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Cryptographic Hash Functions - Part I 

 

Hello everyone, welcome to this lecture. Just to recall in the last lecture, we had seen how to 

construct message authentication codes which are secure even against a computationally 

unbounded adversary. 

(Refer Slide Time: 00:46) 

 

So, in this lecture, we will introduce another interesting cryptography primitive called 

cryptographic hash functions, which has got several applications with one of the applications 

being the construction of efficient message authentication codes. So, we will introduce the 

formal definition of cryptographic hash function and we will also formally define what exactly 

we mean by the collision-resistance property of cryptographic hash functions and then we will 

discuss the Merkle-Damgard paradigm, which is an interesting paradigm and used for 

construction of several practical collision-resistant hash functions. 
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So let us begin with the definition of cryptographic hash functions. So, this primitive has got 

tremendous applications both in the symmetric key as well as in the public key setting and the 

primary application of this cryptographic primitive is data compression and it has got several 

other applications like construction of message authentication code, as a key derivation 

function, for de-duplication purpose, virus fingerprinting, and so on. So on a very high level, a 

cryptographic hash function is a many-to-one function, mapping arbitrary-length bit strings to 

fixed-length bit strings. 

 

So the domain is the set of bit strings which can be of any length and output is always have a 

fixed length say little l where little l is the function of the security parameter and property wise 

we require many properties from this cryptographic hash function, but main property which we 

are interested in and which we will discuss in this course is the collision-resistance property 

and on a very high level or informally what exactly collision resistance means that an 

adversary or an algorithm. 

 

Which is computationally bounded even though if it is knowing the description of this function 

h should not be able to find out a collision or a pair of distinct inputs, which gives you the same 

hash value, right except with some negligible probability. That means, it should be very 

difficult computationally to find collisions in a reasonable amount of time. 
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So, let us formally define what exactly we mean by collision resistance. So, that is model by an 

experiment and the experiment we have given the description of a publically known hash 

function, right? And name of the experiment is hash-collision experiment and we have a 

polynomial time adversary. Basically, the goal of the adversary to come up with a pair of 

messages m, m star from the domain of this hash function. 

 

The security definition here is that we say that the function H is a collision resistant-hash 

function or CRHF if for every polynomial time adversary participating in this experiment, the 

probability that the adversary could come up with a colliding pair, namely with a pair of 

distinct inputs m, m star such that both m as well as m star gives you the same hash value is 

upper bounded by some negligible function, right. So basically the goal of the challenger, the 

goal of the adversary here is to take the description of your hash function and come up with a 

pair of colliding inputs. 

 

If it is able to do that with a non-negligible advantage, then we say that our function H is not 

collision-resistant hash function, otherwise we say that the function H is a collision-resistant 

hash function. Notice that the function H is not a keyed function, it is an unkeyed function and 

the function H is a deterministic function. There is no internal randomness present inside the 

function H, right. So even though the function H is deterministic, there is no key. The 

challenge for the adversary is to come up with a pair of colliding inputs. 

 

It turns out that there is a slight technical issue with above definition in the sense that if the 

above is the definition of collision-resistant hash function, then we cannot define any function 



H or we cannot construct any function H which satisfies the above definition. This is because 

as I said that the domain of the function H is a set of all bit strings and which is significantly 

large than the size of the co-domain because your co-domain consist of only strings of length 

little l bits and that is why the function H is a many-to-one function. 

 

As a result, there are always collisions which are present in the function H, which follows from 

your pigeon-hole principle because if you have a many-to-one function, then definitely you 

will have multiple inputs x, x star or m, m star which have the same hash output. There always 

exist adversary which I say a collision adversary, which could be hardcoded with such a 

colliding pair of inputs m, m star.  

 

That means, if such an adversary A sub coll participates in this hash-collision experiment, then 

it can simply output the message pair m, m star, which is hardcoded in the adversary. The 

adversary do not have to do any step, it is a constant time attack. That means, fundamentally 

the way we have defined a collision-resistant property, it is not possible to satisfy the definition 

against any construction of hash function, right. However, interestingly, it turns out that most 

of the practical instantiations of hash function some of which we are going to discuss, there are 

no collisions which are hardcoded in their design. 

 

That means, we believe that there exists no adversary which already knows or which is 

hardcoded with a pair of inputs m, m star which constitutes a collision for the corresponding 

hash function. So, that is why technically even though there is a challenge associated with the 

definition, we stick to this definition of collision-resistant hash function. I also stress that the 

security property of the collision-resistant property does not demand that there should not be 

any collision in the function H because by design itself, it is a many-to-one function. 

 

As I said, by pigeon-hole principle it follows that there will be several collisions, which are 

present with respect to the function H. The challenge is to design a poly-time algorithm or a 

computationally efficient algorithm which when given the description of the function H could 

come up with at least one such pair of collision with a non-negligible advantage that is a 

security requirement or that is what we mean by the collision-resistant property. 
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So now, we have the definition of collision-resistant hash function. So we will be interested to 

see whether indeed it is possible to design such functions or not. What we are going to discuss 

is a well known paradigm which is called as Merkle-Damgard paradigm and it is a very well 

known 2-stage approach which is used for the design of several practical instantiations of 

collision-resistant hash functions such as the MD5 hash function and several hash functions in 

the SHA-256 family. So as I said, it is a 2-stage approach for constructing a collision-resistant 

hash function. 

 

So in stage 1, what we do is we aim to design a fixed-length collision-resistant compression 

function and why it is fixed length because unlike a collision-resistant hash function, there the 

domain could consist of any string of any length, here the domain is fixed in the sense that it 

can take inputs only of size n+l bits. It is called a compression function because it takes an 

input of size n+l bits and produces an output of size of n bits. So definitely the output size is 

shorter or less than the input size and that is why it is a compression function. 

 

So pictorially, you can interpret that we are interested in stage 1 to construct some function h, 

which takes an input of size n+l bits which can be passed into 2 input halves, the first half of 

size n bits and the second half of size little l bits. So that is why you can interpret the domain of 

this function h to be the Cartesian product of an x set which consists of strings of length n bits 

and another set y which consists of strings of length little l bits and given a string of length n+l 

bits as the input. 

 



The goal of this computation function should be to produce and output of size little n bits such 

that this little h function should be a collision-resistant function. That means, given the 

description of this function h, it should be difficult to come up with a pair of collision in 

polynomial amount of time with a significant probability. Once we have such a fixed-length 

compression function in stage 2, what we do is we apply this well-known Merkle-Damgard 

paradigm to construct a collision-resistant hash function which we denote by big H, which can 

take any string as input of length up to say big L bits. 

 

There is no restriction on the input size. The input could be of size 1 bit, 2 bit or it could be any 

string of length up to big L bits, and it gives you an output of belonging to the set x, right. So, 

that is what we will do in stage 2. The construction in stage 2 is a very generic construction, in 

the sense it can take any fixed-length compression function without going into the underlying 

details of that compression function and magically it will give you the collision-resistant 

function big H which you are interested to construct.  

 

So, what we are going to discuss now is what we exactly do in stage 2. That means, we will 

assume we are given a fixed-length collision-resistant compression function little h and then 

we will see how we apply the Merkle-Damgard paradigm and get de collision-resistant hash 

function big H. Later in the next lecture, we will see what exactly we do for stage 1 that means 

how exactly we construct this candidate little h compression function. 

(Refer Slide Time: 10:31) 

 

So our goal is the following. We are given a fixed-length compression function, taking inputs 

from the Cartesian product of x set and y set and giving you an output on the x set and the x set 



basically consist of strings of length little n bits and the y set consists of strings of length little l 

bits and our goal is to construct this function big H, which can take any binary string of length 

up to big L bits and give you an fixed size output, namely a string of length little l bits. So if 

you are wondering what exactly are the values of little n and little l. 

 

For the practical instantiations of hash function, so for your information for the SHA256 hash 

function, the value of little n is 256 and the value of little l is 512 bits, right. So the first thing 

that we do while applying the Merkle-Damgard paradigm is that we take the input big M for 

the hash function big H which we are interested to construct, and this input big M is a binary 

string of length up to length big L baits. So, we apply some encoding function here and the 

encoding is done to ensure that the encoded input is a multiple of little l bits. 

 

The reason we want to ensure that the encoded input is a multiple of little l bits is that when we 

are going to apply the Merkle-Damgard paradigm, we are good divide our encoded input into 

several blocks of little l bits and we will be iteratively applying the fixed-length compression 

function. So, pictorially you can imagine that you are given this input, we apply some publicly 

known deterministic encoding function. 

 

Encoded output is denoted by this hat M which consists of the original M and concatenated 

with some padded bits and together this original M concatenated with the padded bits now will 

consist of several blocks of little l bits and the number of such blocks of little l bits will be big 

L by little l + 1. So, you might be wondering that why this +1, so this will be clear soon. So, 

what exactly is the form of this padded bits? Well, the padded bits is defined as follows. It will 

start with 1 followed by the required number of 0 concatenated with the binary representation 

of the number of little l bit blocks which are present in the original M, right. 

 

So, you have the original M which is the actual input which you want to hash using the big H 

function which you are interested to construct. So, we count the number of little l bit blocks 

which are present in the non-encoded input and the binary representation of the number of such 

blocks is this representation, namely the number s within the angle brackets. So, the padded bit 

which we are actually appending to the bits of the message which we want to hash is of this 

form.  

 



We have 1 followed by the required number of 0 followed by the binary representation of the 

number of blocks of little l bits which are present in M and typically the number of bits which 

are allocated for this binary representation of the number of l bit blocks present in M is a 64 bit 

field, but you can have this field consisting of more number of bit, but I am quoting this 

number with respect to one of the practical instantiations of hash functions, namely the SHA 

function.  

 

So, that means, you could have up to 2 to the power 64 little l number of blocks present in your 

original input M and each block consists of little l bits. So, that gives you an upper bound on 

the maximum size of the message, which you can hash using this hash function big H which 

you are interested to construct, right. So, again, if I take the example of SHA256, my l is 512 

and I could have up to 2 to the power 64 such blocks. So that gives you the maximum length of 

the message which you can encode, right, 2 the power 73 that much length string you can hash 

using the function H of MD which you are interested to construct.  

 

Interestingly, if your message big M which you want to hash is consisting of number of blocks 

of if its length is already a multiple of little l bit that means you do not need to actually do any 

padding, but then how exactly the receiver who is going to receive the message will come to 

know whether the padding has happened or not. So in case if the message length is already a 

multiple of little l, then what exactly we do is we do the padding, where padding basically 

consist of a full dummy block starting with the representation 1000s and binary representation 

of the number of blocks of little l bits which are already present in the message.  

 

So that is why it respective of whether the message length is already a multiple of little l bits or 

not, we actually do the padding and that is why this +1 is present in the number of blocks of 

little l bits in the encoded input, right. So if the M is already a multiple of littler l, then you 

have these many numbers of blocks of little l bits and we are actually doing a padding, namely 

we are adding a full dummy block. So that is why the number of blocks of little l bits which 

could be present in the encoded input is actually this, right. 
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So now once you have the encoded input which you want to hash, right, so the way we 

compute the hash of the encoded input is that we iteratively apply the fixed-length collision-

resistant compression function that we are available with and we do it iteratively in the sense 

we apply invocation of h over the current block of the encoded input and the previous outcome 

of the instantiation of the fixed-length collision function. So imagine that this is your pictorial 

representation of the encoded input consisting of several blocks of little l bits. 

 

I am highlighting the last block because the last block may not be fully consisting of the input 

bits, it could be consisting of the padded bits as well, right. So, other than that, all the 

remaining blocks are not highlighted. So the way we iteratively apply the little h function here 

is as follows. So, the first invocation is on the first block of little l bits of the encoded input and 

along with an IV, which we denote as t0 belonging to the set x, we will soon see what exactly 

is the value of IV and now you see the invocation of h, it takes an input of size l+n bits, right. 

 

It is basically taking an input from the x set and it is taking an input from your y set, which 

satisfies the semantic of my little h function and it will give you an output belonging to the set 

x. So the output that comes out of the first invocation of the h function is denoted by t1, it will 

be of size m bits and we take the next chunk of l bits from the encoded input and apply the next 

invocation of the h function and output is denoted as t2, which will be again of size little n bits 

and we continue like that till we are done with the last invocation of the h function, which 

operates over the last block of the encoded input of size little l bits. 

 



The outcome of the previous invocation of the h function and the final output of the overall 

hash function big H which we have constructed for the input M is considered to be the outcome 

of the final invocation of the h function. So that is how we are going to hash the message, right. 

So that is why the function h here is applied iteratively and this also tells you why exactly we 

want to encoded input to be a multiple of little l because in each iteration, we take one chunk of 

little l bits and apply the h function on the previous outcome of the h function, right. 

 

So now you might be wondering what exactly is an IV? Is it some random entity or not? So as 

I said the hash functions are deterministic functions, so IV is not a random value, it is a fixed 

publicly known value, you can take it say all zeros which set once for all or for some practical 

instantiations of the hash function, this IV set is a very complicated string and this intermediate 

variables t0, t1, t2, t s-1, ts, which we actually obtain along this sequence of chaining process, 

they are called as chaining variables. 
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So, now let us see whether indeed applying this Merkle-Damgard paradigm iteratively over a 

fixed-length collision-resistant compression function ends up giving you a collision-resistant 

hash function or not. So we are going to prove that that if indeed the function little h is a fixed-

length compression function and as well as collision-resistant, then by applying the Merkle-

Damgard paradigm, the function big H which we have obtained which can hash any bit string 

of length up to big L bits indeed is a collision-resistant function. 

 

The proof will be by reduction or by a contradiction, namely we can prove that assume if you 

have a poly-time adversary, which I denote as A sub MD, which when given the description of 



the Merkle-Damgard paradigm and a description of your fixed-length compression function 

outputs a pair of distinct messages or a collision for the bigger function or the function big H 

that we have constructed. That means, the algorithm A sub MD outputs a pair M, M dash, 

where M and M dash are distinct, but still the hash value of M and M dash operated with 

respect to the big H function is same. 

 

The probability of collision here is say f of n where f of n is a non-negligible function. So what 

we are going to prove is that if we have such an adversary A sub MD, then using this adversary 

A of MD we can construct or we show how to construct another poly-time adversary A sub h, 

which can give you a collision for your fixed-length collision-resistant compression function 

little h with the same probability with which the adversary A sub MD could have given you a 

collision for the function H sub MD. 

 

Basically, the idea of this adversary A sub h is that the adversary A sub h, its goal is to find out 

a collision for the little h function, namely its goal is to come up with a pair t, m and t star, m 

star such that the output of this little h function on these two inputs it is the same and to find is 

the pair t, m and t star, m star, what your adversary A sub h does is basically it parses the 

sequence of hash chain which your Merkle-Damgard paradigm would have created while 

hashing this message big M and for hashing the message M dash, where the message M and M 

dash are produced by the adversary is A sub MD. 

 

So pictorially, this is how the hash value for the message big M would have been computed as 

per the Merkle-Damgard paradigm, right. The message M would have been first converted into 

an encoded input and then we would have applied the function little h iteratively and in the 

same way to compute the value of the function H sub MD on the message M dash, we would 

have applied the function little h iteratively as this. We would have first converted the input M 

dash into an encoded input and then we would have applied the function H iteratively and 

would have obtained the value of hash value on the message M dash.  

 

So, what basically the adversary A sub h is going to do is it is going to compare this to hash 

chains, the hash chain on the left side and the hash chain on right side and our claim is that if 

m, m dash constitutes a collision where m and m dash are distinct, then definitely there will be 

at least one collision present at some place in the hash chain of M and hash chain of M dash, 

right.  
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So let us see how exactly the collision for the function little h is going to be obtained based on 

these two hash chains. So since the hash value of the message M and the hash value of the 

message M dash are same, right, because that is a collision for your function, H sub MD. So 

what we going to do is we are going to focus on the last invocation of the little h function in the 

hash chain for the message M and the last invocation of the little h function in the hash chain 

for the message M dash, right. 

 

So the last invocation for the message M is on your left hand side and the last invocation for 

the hash chain on M dash is on the right hand side and as you can see, you have the inputs mu 

and tu-1 for the hash chain for M and the input for the hash chain for M dash is the input mv 

dash and tv-1 dash. So, there could be 2 possibilities. If this joint input tu-1 concatenated with 

mu is different from t dash v-1 concatenated with m dash v, then that itself creates a collision 

for your little h function. 

 

Because what is happening here is that even though the combined input here is different from 

the combined input here, their output with respect to the little h function are saying because 

that is what is the overall output of the hash value big H for the message M and M dash. So, if 

we are in this case, then we have spotted a collision very easily, namely we have spotted the 

collision with respect to the last invocation of the little b function.  

 

Otherwise, it implies that the combined input tu-1 and mu is the same as the combined input t 

dash v-1 and m dash v and that automatically means that the number of blocks which are 



present in the message M and M dash are same, namely u = v because we are in the case when 

this mu and m dash v are same, right, and remember mu and m dash sub v are going to consist 

of some number of bits of the actual message and padded bits, though combinely they are the 

same.  

 

That means, the number of blocks of little l bits which are present in the message M and a 

number of blocks of little l bits which are present in the message M dash are actually same. So, 

if you are in the else case that means we have the last invocation of the little h function in the 

hash chain of M and the hash of M dash does not constitute a collision.  
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So what we have to do is now we have to go one step back in the hash chain in the respective 

hash chains and focus on the second-to-last invocation of the little h function in the respective 

hash chains, right. So, if we continue in the else case, we are here. We have distinct messages 

M and M dash and now we are focusing on the second-to-last invocation of the H function in 

their respective hash chains. Now, again we have 2 possible cases.  

 

If the joint input to the little h function in the respective hash chains are different, then we have 

spotted a collision for the little h function because now we are in the case where even though 

the combined input to the second-to-last invocation of the little h function in the respective 

hash chains are different, their outputs are same, right? Because the outputs are t sub u-1 and t 

dash sub u-1 which we are already know they are same because we are under that case.  

 



But again, if it so happened that the combined input for the second-to-last invocation of the H 

functions in the respective hash chains are equal, right, then it gives you the implication that 

else mu and else dash some you are same and combined input are same, then we have to go 

one step back in the respective hash chains and we have to focus on the third-to-last invocation 

of the little h function in the respective hash chains. 
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So, again if you now go to the third-to-last invocation of the little h function in the respective 

hash chains, we are in this condition and again we have to argue whether the combined input to 

the little h function in the respective hash chains are same or not. If they are not, then this 

instance of H basically creates a collision for the little h function where we have a pair of 

inputs which are different, but the output namely t dash sub u-2 and t sub u-2 are same, but if 

not, then again we have to go to the previous invocation of the little h function in the respective 

hash chains and so on. 

 

So, what basically, we are doing here is we are parsing the hash chain of the M and M dash 

respectively and the claim is that eventually we will end up finding a collision because if we do 

not find collision and if we end up parsing from right to left and come to the beginning of the 

message, first block of M and the first block of M dash, and it means that even though we have 

distinct M and M dash, all the blocks of M and M dash are same seen, which is going to be a 

contradiction. 

 

But since M and M dash are different because that constitutes a collision for your overall hash 

function big H sub MD, definitely there will be a collision which will be spotted with respect 



to the little h function. So, that proves that if indeed our little h function is a fixed-length 

compression function and collision resistant, then by applying the Merkle-Damgard paradigm, 

the overall function which we are going to obtain is also collision resistant. That means in poly 

time, it would not be possible to come up with a pair of distinct inputs, which gives you the 

same hash value. 

 

So, that brings me to the end of this lecture. Now, just to summarize, in this lecture, we started 

discussing about interesting cryptography primitive called cryptographic hash function. We 

have seen the definition of collision resistance with respect to the cryptographic hash functions. 

Of course, there are several other properties for cryptographic hash functions like preimage 

resistance and second preimage resistance, but we are not going to discuss those properties 

because we would not be using them in this course. 

 

We also discussed about the Merkle-Damgard paradigm which is a well known paradigm used 

in several practical instantiations of cryptographic has function and what basically Merkle-

Damgard paradigm does is it takes any fixed-length collision resistant compression function, 

apply a collision-resistant hash function for any sizing. Thank you. 


