input for which it wants the value of the Fk.  

 

In the same way if some entity wants to know the value of F inverse with respect to some 

input key k and some input y, then it can make just oracle call to the F inverse oracle and it 

will get back the corresponding output, but it will not get any access to the code of the block 

cipher. So that is the most unconventional assumption that we are making in the ideal-cipher 



model because in reality when we are designing the Davies-Meyer construction and 

instantiating it we need the actual block cipher which we are going to plug-in in this 

construction of the Davies-Meyer construction. 

 

Every entity who is going to use that instantiation of the Davies-Meyer construction will 

know the code of the function F including the adversary, but when we are analyzing the 

security of the Davies-Meyer  construction, the assumption that we are making in the ideal-

cipher model is that no one will be knowing the code of the function F, it is just a collection 

of several random members, if you want to talk to one random member, just make an oracle 

call right.  
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So assume now we are in the ideal-cipher model, what we are going to prove is that this 

Davies-Meyer construction of fixed-length compression function that we have given here 

indeed is a collision-resistant function. So remember that indeed it is a compression function 

because we are taking an input of size n + l bits and giving you an output of size l bit, so it is 

a compression function. 

 

What we have to prove is that in polynomial amount of time, it is difficult for an adversary to 

come up with a pair m, t and m star, t star such that the output of the Davies-Meyer function 

is the same where the Davies-Meyer construction is using a block cipher right. So since we 

are going to analyze the security of this compression function in the ideal-cipher model, any 

adversary who would like to find out a collision for this Davies-Meyer  construction it needs 



to evaluate the Davies-Meyer  function on several messages of its choice right, then only it 

could come up with a collision. 

 

To evaluate the Davies-Meyer function on messages of its choice, internally it needs to 

evaluate the function F and F inverse as well because we do not know what exactly is the 

strategy of the adversary; it may ask, it may evaluate the underlying F on several m comma t 

pairs, it could evaluate the underlying F inverse also on several messages of its choice or 

several inputs of its choice, and then only it could come up with a corresponding collision. 

 

But since we are now in the ideal-cipher model what we are going to assume is that even the 

adversary who would like to evaluate the underlying F and F inverse on inputs of his choice 

to come up with a collision for this Davies-Meyer function, we will make oracle queries 

right, because it would not be knowing the code of the function F and code of the function F 

inverse. So that is why to make this oracle queries to incorporate this oracle queries from the 

adversary to find out the collision. 

 

This oracle queries are incorporated in the hash collision experiment when we analyze the 

security of this Davies-Meyer construction in the ideal-cipher model. So remember in the 

actual hash collision experiment in the non-ideal-cipher model or in the standard model, 

adversary can query anything, adversary did not have to query anything, because it will be 

having access to the code of the function F or F inverse if we are using any F or F inverse in 

the design of the underlying hash function. 

 

But now since we are in the ideal-cipher model, even adversary's interaction with the function 

F and F inverse will be through oracle queries and that is why they also need to be 

incorporated in the modified hash collision experiment. So the modified hash collision 

experiment is as follows. So we now assume that both the experiment as well as the 

adversary will have oracle access to the family of the functions Fk and the family of the 

functions Fk inverse.  

 

So you can imagine this oracles Fk and Fk inverse are kind of lying in the sky where no one 

can see what exactly is the code of the function Fk and Fk inverse and if anyone wants to 

compute the value of the function Fk for k of its choice, it just shouts to the sky that please 

guy give me the value of this function Fk on this input and it will see the value of Fk on that 



input and same way the interaction with Fk inverse is handled here right. So that is why I am 

putting this family of functions Fk and Fk inverse inside a box here. 

 

No one can see what exactly is happening inside the box, all the interactions are going to be 

just an interface, you supply some input and you get back the output. So the modified hash-

collision experiment is as follows. So remember the goal of this adversary is it knows the 

description of your Davies-Meyer hash function, namely it knows that the Davies-Meyer’s 

hash function is basically F of t under the key m XOR t with the t part right. 

 

The goal of the adversary is basically to come up with a pair m, t and m star, t star which 

constitutes a collision with respect to this Davies-Meyer function, but since we are in the 

ideal-cipher model any value of F which adversary would like to compute or any value of F 

inverse which the adversary would like to compute will be in all made through oracle queries. 

So imagine if adversary would like to know the value of F with respect to this key ki and on 

the input xi.  

 

So, it can make an oracle query and what the oracle is going to return back is it is going to 

return back the value of the function F with respect to the key ki on the input xi, and if that 

adversary sees this response, then basically what adversary sees is the value of the Davies-

Meyer function on the input pair ki, xi because the value of the Davies-Meyer function on 

this combined input ki, xi, will be the value of the function or the block cipher F on the input 

xi with the key ki XOR with the input xi.  

 

But since adversary is then the ideal-cipher model, he cannot compute the value of F of xi 

with the key ki that is why it has made an oracle query. So that is how the adversary is going 

to compute the value of Davies-Meyer functions on messages of its choice. It turns out that 

this is not the only way by which the adversary could compute the value of the Davies-Meyer 

function on inputs of his choice.  

 

It could take the help of the inverse oracle access as well, say for instance it can ask hey 

inverse oracle give me the value of the inverse of the function under the key ki on the input yi 

and in response what the oracle is going to do is it is going to return back the inverse of this 

function on the input yi under the key k, sorry under the key ki, sorry for the typo error, it 

should be under the key ki right, and once the adversary learns the inverse of this yi under the 



key ki that gives him the value of the Davies-Meyer function on the input ki, xi because the 

way Davies-Meyer function is constructed. 

 

The output of the Davies-Meyer function on this input ki, xi would be like this. So by making 

oracle queries to the Fk family and by making oracle queries to the Fk inverse family, we can 

assume that the adversary is now going to compute the output of the Davies-Meyer function 

on several messages of its choice, namely polynomial number of messages because our 

adversary is polynomially bounded and now finally he submits a collision, namely a pair of 

inputs m, t and a pair of input m star, t star. 

 

The security definition here is that we will say that this collision-resistant  experiment is 

successful for the adversary in the ideal-cipher model if in this model where adversary is now 

making or given oracle access to the Fk family and Fk inverse family, the probability that the 

adversary could come up with a collision is upper bounded by a negligible function and the 

collision is now specific because now we are analyzing the collision with respect to the 

Davies-Meyer construction. 

 

So, the output of the Davies-Meyer construction for the m, t message which the adversary is 

submitted will be this and the output of the Davies-Meyer function for the message m star, t 

star that the adversary has submitted will be this. Our goal is to analyze what is the 

probability that this condition hold. The security definition is we will say that the Davies-

Meyer construction is collision-resistant in the ideal-cipher model if the probability that any 

poly-time adversary could come up with a special m, t and m star, t star satisfying this 

condition is upper bounded by some negligible function. 
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What we are going to prove is that indeed the Davies-Meyer construction that we have given 

constitutes a collision-resistant function in the ideal-cipher model provided the size of the x 

domain or the x set is sufficiently large. More specifically, what we are going to prove here is 

that any poly-time adversary or any adversary A issuing q number of ideal queries altogether 

to the F family and F inverse family can find a collision with probability upper bounded by q 

times q+1 over the size of the x set, right. 

 

So here q is the total number of queries which the adversary is allowed to make to the F 

family and F inverse family right. So it is not q for the F and q for F inverse altogether, right. 

So if he is making s number of queries to F and t number of queries to F inverse, then s + t is 

basically q and what we are going to prove is that in the ideal-cipher model any poly-time 

adversary making q number of queries, his success probability of finding a collision and the 

Davies-Meyer function is upper bounded by this quantity. 

 

So what we are going to do here is we consider the query numbers i, j, where i is less than j 

that means assume that adversary has already queried up to j-1 queries altogether to the 

combined F and F inverse family and now he is making the jth query and any time when it is 

making the query the response from the queried gives him the value of the Davies-Meyer 

function on some input pair right, because that is we had already seen that in the last slide. 

 

So if he is making queries to the F family, then based on the response it gets the value of the 

Davies-Meyer function on some input or if he is making a query to the F inverse family, then 

again based on the response which gives him the value of the Davies-Meyer function on 



some input. So what we denote here is that the ith query based on the response whatever hash 

value he learns I denote it as h sub i and based on the response for this jth query whatever 

hash value that he learns for the Davies-Meyer function I denote it as h of j. 

 

Now I am interested to compute what is the probability that the ith hash value and the jth 

hash value which the adversary learns in this ideal-cipher model are the same. So now there 

could be 2 cases here. Assume that, the jth query which the adversary is making is for the F 

family. So when he is making a jth query to the F family, then he can make a query of this 

form that means basically he is asking for the value of the family member F of kj on the input 

xj. 

 

So he will see the response which I denote as yj and based on the response he basically learns 

the value of the Davies-Meyer function on some input, basically he learns the value of the 

Davies-Meyer function on the input kj, xj and that is denoted by as h of j and this will h of j 

will be this value right. So we are interested to analyze what is the probability that the jth 

hash value which the adversary has learnt by making this query to the Fk family it is the same 

as the ith hash value which the adversary has already learned while making the ith query and 

remember the ith query could be either to the Fk family or to the Fk inverse family. 

 

So the probability that the ith hash value which the adversary has learnt is the same as the jth 

hash value which the adversary has just now learnt are same, it is the same as the probability 

that the family member Fk of j when evaluated at the input xj gives you this output. If that is 

the case then h of i and h of j will be the same, but since we are in the ideal-cipher model 

right, what is the value of the family member Fkj on the input xj, well it is a uniformly 

random value independent of each other right. 

 

It is a uniformly random value over the x set and it it is different from all the previous Fkj 

values for which the adversary might have already asked the output value right. So, 

remember we are in the case where i is less than j, we are analyzing the probability with 

respect to the collision for the output of ith query and jth query. So in the worst case it may so 

happen that for  all the previous, j – 1 queries the adversary  might have asked for the value 

of the function family with respect to the key kj. 

 



In response the adversary might have seen the output of the family member Fkj for various 

inputs and since Fkj is a permutation right, when the oracle is giving him back the response 

for the Fjk family on the jth input that has to be different from all the previous j – 1 output 

that oracle has already returned to the adversary. So the probability with which this condition 

namely the output of the jth query under the key Fkj is equal to this is always upper bounded 

by 1 over the size of the x set - J + 1.  

 

So that is a probability with which, by making the jth query to the Fk function, the adversary 

can hope that it gets a collision with respect to the output of the ith query, which he had made 

in the previous interaction with the oracle. On the other hand, it may so happen that the 

adversary's jth query is for the F inverse function right. So it could ask for the value of the 

inverse, it could ask for the oracle service for this input, from the F inverse oracle and in 

response it gets back the output, basically it sees the inverse of the input yj under the key Fkj 

right.  

 

So he is basically asking for the access to the F inverse kj member on the input yj and it gets 

back the output xj and based on that it learns the jth hash value right on this message, namely 

the value of the Davies-Meyer function and that the output h of j will be this. Now in this 

case, what is the probability that the jth value which the adversary has learnt here is the same 

as the output of the ith query which the adversary has already learnt in the previous 

interaction?  

 

Well, the probability of that is the same as that the probability that your F inverse function 

under the key kj on the input yj gives you an output which is same as XOR of hi and yj and 

again we can run the same argument that we have done for the case on your left-hand side 

right. Remember that in the ideal-cipher model, each of the family members Fk and Fk 

inverse, they are you truly random and independent of each other.  

 

So that means this family member F inverse kj is like a truly random permutation and it may 

so happen that all the previous j - 1 queries, the adversary could have made with respect to 

the family member kj, that means in the worst case he might have asked for the value of F 

inverse kj on various y values of his choice for all the j - 1 queries. So now for the jth query 

when the oracle is giving him back the response, the response is going to be different from all 

the previous responses that the oracle has given with respect to the j - 1 queries. 



 

So that is why we can now safely conclude that the probability that hi = hj happens where hj 

is now defined like this by adversary making an oracle call for the inverse function is upper 

bounded by 1 over the size of x set - j + 1 right. So in both the cases that means irrespective 

of whether the jth queries for the Fk function or the jth queries for the Fk inverse function, 

the probability that the hash value which adversary learns due to this jth query matches the 

output of the ith query is upper bounded by 1 over the size of x-j+1, right. So that is the fact 

we have established now. 
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How many queries adversary is actually making here? We are making an assumption that 

adversary is making total q number of queries, total right and what we have analyzed is that 

out of those q queries, what is the probability that a pair of distinct queries gives him a 

collision for the Davies-Meyer construction in the ideal-cipher model, that probability we 

have calculated just now. So now what we have to do is we have to apply the union bound, 

namely we have to take this probability and sum it up over all pairs of distinct i, j where i and 

j ranges from 1 to q.  

 

So let collision be the event that by making q number of queries to the family F and F 

inverse, adversary obtains at least one pair of collision that means adversary obtains at least 

one i, j pair where the hi value and hj values is same. So it turns out that by applying the 

union bound, the probability of collision can be easily upper bounded by this, namely 

summation of j = 1 to q and internally summation i = j - 1, the probability that the ith output 

and the jth output are same. 



 

What I can do is that, I can substitute the inner summation because now I know that the value 

of each of the probabilities that is present in the internal summation is upper bounded by 1 

over x – j + 1, and since i ranges from j-1 and there are j-1 such terms, so in the numerator we 

get j-1 and each of those probabilities is 1 over x- j + 1. So that is what we obtain and if we 

further simplify, then we can replace this inequality by this, namely what we have done here 

is I can always replace each of this - j +1 by - q because j is always upper bounded by q. 

 

If I take out this summation finally since j ranges from 1 to q, I can replace inequality by the 

inequality by this inequality. So now let us analyze this final inequality for 2 cases. If the 

number of queries which the adversary has made in this ideal-cipher model is upper bounded 

by the size of x over 2, then we can do some simplification here and end up showing that the 

probability of collision is indeed upper bounded by q times q + 1 over the size of x set.  

 

On the other hand if the number of queries what the adversary has made is greater than the 

size of x over 2, then trivially it so holds that probability of collision is upper bounded by 

this. That means it does not matter whether we are in case 1 or in case 2, in both the cases the 

probability of collision by making q queries is upper bounded by q over q + 1 over the size of 

x and that establishes the fact that we have stated in this theorem. 

 

That means if q is say some polynomial function in the security parameter and if x is say 

some significantly large quantity, say some exponentially large quantity in the security 

parameter, then overall this probability turns out to be a negligible function in the security 

parameter and that is why we can now safely conclude that the Davies-Meyer construction is 

collision-resistant in the ideal-cipher model and adversary by evaluating the Davies-Meyer 

function for q number of messages in the ideal-cipher model could not come up with a 

collision except with a negligible success probability, right 

 

So that brings me to the end of this lecture. Just to summarize in this lecture, we had 

discussed how to construct the fixed-length compression function and there are 2 approaches 

for that, one approach where we actually use number-theoretic hardness assumptions and we 

get provably secure guarantees in the standard model, but we do not opt those constructions 

in practice because the amount of computations which are involved in those constructions are 

of order of several magnitude. 



 

Rather we use constructions based on dedicated block ciphers or the existing block ciphers 

and we had seen one of those construction namely the Davies-Meyer construction which is 

very simple, but it turns out that even though practically no attacks have been reported on that 

construction, we cannot prove the security of that construction just assuming that your block 

cipher is a secure site block cipher or a strong pseudorandom permutation.  

 

We have to make very strong assumptions in our model, namely we have to assume that we 

are in the ideal-cipher model where block cipher is basically acting as a collection of or is a 

family of several truly random permutations where the access to the block cipher is through 

oracle calls even for the adversary. Only if we make this ideal-cipher assumption model, we 

can prove the security of the Davies-Meyer construction. Thank you. 


